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Abstract— Capacity scaling laws are analyzed in an underwa-
ter acoustic network with n regularly located nodes. A narrow-
band model is assumed where the carrier frequency is allowed
to scale as a function ofn. In the network, we characterize an
attenuation parameter that depends on the frequency scaling as
well as the transmission distance. A cut-set upper bound on the
throughput scaling is then derived in extended networks. Our
result indicates that the upper bound is inversely proportional
to the attenuation parameter, thus resulting in a highly power-
limited network. Furthermore, we describe an achievable scheme
based on the simple nearest-neighbor multi-hop (MH) transmis-
sion. It is shown under extended networks that the MH scheme is
order-optimal as the attenuation parameter scales exponentially
with

√
n (or faster). Finally, these scaling results are extended to

a random network realization.

I. I NTRODUCTION

A pioneering work of [1], introduced by Gupta and Kumar,
characterized the sum throughput scaling in a large wireless
radio network. They showed that the total throughput scales
asΘ(

√
n/ log n) when a multi-hop (MH) routing strategy is

used forn source-destination (S–D) pairs randomly distributed
in a unit area.1 MH schemes are then further developed and
analyzed in [2], [3]. A recent result [4] has shown that an
almost linear throughput in the radio network, i.e.,Θ(n1−ε) for
an arbitrarily smallε > 0, is achievable by using a hierarchical
cooperation strategy.

Along with the studies in terrestrial radio networks, the
interest in study of underwater networks has been growing
with recent advances in acoustic communication technol-
ogy [5], [6]. In underwater acoustic communication systems,
both bandwidth and power are severely limited due to the
exponential (rather than polynomial) path-loss attenuation with
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1We use the following notations: i)f(x) = O(g(x)) means that there exist
constantsC andc such thatf(x) ≤ Cg(x) for all x > c. ii) f(x) = o(g(x))

means that lim
x→∞

f(x)
g(x)

= 0. iii) f(x) = Ω(g(x)) if g(x) = O(f(x)).

iv) f(x) = ω(g(x)) if g(x) = o(f(x)). v) f(x) = Θ(g(x)) if f(x) =
O(g(x)) andg(x) = O(f(x)).

propagation distance and frequency-dependent attenuation.
This is a main feature that distinguishes underwater systems
from wireless radio links. Based on these characteristics,
network coding schemes [6]–[8] have been presented for
underwater acoustic channels. One natural question is what
are the fundamental capabilities of underwater networks in
supporting multiple S–D pairs over an acoustic channel. To
answer this question, the throughput scaling for underwater
networks of unit area was first studied [9], wheren nodes
were arbitrarily located in a planar disk of unit area and the
carrier frequency was set to a constant independent ofn. That
work showed an upper bound on the throughput of each node
based on the physical model assumption in [1]. This upper
bound scales asn−1/αe−W0(Θ(n−1/α)), whereα corresponds
to the spreading factor of the underwater channel, andW0

represents the branch zero of the Lambert function [10].2 Since
the spreading factor typically has values in the range1 ≤ α ≤
2 [9], the throughput per node decreases almost asO(n−1/α)
for large enoughn, which is considerably faster than the
Θ(
√

n) scaling characterized for wireless radio settings [1].
In this paper, a capacity scaling law for underwater networks

is analyzed in extended networks of unit node density. Espe-
cially, we are interested in the case where the carrier frequency
scales as a certain function ofn in a narrow-band model. Such
an assumption changes the scaling behavior significantly due
to the attenuation characteristics. We aim to study both an
information-theoretic upper bound and achievable scaling rate.

We explicitly characterize anattenuation parameterthat
depends on the transmission distance and also on the carrier
frequency. For networks withn regularly distributed nodes, we
derive an upper bound on the total throughput scaling using the
cut-set bound. Our upper bound is based on the characteristics
of power-limited regimes shown in [4]. In extended networks,
it is shown that the upper bound is inversely proportional to
the attenuation parameter. This leads to a highly power-limited
network for all the operating regimes. Interestingly, it is seen
that unlike the case of wireless radio networks, our upper
bound heavily depends on the attenuation parameter but not on
the spreading factor (corresponding to the path-loss exponent

2The Lambert W function is defined to be the inverse of the functionz =
W (z)eW (z) and the branch satisfyingW (z) ≥ −1 is denoted byW0(z).



in wireless networks). In addition, to constructively show our
achievability result for extended regular networks, we describe
the conventional nearest-neighbor MH transmission [1] with
a slight modification, and analyze its achievable throughput.
It is shown under extended networks that the achievable rate
based on the MH routing scheme matches the upper bound
within a factor ofn with arbitrarily small exponent as long as
the attenuation parameter increases exponentially with respect
to
√

n (or faster). Furthermore, a random network scenario is
also discussed.

