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Abstract— Capacity scaling laws are analyzed in an underwa- propagation distance and frequency-dependent attenuation.
ter acoustic network with n regularly located nodes. A narrow- This is a main feature that distinguishes underwater systems
band model is assumed where the carrier frequency is allowed fom \ireless radio links. Based on these characteristics
to scale as a function ofn. In the network, we characterize an . ’
attenuation parameter that depends on the frequency scaling as network coding themes [6]-[8] have been pre_sent_ed for
well as the transmission distance. A cut-set upper bound on the Underwater acoustic channels. One natural question is what
throughput scaling is then derived in extended networks. Our are the fundamental capabilities of underwater networks in
result indicates that the upper bound is inversely proportional supporting multiple S-D pairs over an acoustic channel. To
to the attenuation parameter, thus resulting in a highly power- — gnqyer this question, the throughput scaling for underwater

limited network. Furthermore, we describe an achievable scheme wworks of unit first studied 19 h d
based on the simple nearest-neighbor multi-hop (MH) transmis- networks of unit area was first studied [9], wherenodes

sion. It is shown under extended networks that the MH scheme is Were arbitrarily located in a planar disk of unit area and the
order-optimal as the attenuation parameter scales exponentially carrier frequency was set to a constant independent dhat

with \/n (or faster). Finally, these scaling results are extended to work showed an upper bound on the throughput of each node
a random network realization. based on the physical model assumption in [1]. This upper
bound scales as~!/%e=Wo(®(™"") ‘wherea corresponds
to the spreading factor of the underwater channel, Engd

A pioneering work of [1], introduced by Gupta and Kumaryepresents the branch zero of the Lambert function $ihce
characterized the sum throughput scaling in a large wirelgga spreading factor typically has values in the rahge o <
radio network. They showed that the total throughput scal@qg], the throughput per node decreases almospas /)
as©(y/n/logn) when a multi-hop (MH) routing strategy isfor |arge enoughn, which is considerably faster than the
ysed fo_m source-destination (S—D) pairs randomly distribute@( V/n) scaling characterized for wireless radio settings [1].
In-a unit qreeil. MH schemes are then further developed and | this paper, a capacity scaling law for underwater networks
analyzed in [2], [3]. A recent result [4] has shown that apy analyzed in extended networks of unit node density. Espe-
almost linear throughput in the radio network, i®(n' ) for  cialy we are interested in the case where the carrier frequency
an arbitrarily smalk > 0, is achievable by using a hierarchicakgjes as a certain functionofin a narrow-band model. Such
cooperation strategy. _ _ an assumption changes the scaling behavior significantly due
_ Along with the studies in terrestrial radio networks, thg, the attenuation characteristics. We aim to study both an
interest in study of underwater networks has been growifgrormation-theoretic upper bound and achievable scaling rate.
with recent advances in acoustic communication technol-yy, explicitly characterize amttenuation parametethat
ogy [5], [6]. In underwater acoustic communication Systtm§gnends on the transmission distance and also on the carrier
both bandwidth and power are severely limited due to the,, ency. For networks with regularly distributed nodes, we
exponential (rather than polynomial) path-loss attenuation W'H%rive an upper bound on the total throughput scaling using the
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I. INTRODUCTION




in wireless networks). In addition, to constructively show ouxvhere{ay,--- ,as, b1, by} are positive constants independent
achievability result for extended regular networks, we describbén. As mentioned earlier, we will allow the carrier frequency
the conventional nearest-neighbor MH transmission [1] witfi to scale withn. Especially, we consider the case where the
a slight modification, and analyze its achievable throughpditequency scales at arbitrarily increasing rates relative..to

It is shown under extended networks that the achievable rdtee absorptioru(f) is then an increasing function gf such
based on the MH routing scheme matches the upper bouhdt

within a factor ofn with arbitrarily small exponent as long as a(f) = @(eclfQ) (2

the attenuation parameter increases exponentially with respec

to \/n (or faster). Furthermore, a random network scenario \Mth respect tof for some constant, >_0 mdependent oft.
also discussed. The noisen; at nodei € {1,---,n} in an acoustic chan-

