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The diversity-multiplexing tradeoff of the
symmetric MIMO2-user interference channel

Sanjay Karmakar Mahesh K. Varanasi

Abstract—The fundamental diversity-multiplexing tradeoff
(DMT) of the quasi-static fading, symmetric 2-user MIMO
interference channel (IC) with channel state information at the
transmitters (CSIT) and a short term average power constraint is
obtained. The general case is considered where the interference-
to-noise ratio (INR) at each receiver scales differently from the
signal-to-noise ratio (SNR) at the receivers. The achievability of
the DMT is proved by showing that a simple Han-Kobayashi
coding scheme can achieve a rate region which is within a
constant (independent of SNR) number of bits from a set of
upper bounds to the capacity region of the IC. In general, only
part of the DMT curve with CSIT can be achieved by coding
schemes which do not use any CSIT (No-CSIT). A result in
this paper establishes a threshold for the INR beyond which the
DMT with CSIT coincides with that with No-CSIT. Our result
also settles one of the conjectures made in [1]. Furthermore, the
fundamental DMT of a class of non-symmetric ICs with No-CSIT
is also obtained wherein the two receivers have different numbers
of antennas.

I. I NTRODUCTION

The2-user IC is one of the most basic models of a general
multiuser wireless network in which several transmit-receive
pairs communicate with each other in the face of interference.
The 2-user single-input single-output (SISO) IC being rela-
tively better understood [2] [3] [4] we consider in this paper
the more general problem of characterizing the DMT of the
2-user IC having multiple antennas at each node (MIMO).
Depending on the number of antennas at different nodes,
the SNRs and INRs at different nodes, and the availability
of CSIT, the2-user MIMO IC can be divided into different
classes. In this paper, MIMO ICs which have equal number of
antennas at all nodes are calledsymmetricICs andasymmetric
ICs, otherwise. While some recent results [5] and [6] point to
a significant loss in degrees of freedom (DoF) or capacity pre-
log factor – which in turn implies a loss in DMT – due to a
complete lack of CSIT, the results of [7] shows that the DMT
with CSIT on a SISO IC can be achieved with only a single bit
of feedback about the channel state. Anticipating that similar
results can be found for MIMO ICs, the DMT for MIMO
ICs with CSIT can be seen to be an important benchmark
relative to which the performance of practical schemes with
limited CSIT must be compared. On the other hand, the
DMT without CSIT serves as a baseline from where marked
improvements must be sought by an efficient use of limited
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CSIT. Finally, unlike the DMT framework in a point-to-point
(PTP) channel [8], where there is a single communication link
which can be characterized by a single SNR, in a multiuser
setting such as the one at hand, it is natural to allow the
SNRs and INRs of different links to vary with a nominal SNR
denoted asρ such that the ratio of the SNR or INR in dB to the
nominal SNR in dB is held fixed as nominal SNR grows. This
idea was introduced in [4] leading to characterization of the
so-called Generalized DoF (GDoF) region of the2-user SISO
IC. Later, this technique was extended to the DMT scenario
for the SISO IC in [2], [9]. Following a similar approach, we
mathematically model the INRs at both the receivers asρα

for someα ≥ 0 and denote the SNRs at each receiver byρ.
We should refer to the corresponding DMT as the generalized
DMT (GDMT) to distinguish it from the case whenα = 1, i.e.,
SNR=INR in all the links but for simplicity we will henceforth
refer to the GDMT simply as the DMT.

For the sake of simplicity in this paper, we characterize the
DMT of a symmetric2-user MIMO IC with CSIT havingn
antennas at each node. The DMT of theasymmetricMIMO
IC with CSIT will be reported in [10]. We also characterize
the DMT of a class ofasymmetricMIMO IC with No-CSIT
and α ≥ 1. To the best of our knowledge, this is the first
result on the DMT of theasymmetric2-user MIMO IC with
No-CSIT. In [1] an upper bound to the usual DMT(α = 1) of
the symmetric2-user MIMO IC with CSIT was derived and
conjectured to be tight. We prove this conjecture as a special
case of the more general DMT result of this paper.