The rest of this paper is organized as follows. Section II
describes our system and channel models. In Section III,
the cut-set upper bound on the throughput is derived. In
Section IV, achievable throughput scaling is analyzed. These
results are extended to the random network case in Section V.
Finally, Section VI summarizes the paper with some conclud-
ing remarks. We refer to the full paper [11] for the detailed
description and all the proofs.

II. SYSTEM AND CHANNEL MODELS

We consider a two-dimensional underwater network that
consists ofn nodes on a square with unit node density such
that two neighboring nodes are 1 unit of distance apart from
each other in an extended network, i.e., a regular network [12],
[13]. We randomly pick a matching of S–D pairs, so that each
node is the destination of exactly one source. We assume
frequency-flat channel of bandwidthW Hz around carrier
frequency f , which satisfiesf À W , i.e., narrow-band
model. This is a highly simplified model, but nonetheless
one that suffices to demonstrate the fundamental mechanisms
that govern capacity scaling. Assuming that all the nodes
have perfectly directional transmissions, we also disregard
multipath propagation. Each node has an average transmit
power constraintP (constant), and we assume that the channel
state information is available at all receivers, but not at the
transmitters. It is assumed that each node transmits at a rate
T (n)/n, where T (n) denotes the total throughput of the
network.

Now let us turn to channel modeling. An underwater acous-
tic channel is characterized by an attenuation that depends
on both the distancerki between nodesi and k (i, k ∈
{1, · · · , n}) and the signal frequencyf , and is given by

A(rki, f) = c0r
α
kia(f)rki (1)

for some constantc0 > 0 independent ofn, whereα is the
spreading factor anda(f) > 1 is the absorption coefficient [5].
The spreading factor describes the geometry of propagation
and is typically1 ≤ α ≤ 2. Note that existing models of
wireless networks typically correspond to the case for which
a(f) = 1 (or a positive constant independent ofn) andα > 2.

A common empirical model givesa(f) in dB/km for f in
kHz as [5]:

10 log a(f) = a0 + a1f
2 + a2

f2

b1 + f2
+ a3

f2

b2 + f2
,

where{a0, · · · , a3, b1, b2} are positive constants independent
of n. As mentioned earlier, we will allow the carrier frequency
f to scale withn. Especially, we consider the case where the
frequency scales at arbitrarily increasing rates relative ton.
The absorptiona(f) is then an increasing function off such
that

a(f) = Θ(ec1f2
) (2)

with respect tof for some constantc1 > 0 independent ofn.
The noiseni at nodei ∈ {1, · · · , n} in an acoustic chan-

nel can be modeled through four basic sources: turbulence,
shipping, waves, and thermal noise [5]. We assume thatni is
the circularly symmetric complex additive colored Gaussian
noise with zero mean and power spectral density (psd)N(f),
and thus the noise is frequency-dependent. The overall psd of
four sources decays linearly on the logarithmic scale in the
frequency region 100 Hz – 100 kHz, which is the operating
regime used by the majority of acoustic systems, and thus is
approximately given by [5]

log N(f) = a4 − a5 log f

for some positive constantsa4 anda5 independent ofn. This
means thatN(f) = O(1) since

N(f) = Θ
(

1
fa5

)
(3)

in terms off increasing withn.
The received signalyk at nodek ∈ {1, · · · , n} at a given

time instance is given by

yk =
∑

i∈I

hkixi + nk,

where

hki =
ejθki

√
A(rki, f)

, (4)

represents the channel,xi ∈ C is the signal transmitted by
node i and I ⊂ {1, · · · , n} is the set of simultaneously
transmitting nodes. The random phasesejθki are uniformly
distributed over[0, 2π) and independent for differenti, k, and
time. We thus assume a narrow-band time-varying channel,
whose gain changes to a new independent value for every
symbol.

Based on the above channel characteristics, operating
regimes of the network are identified according to the fol-
lowing physical parameters: the absorptiona(f) and the noise
psdN(f) which are exploited here by choosing the frequency
f based on the numbern of nodes. In other words, if the
relationship betweenf andn is specified, thena(f) andN(f)
can be given by a certain scaling function ofn from (2) and
(3), respectively.