The rest of this paper is organized as follows. Section 'I\f_l can be mOdele% ttErOUQhI fOL_” ba55|cv\70urces: tljtr;;a!ence'
describes our system and channel models. In Section ,lppllng, waves, and therma noise [ ] € assume .
e circularly symmetric complex additive colored Gaussian

the cut-set upper bound on the throughput is derived. § . . .
Section 1V, achievable throughput scaling is analyzed. Theld@'Se with zero mean and power spectral density (P(i),

results are extended to the random network case in Section"’\vOI thus the noise is frequency-dependent. The overall psd of

Finally, Section VI summarizes the paper with some conclugo-ur sources decays linearly on the logarithmic scale in the

ing remarks. We refer to the full paper [11] for the detaile equency region 100 H.Z N 100 kHz, \.Nh'Ch is the operatmg
description and all the proofs. regime used by the majority of acoustic systems, and thus is

approximately given by [5]

Il. SYSTEM AND CHANNEL MODELS log N(f) = a4 — a5 log f

We consider a two-dimensional underwater network thggr some positive constants, anda; independent of.. This
consists ofn nodes on a square with unit node density suaheans thatV(f) = O(1) since
that two neighboring nodes are 1 unit of distance apart from 1
each other in an extended network, i.e., a regular network [12], N(f)=0 ( ) (3)
[13]. We randomly pick a matching of S-D pairs, so that each fas
node is the destination of exactly one source. We assuimeterms of f increasing withn.
frequency-flat channel of bandwidtid” Hz around carrier  The received signaj, at nodek € {1,---,n} at a given
frequency f, which satisfiesf > W, i.e., narrow-band time instance is given by
model. This is a highly simplified model, but nonetheless
one that suffices to demonstrate the fundamental mechanisms Yk = Z hiizi + ni,
that govern capacity scaling. Assuming that all the nodes el
have perfectly directional transmissions, we also disregandhere .
multipath propagation. Each node has an average transmit s = ek 7 4)
power constrainf (constant), and we assume that the channel A(rgi, f)
state information is available at all receivers, but not at tf}g

. : , resents the channet; € C is the signal transmitted by
transmitters. It is assumed that each node transmits at a rr?tﬁ%ei and I C {1,---,n) is the set of simultaneously
b b

T(n)/n, where T'(n) denotes the total throughput of thetransmitting nodes. The random phasé&- are uniformly
network. i distributed over{0, 27r) and independent for different &, and
Now let us turn to channel modeling. An underwater aCoU§me We thus assume a narrow-band time-varying channel,
tic channel is characterized by an attenuation that depe%ﬁose gain changes to a new independent value for every
on both the distancey; between nodes and k (i,k € symbol.
{1,---,n}) and the signal frequency, and is given by Based on the above channel characteristics, operating
N - regimes of the network are identified according to the fol-
Alrei, f) = corizzalf) (@) lowing physical parameters: the absorptigf) and the noise
for some constané, > 0 independent of., wherea is the psd N (f) which are exploited here by choosing the fre.quency
spreading factor and(f) > 1 is the absorption coefficient [5]. / based on the number of nodes. In other words, if the
The spreading factor describes the geometry of propagati§tationship betweefi andn is specified, them(f) and N (f)
and is typicallyl < a < 2. Note that existing models of ¢&n be given by a certain scaling functionsofrom (2) and
wireless networks typically correspond to the case for whidf): respectively.
a(f) =1 (or a positive constant independent-gfanda > 2.
A common empirical model gives(f) in dB/km for f in
kHz as [5]:

Ill. CuT-SETUPPERBOUND

To access the fundamental limits of an underwater network,
a cut-set upper bound on the total throughput scaling is ana-
12 f? lyzed from an information-theoretic perspective [14]. Specifi-

— 2
10loga(f) = ao + a1 f* +as by + f2 +as by + f2 cally, an upper bound based on the power transfer argument [4]
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L Dy,

tination nodes under the cilitare located at positions-i, +
1,4,) and(k,, k, ), respectively, fot,, k, = 1,--- ,+/n/2 and

Fig. 1. The cutL in a two-dimensional extended regular netwask, and .’ v) (ke ) P y NN ’f/

D;, represent the sets of source and destination nodes, respectively.  %ys ky = 1, ,+/n. The scaling result off;’ defined in (7)

can be derived as follows.