The rest of the paper is organized as follows. The channel
model and the DMT notations in Section II are followed by
the asymptotic joint eigenvalue distribution of three mutually
correlated random matrices (correlated in a special way),
which we derive in Section II-A. In Section II-B, we derive
a set of upper and lower bounds to the capacity region of the
MIMO IC with CSIT. These bounds are then used to derive
the DMT. In Section III, we compute the explicit GDMT of
the symmetricIC with CSIT. Finally, in Section III-A, we
characterize the DMT of a class ofasymmetricMIMO ICs
with No-CSIT.

Notation: We will denote the conjugate transpose of the
matrixA by A† and its determinant as|A|. A ∈ Cn×m would
mean thatA is a n × m matrix with entries inC where,C
represents the field of complex numbers. The symbolsx ∧
y, x ∨ y and (x)+ represents the minimum and maximum
betweenx andy and the maximum ofx and0, respectively.
All the logarithms in this paper are with base2. We denote
the distribution of a complex circularly symmetric Gaussian
random vector with zero mean and covariance matrixQ, by
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CN (0, Q). If R represents a set of points inR2 then R ±
(c1, c2) = {(R1 ± c1, R2 ± c2) : (R1, R2) ∈ R}.

II. CHANNEL MODEL AND PRELIMINARIES

Consider the MIMO IC shown in Figure 1. Transmitter1
(Tx1) and transmitter2 (Tx2) haveM1 andM2 antennas, re-
spectively, and receiver1 (Rx1) and receiver2 (Rx2) haveN1

andN2 antennas, respectively. Henceforth, such an IC will be
referred to as an(M1, N1,M2, N2) IC. Hij ∈ CNj×Mi is the
channel matrix betweenTxi andRxj . Hij for 1 ≤ i, j ≤ 2 are
mutually independent and contain mutually independent and
identically distributed (i.i.d.)CN (0, 1) entries. Following [9],
we also incorporate a real-valued attenuation factor, denoted
asηij , for the signal transmitted fromTxi to receiverRxj . At
time t, Txi chooses a vectorXit ∈ CMi×1 and sends

√
PiXit

into the channel. The input signals are assume to satisfy the
following short term average power constraint:

tr(Qit) ≤ Mi, ∀ i = 1, 2, whereQit = E

(
XitX

†
it

)
. (1)
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Fig. 1: The 2-user MIMO interference channel.

With these aforementioned assumptions, the received sig-
nals at timet can be written as

Y1t = η11
√
P1H11X1t + η21

√
P2H21X2t + Z1t,

Y2t = η12
√
P1H12X1t + η22

√
P2H22X2t + Z2t,

whereZit ∈ CNi×1 are i.i.d asCN (0, INi
) acrossi andt. The

above equations can be equivalently written in the following
form:

Y1t =
√

SNR11H11X̂1t +
√

INR21H21X̂2t + Z1t, (2)

Y2t =
√

INR12H12X̂1t +
√

SNR22H22X̂2t + Z2t, (3)

where the normalized inputŝXi’s satisfy equation (1) with
equality and SNRii and INRji are the signal-to-noise ratio
and interference-to-noise ratio at receiveri. In the analysis
that follows, we will assume the following scaling parameters
(with respect to a nominal SNR,ρ) for the different SNRs and
INRs.

α11 =
log(SNR11)

log(ρ)
= α22 =

log(SNR22)

log(ρ)
= 1, (4)

α12 =
log(INR12)

log(ρ)
= α21 =

log(INR21)

log(ρ)
= α. (5)

For ease of notation, we will henceforth set SNRii = ρii,
INRij = ρij , H = {Hij , 1 ≤ i, j ≤ 2} and ρ̄ = {ρij , 1 ≤
i, j ≤ 2}.