III. C UT-SET UPPERBOUND

To access the fundamental limits of an underwater network,
a cut-set upper bound on the total throughput scaling is ana-
lyzed from an information-theoretic perspective [14]. Specifi-
cally, an upper bound based on the power transfer argument [4]



Fig. 1. The cutL in a two-dimensional extended regular network.SL and
DL represent the sets of source and destination nodes, respectively.

is established for extended networks. Note, however, that the
present problem is not equivalent to the conventional extended
network framework [4] due to different channel characteristics.
Our interest is particularly in the operating regimes for which
the upper bound is tight.

Consider a given cutL dividing the network area into two
halves as in [4], [15] (see Fig. 1). LetSL andDL denote the
sets of sources and destinations, respectively, for the cutL in
the network. More precisely, underL, source nodesSL are on
the left, while all nodes on the right are destinationsDL. In this
case, we have anΘ(n)×Θ(n) multiple-input multiple-output
(MIMO) channel between the two sets of nodes separated by
the cut.

In an extended network, we take into account an approach
based on the amount of power transferred across the network
according to different operating regimes. As pointed out in [4],
the information transfer fromSL to DL is highly power-
limited since all the nodes in the setDL are ill-connected
to the left-half network in terms of power. This implies that
the information transfer is bounded by the total received power
transfer, rather than the cardinality of the setDL. For the cut
L, the total throughputT (n) for sources on the left is bounded
by the (ergodic) capacity of the MIMO channel betweenSL

and DL under time-varying channel assumption, and thus is
given by

T (n) ≤ max
QL≥0

E

[
log det

(
IΘ(n) +

1
N(f)

HLQLHH
L

)]
, (5)

whereHL is the matrix with entries[HL]ki for i ∈ SL, k ∈
DL, andQL ∈ CΘ(n)×Θ(n) is the positive semi-definite input
signal covariance matrix whosek-th diagonal element satisfies
[QL]kk ≤ P for k ∈ SL.

The relationship in (5) will be further specified in Theo-
rem 1. Before that, we first apply the techniques of [4], [16] to
obtain the total power transfer of the setDL. These techniques
involves the relaxation of the individual power constraints to
a total weighted power constraint, where the weight assigned
to each source corresponds to the total received power on
the other side of the cut. To be specific, each columni of
the matrixHL is normalized by the square root of the total
received power on the other side of the cut from sourcei ∈ SL.
From (1) and (4), the total powerP (i)

L received from the signal

sent by the sourcei is given by

P
(i)
L = Pd

(i)
L , (6)

where

d
(i)
L =

1
c0

∑

k∈DL

r−α
ki a(f)−rki (7)

for some constantc0 > 0 independent ofn. For convenience,
we now index the node positions such that the source and des-
tination nodes under the cutL are located at positions(−ix +
1, iy) and(kx, ky), respectively, forix, kx = 1, · · · ,

√
n/2 and

iy, ky = 1, · · · ,
√

n. The scaling result ofd(i)
L defined in (7)

can be derived as follows.
Lemma 1: In an extended network, the termd(i)

L in (7) is

d
(i)
L = Θ

(
i1−α
x a(f)−ix

)
,

where−ix + 1 represents the horizontal coordinate of node
i ∈ SL for ix = 1, · · · ,

√
n/2.

The proof of this lemma is obtained by finding upper and
lower bounds ond(i)

L from layering techniques. The expression
(5) is then rewritten as

max
Q̃L≥0

E

[
log det

(
IΘ(n) +

1
N(f)

FLQ̃LFH
L

)]
, (8)

whereFL is the matrix with entries[FL]ki = 1√
d
(i)
L

[HL]ki,

which are obtained from (7), fori ∈ SL, k ∈ DL. Here,Q̃L

is the matrix satisfying
[
Q̃L

]
ki

=
√

d
(k)
L d

(i)
L [QL]ki ,

which meanstr(Q̃L) ≤ ∑
i∈SL

P
(i)
L .

We next examine the behavior of the largest singular value
for the normalized channel matrixFL, and then show how
much it affects an upper bound on (8). We first address the
case whereFL is well-conditioned according to the attenuation
parametera(f).