. . Lemma 1:In an extended network, the ter " in (7) is
is established for extended networks. Note, however, that the

present problem is not equivalent to the conventional extended d(Li) =0 (i;—“a(f)—ir) ,
network framework [4] due to different channel characteristics. ) ) )
Our interest is particularly in the operating regimes for whiciyheére —i, + 1 represents the horizontal coordinate of node
the upper bound is tight. i€ S foriy =1,---,y/n/2. _ o

Consider a given cuf dividing the network area into two  1h€ proof of tr(us lemma is obtained by finding upper and
halves as in [4], [15] (see Fig. 1). L&t and D;, denote the Iowgr bounds or_alLl) from layering techniques. The expression
sets of sources and destinations, respectively, for the.dat (5) is then rewritten as

the network. More precisely, undér, source nodes$, are on 1 -
. ) Lo ; H
the left, while all nodes on the right are destinatidns. In this max B | logdet { lom) + - FLQLFL ||, (8)
e ; QL>0 (f)
case, we have a@(n) x ©(n) multiple-input multiple-output
(MIMO) channel between the two sets of nodes separated WhereFy, is the matrix with entrie§F ], = \/;(i) Hr ki,
the cut. L

In an extended network, we take into account an approaffiich are obtained from (7), for€ S,k € Dy. Here,Qp
based on the amount of power transferred across the netwGr'e Matrix satisfying
according to different operating regimes. As pointed out in [4], ~ [ (k) (i
the information transfer fromS; to Dj is highly power- [QL}M - d(L)d(L) [Qrli -
limited since all the nodes in the sé&; are ill-connected . - )
to the left-half network in terms of power. This implies thatVhich meansir(QL) < > ;cq, Pr ,
the information transfer is bounded by the total received power V& Néxt examine the behavior of the largest singular value
transfer, rather than the cardinality of the g{. For the cut [0f the normalized channel matrik, and then show how
L, the total throughpuT'(r) for sources on the left is bounded™uch it affects an upper bound on (8). We first address the
by the (ergodic) capacity of the MIMO channel betwe®n case wherd';, is well-conditioned according to the attenuation

and D, under time-varying channel assumption, and thus R&rameter(f). , _
given by Lemma 2:Let F; denote the normalized channel matrix

defined by the expression (8). Under the attenuation regimes

1 L
T(n) < max F [logdet (I@(n) + NHLQLH[L{N , (5) a(f) =9 ((1 +eo)ﬁ) for an arbitrarily smalle, > 0, we
Q.20 (f) have that
whereH, is the matrix with entrie§H]; for i € Sp,k € E {HFLH;} < cologn

Dy, andQ, € COmxO(1) s the positive semi-definite input

signal covariance matrix whoseth diagonal element satisfiesfor some constant, > 0 independent of..

[QLlkr < Pfor k € Sg. Note that the matris ;, is well-conditioned as(f) scales
The relationship in (5) will be further specified in Theo€Xponentially with respect tg/n (or faster). Otherwise, i.e.,

rem 1. Before that, we first apply the techniques of [4], [16] t§ a(f) = o ((1 +¢0)V™), the largest singular value @&,

obtain the total power transfer of the 98¢ . These techniques scales as a polynomial factor af thus resulting in a loose

involves the relaxation of the individual power constraints topper bound on the total throughput. Using Lemma 2, we

a total weighted power constraint, where the weight assignebtain the following result.

to each source corresponds to the total received power o emma 3:Undera(f) = Q ((1 +60)\/ﬁ), the term (8) is

the other side of the cut. To be specific, each coluimof upper-bounded by

the matrixHy, is normalized by the square root of the total .

received power on the other side of the cut from soureeSy. n Z PS) 9)

From (1) and (4), the total powé?f) received from the signal N(f)

1€ST



for arbitrarily small positive constantg ande, wherePL(’) is in determining the performance. It is also seen that the total
given by (6). interference power does not depend on the spreading factor

Note that (9) represents the total amount of received signblsing Lemma 4, it is now possible to simply obtain a lower
to-noise ratio from the sef; of sources to the seb; of bound on the capacity scaling in the network, and hence the
destinations for a given cut. We are now ready to show thefollowing result presents the achievable rates under the MH
cut-set upper bound in extended networks. protocol.