Lemma 2:Let FL denote the normalized channel matrix
defined by the expression (8). Under the attenuation regimes
a(f) = Ω

(
(1 + ε0)

√
n
)

for an arbitrarily smallε0 > 0, we
have that

E
[
‖FL‖22

]
≤ c2 log n

for some constantc2 > 0 independent ofn.
Note that the matrixFL is well-conditioned asa(f) scales

exponentially with respect to
√

n (or faster). Otherwise, i.e.,
if a(f) = o

(
(1 + ε0)

√
n
)

, the largest singular value ofFL

scales as a polynomial factor ofn, thus resulting in a loose
upper bound on the total throughput. Using Lemma 2, we
obtain the following result.

Lemma 3:Under a(f) = Ω
(
(1 + ε0)

√
n
)

, the term (8) is
upper-bounded by

nε

N(f)

∑

i∈SL

P
(i)
L (9)



for arbitrarily small positive constantsε0 andε, whereP
(i)
L is

given by (6).
Note that (9) represents the total amount of received signal-

to-noise ratio from the setSL of sources to the setDL of
destinations for a given cutL. We are now ready to show the
cut-set upper bound in extended networks.

Theorem 1:For an underwater regular network of unit
node density, where the absorption coefficienta(f) scales as

Ω
(
(1 + ε0)

√
n
)

for an arbitrarily smallε0 > 0, the total

throughputT (n) is upper-bounded by

T (n) ≤ c3n
1/2+ε

a(f)N(f)
, (10)

wherec3 > 0 is some constant independent ofn andε > 0 is
an arbitrarily small constant.

Note that this upper bound is expressed as a function of the
absorptiona(f) and the noise psdN(f) while an upper bound
for wireless radio networks depends only on the constant value
α [4].

By using (2) and the regimesa(f) = Ω((1 + ε0)
√

n), we
can also obtain the following condition:

f = Ω(n1/4),

which means that iff scales faster thann1/4, then the result
in (10) is satisfied.

IV. A CHIEVABILITY RESULT

In this section, we show that the considered transmission
scheme, commonly used in wireless radio networks, is order-
optimal in underwater networks. Under a regular network of
unit node density, the conventional MH transmission [1] is
used and its achievable throughput scaling is analyzed to show
its order optimality.

Instead of original (continuous) MH transmissions, a bursty
transmission scheme [4], [15], which uses only a fraction
1/a(f)N(f) of the time for actual transmission with instanta-
neous powera(f)N(f)P per node, is used to simply apply the
analysis for networks with no power limitation to our network
model. With this scheme, the received signal power from the
desired transmitter, the noise psd, and the total interference
power from the setI ⊂ {1, · · · , n} have the same scaling, i.e.,
Θ(N(f)), and the received signal-to-interference-and-noise
ratio (SINR) is kept atΘ(1) under the narrow-band model.

The achievable rate of MH is now shown by quantifying
the amount of interference.

Lemma 4:Suppose that a regular network of unit node
density uses the MH protocol. Then, the total interference
power from other simultaneously transmitting nodes, corre-
sponding to the setI ⊂ {1, · · · , n}, is upper-bounded by
Θ(N(f)), whereN(f) denotes the psd of noiseni at receiver
i ∈ {1, · · · , n}.

The proof of this lemma is obtained by introducing a layer-
ing technique for interfering routing cells. Note that the signal
power no longer decays polynomially but rather exponentially
with propagation distance in our network. This implies that
the absorption terma(f) in (1) will play an important role

in determining the performance. It is also seen that the total
interference power does not depend on the spreading factorα.
Using Lemma 4, it is now possible to simply obtain a lower
bound on the capacity scaling in the network, and hence the
following result presents the achievable rates under the MH
protocol.

Theorem 2:In an underwater regular network of unit node
density,

T (n) = Ω
(

n1/2

a(f)N(f)

)

is achievable.
Based on Theorems 1 and 2, whena(f) = Ω

(
(1 + ε0)

√
n
)

,

i.e., f = Ω(n1/4), it is easy to see that the achievable rate and
the upper bound are of the same order up tonε, whereε andε0
are vanishingly small positive constants. The MH is therefore
order-optimal in regular networks with unit node density
under the above attenuation regimes. We also remark that the
hierarchical cooperation strategy [4] may not be helpful to
improve the achievable throughput due to a long-range MIMO
transmission, which severely degrades performance in highly
power-limited networks.3 Even with the random phase model,
which may enable us to obtain enough degrees-of-freedom
gain, the benefit of randomness cannot be exploited because
of the power limitation.