Theorem 1:For an underwater regular network of unit Theorem 2:In an underwater regular network of unit node
node density, where the absorption coefficieqf) scales as density,

Q ((1 +€0)\/ﬁ) for an arbitrarily smalle; > 0, the total T(n) = Q( nl/2 )
throughputT'(n) is upper-bounded by a(f)N(f)
canlt/2te is achievable.
T(n) < ——-—, 10 _ NG
(n) < {(ONC (10)  Based on Theorems 1 and 2, wheff) = ((1 + €0) )

i.e., f=Q(n'/%), itis easy to see that the achievable rate and
the upper bound are of the same order uptowheree andeg
e vanishingly small positive constants. The MH is therefore

absorption:( ) and the noise psi¥( f) while an upper bound order-optimal in regular networks with unit node density

for wireless radio networks depends only on the constant valﬂ!a-der th.e above attepuaﬂon regimes. We also remark that the
o [4] hierarchical cooperation strategy [4] may not be helpful to

- ; _ NG improve the achievable throughput due to a long-range MIMO
caﬁyali?)mogbt(eﬂ ?Eg Fglleoﬁg({;mfjég?tio_n?((l eo)v"), we transmission, which severely degrades performance in highly
power-limited networks. Even with the random phase model,
f=Qn'Y), which may enable us to obtain enough degrees-of-freedom
gain, the benefit of randomness cannot be exploited because
of the power limitation.

wherecs > 0 is some constant independentrofinde > 0 is
an arbitrarily small constant.
Note that this upper bound is expressed as a function of

which means that iff scales faster than'/4, then the result
in (10) is satisfied.
IV. ACHIEVABILITY RESULT V. EXTENSION TORANDOM NETWORKS

In this section, we show that the considered transmissionln closing, we would like to mention a random network
scheme, commonly used in wireless radio networks, is ordé@nfiguration, where: S—D pairs are uniformly and indepen-
optimal in underwater networks. Under a regular network &ently distributed on a square. We first discuss an upper bound
unit node density, the conventional MH transmission [1] i@ extended networks. A precise upper bound can be obtained
used and its achievable throughput scaling is analyzed to shé®ind the binning argument of [4] (refer to Appendix V in [4]
its order optimality. for the details). For analytical convenience, we can assume the

Instead of original (continuous) MH transmissions, a burs§MPty zoneE, in which there are no nodes in the network,
transmission scheme [4], [15], which uses only a fractigfPnsisting of a rectangular slab of width< ¢ < 5=,
1/a(f)N(f) of the time for actual transmission with instantaindependent of., immediately to the right of the centerline
neous poweu(f)N(f)P per node, is used to simply apply thelcut), as done in [15] (see Fig. 2)f the network area is then
analysis for networks with no power limitation to our networiéivided inton squares of unit area, then there are fewer than
model. With this scheme, the received signal power from tteg 7 nodes in each square with high probability regardless
desired transmitter, the noise psd, and the total interfererffethe channel characteristics. Now we take into account the
power from the sef c {1,--- ,n} have the same scaling, i.e.,network transformation resulting in a regular network with at
O(N(f)), and the received signal-to-interference-and-noi$aostlog n and2log n nodes, on the left and right, respectively,
ratio (SINR) is kept a®(1) under the narrow-band model. at each square vertex except for the empty zone (see Fig. 2).

The achievable rate of MH is now shown by quantifyind hen, the nodes in each square are moved together onto one
the amount of interference. vertex of the corresponding square. More specifically, under

Lemma 4:Suppose that a regular network of unit nodéhe cut L, the node displacement is performed in the sense
density uses the M-H protocol. Then, th-e -tOtaI interferencesIn wireless radio networks of unit node density, the hierarchical cooper-
power_ from other simultaneously tra_nsmlttlng nodes, COM&iion provides a near-optimal throughput scaling for the operating regimes
sponding to the sef C {1,---,n}, is upper-bounded by 2 < o < 3, wherea denotes the path-loss exponent that is greater than

@(N(f)), WhereN(f) denotes the de of noise at receiver 2 [4]. Note that the analysis in [4] is va!id under the assumption thas
ic {1 o n} kept at the same value on all levels of hierarchy.
) ) .

. . . . . 4Although this assumption does not hold in our random configuration, it
The proof of this lemma is obtained by introducing a layefs shown in [15] that there exists a vertical cut such that there are no nodes
ing technique for interfering routing cells. Note that the signédcated closer than < ¢ < W on both sides of this cut when we

power no Ionger decays polynomially but rather exponentiagow a cut that is not necessarilyelinear. Such an existence is proved by using

ith i dist . i k. This imoli th ercolation theory [2]. This result can be directly applied to our network model
with propagation distance in our network. IS 1mplies nce it only relies on the node distribution but not the channel characteristics.

the absorption ternu(f) in (1) will play an important role Hence, removing the assumption does not cause any change in performance.
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scheme does not satisfy the order optimality under extended
random networks regardless of the attenuation paraméfer

VI. CONCLUSION

The attenuation parameter and the capacity scaling laws
have been characterized in a narrow-band channel of under-
water acoustic networks. Provided that the carrier frequency
f scales at arbitrary rates relative to the numbesf nodes,
the information-theoretic upper bound and the achievable
throughput were derived as a function of the attenuation

[
SL Er, Dy,

parametewr(f) in extended regular networks. We proved that

the nearest-neighbor MH protocol is order-optimal as long as

Fig. 2. The node displacement to square vertices, indicated by arrows. the
empty zoneE;, with width constantc is assumed for simplicity.

frequencyf scales faster than'/4. Our scaling results

were also extended to the random network scenario, where it

was shown that the conventional MH scheme does not satisfy

of decreasing the Euclidean distance between source n
i € Sz and the corresponding destinatiéne Dy, as shown
in Fig. 2, which will provide an upper bound oiﬁ) in (7). 4
It is obviously seen that the amount of power transfer under
the transformed regular network is greater than that undéf!
another regular network with at mo$tgn nodes at each
vertex, located at integer lattice positions in a square with ardal
n. Hence, the upper bound for random networks is boosted by
at least a logarithmic factor of compared to that of regular [4)
networks discussed in Section Il

Now we turn our attention to showing an achievable[5]
throughput for extended random networks. In this case, the
nearest-neighbor MH protocol [1] can also be utilized since
our network is highly power-limited. Then, the area of eac%]
routing cell needs to scale withlogn to guarantee at least
one node in a cell [1], [3]. Each routing cell operates based
on 9-time division multiple access to avoid causing large,
interference to its neighboring cells [1], [3]. For the routing
with continuous MH transmissions (i.e., no burstiness), since
per-hop distance is given b®(/logn), the received signal
power from the intended transmitter is expressed as

cal [0
(log n)*/2a(f)e=VIos™

for some constants, > 0 andc; > /2 independent ofa, (10]

which thus results in at least a polynomial decrease in the
throughput compared to the regular network case shown in
Section IV (note that this relies on the fact thag(1+z) can 11!
be approximated by for smallz > 0).6 This comes from the

fact that the received signal power tends to be mainly limitd&?]
due to exponential attenuation with transmission distance
©(v/logn). Therefore, we may conclude that the existing Mhh3

5When methods from percolation theory are applied to our random net-
work [2], the routing area constructed during the highway phase is a certhldl]
positive constant that is less than 1 and independent.dfhe distance in
the draining and delivery phases, corresponding to the first and last hops{]é:f]
a packet transmission, is nevertheless given by some constant liges
thereby limiting performance, especially for the conditiotf) = w(1).
Hence, using the protocol in [2] indeed does not perform better than tHél
conventional MH case [1] in random networks.

8In terrestrial radio channels, there is a logarithmic gap in the achievable
scaling laws between regular and random networks [1], [12].

6'?1% order optimality for all the operating regimes.
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