V. EXTENSION TO RANDOM NETWORKS

In closing, we would like to mention a random network
configuration, wheren S–D pairs are uniformly and indepen-
dently distributed on a square. We first discuss an upper bound
for extended networks. A precise upper bound can be obtained
using the binning argument of [4] (refer to Appendix V in [4]
for the details). For analytical convenience, we can assume the
empty zoneEL, in which there are no nodes in the network,
consisting of a rectangular slab of width0 < c̄ < 1

2
√

7e1/4 ,
independent ofn, immediately to the right of the centerline
(cut), as done in [15] (see Fig. 2).4 If the network area is then
divided inton squares of unit area, then there are fewer than
log n nodes in each square with high probability regardless
of the channel characteristics. Now we take into account the
network transformation resulting in a regular network with at
mostlog n and2 log n nodes, on the left and right, respectively,
at each square vertex except for the empty zone (see Fig. 2).
Then, the nodes in each square are moved together onto one
vertex of the corresponding square. More specifically, under
the cut L, the node displacement is performed in the sense

3In wireless radio networks of unit node density, the hierarchical cooper-
ation provides a near-optimal throughput scaling for the operating regimes
2 < α < 3, whereα denotes the path-loss exponent that is greater than
2 [4]. Note that the analysis in [4] is valid under the assumption thatα is
kept at the same value on all levels of hierarchy.

4Although this assumption does not hold in our random configuration, it
is shown in [15] that there exists a vertical cut such that there are no nodes
located closer than0 < c̄ < 1

2
√

7e1/4 on both sides of this cut when we
allow a cut that is not necessarily linear. Such an existence is proved by using
percolation theory [2]. This result can be directly applied to our network model
since it only relies on the node distribution but not the channel characteristics.
Hence, removing the assumption does not cause any change in performance.



Fig. 2. The node displacement to square vertices, indicated by arrows. The
empty zoneEL with width constant̄c is assumed for simplicity.

of decreasing the Euclidean distance between source node
i ∈ SL and the corresponding destinationk ∈ DL, as shown
in Fig. 2, which will provide an upper bound ond(i)

L in (7).
It is obviously seen that the amount of power transfer under
the transformed regular network is greater than that under
another regular network with at mostlog n nodes at each
vertex, located at integer lattice positions in a square with area
n. Hence, the upper bound for random networks is boosted by
at least a logarithmic factor ofn compared to that of regular
networks discussed in Section III.

Now we turn our attention to showing an achievable
throughput for extended random networks. In this case, the
nearest-neighbor MH protocol [1] can also be utilized since
our network is highly power-limited. Then, the area of each
routing cell needs to scale with2 log n to guarantee at least
one node in a cell [1], [3].5 Each routing cell operates based
on 9-time division multiple access to avoid causing large
interference to its neighboring cells [1], [3]. For the routing
with continuous MH transmissions (i.e., no burstiness), since
per-hop distance is given byΘ(

√
log n), the received signal

power from the intended transmitter is expressed as

c4P

(log n)α/2a(f)c5
√

log n

for some constantsc4 > 0 and c5 ≥
√

2 independent ofn,
which thus results in at least a polynomial decrease in the
throughput compared to the regular network case shown in
Section IV (note that this relies on the fact thatlog(1+x) can
be approximated byx for smallx > 0).6 This comes from the
fact that the received signal power tends to be mainly limited
due to exponential attenuation with transmission distance
Θ(
√

log n). Therefore, we may conclude that the existing MH

5When methods from percolation theory are applied to our random net-
work [2], the routing area constructed during the highway phase is a certain
positive constant that is less than 1 and independent ofn. The distance in
the draining and delivery phases, corresponding to the first and last hops of
a packet transmission, is nevertheless given by some constant timeslog n,
thereby limiting performance, especially for the conditiona(f) = ω(1).
Hence, using the protocol in [2] indeed does not perform better than the
conventional MH case [1] in random networks.

6In terrestrial radio channels, there is a logarithmic gap in the achievable
scaling laws between regular and random networks [1], [12].

scheme does not satisfy the order optimality under extended
random networks regardless of the attenuation parametera(f).

VI. CONCLUSION

The attenuation parameter and the capacity scaling laws
have been characterized in a narrow-band channel of under-
water acoustic networks. Provided that the carrier frequency
f scales at arbitrary rates relative to the numbern of nodes,
the information-theoretic upper bound and the achievable
throughput were derived as a function of the attenuation
parametera(f) in extended regular networks. We proved that
the nearest-neighbor MH protocol is order-optimal as long as
the frequencyf scales faster thann1/4. Our scaling results
were also extended to the random network scenario, where it
was shown that the conventional MH scheme does not satisfy
the order optimality for all the operating regimes.
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