To define the DMT notation we follow [8]. We assume that
useri uses a coding schemeCi and is operating at a rateRi =

r1 log(ρ) bits per channel use. Let us denoteC = {C1,C2}.
The diversity order of the IC with coding schemeC and rates
(R1, R2) is defined as

dIC(r1, r2,C ) = lim
ρ→∞

− log (Pe(ρ̄))

log(ρ)
, (6)

where Pe(ρ̄) = (Pe1 (ρ̄) ∨ Pe2 (ρ̄)) with Pei (ρ̄) denoting
the probability of error (averaged over channel statistics) at
receiver i. Finally, the fundamental DMT (henceforth, just
DMT) of the IC, denoted asd∗IC(r1, r2), is defined as

d∗IC(r1, r2) = max
C∈C̃

dIC(r1, r2,C ), (7)

whereC̃ represents the collection of all coding schemes that
use CSIT and the short term power constraint (equation (1)).
Note the diversity orderd∗IC(r1, r2) is a function of the relative
scaling parameters of the different links (α). However, for
brevity, we will not mention them explicitly.

A. Asymptotic Eigenvalue Distribution

In this subsection, we will derive the joint distribution ofthe
scaling parameters of the eigenvalues of three correlated ran-
dom Wishart matrices, which will be used later in section III
to derive the DMT of the MIMO IC.

Theorem 1: Let Hi ∈ Cn×n for i ∈ {1, 2, 3} are three
mutually independent random matrices with i.i.d.CN (0, 1)
entries andx1 ≥ · · · ≥ xn > 0, µ1 ≥ · · · ≥ µn > 0 andλ1 ≥
· · · ≥ λn > 0 be the ordered non-zero eigen-values ofW1 =
H̃1H̃

†
1 , W2 = H2H

†
2 andW3 = H

†
3H3, respectively, where

H̃1 =
(
In + ραH2H

†
2

)− 1
2

H1

(
In + ραH

†
3H3

)− 1
2

. Further,

if we assume thatxi = ρ−βi , µi = ρ−γi andλi = ρ−αi , ∀1 ≤
i ≤ n andρ → ∞(ρ ∈ R+), then the joint distribution of~β
given~γ and~α (with ~β = {β1, · · · , βn} with ~γ and~α similarly
defined) is given as

f(~β|~γ, ~α)=̇
{

ρ−E(S), if (~β,~γ, ~α) ∈ B;
0, otherwise,

whereS = {~β,~γ, ~α, α}, E(S) is given by equation (8) and

B =
{
(~β,~γ, ~α) : β1 ≥ 0, αi + βj ≥ α, and

γi + βj ≥ α, ∀(i+ j) ≥ (n+ 1)
}
.

Remark 1: SinceW2 andW3 are independent so are~γ and
~α. Now importing the distributions of~γ and ~α from [8] and
using it in

f(~β,~γ, ~α) = f(~β|~γ, ~α)f(~γ, ~α) = f(~β|~γ, ~α)f(~γ)f(~α),

the joint distribution of(~β,~γ, ~α) can be derived. Further the
above theorem can be generalized to the case of non-square
His, which is necessary to derive the DMT of an IC with
arbitrary number of antennas at each node (this will be done
in [10]).
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E(S) =
n∑

j=1



(2n+ 1− 2j)βj − n(α− αj)
+ − n(α− γj)

+ +

(n−j)∑

i=1

max{α− βj − ((αi ∧ γi) ∧ (γi + αi − α))}+


 (8)

B. Approximate capacity region

In this subsection, we will find an upper and a lower bound
to the capacity region of the2-user MIMO IC, which in the
next subsection will be used to derive DMT upper and lower
bounds, respectively. We start with the upper bound.

Lemma 1: For the2-user MIMO IC shown in Figure 1 and
given realization of channel matricesH , the capacity region
is contained in the following set of rate tuples

Rc(H, ρ̄) + (N1 log(M1 ∨M2), N2 log(M1 ∨M2)),

whereRc(H, ρ̄) represents the set of rate pairs(R1, R2) such
thatR1, R2 ≥ 0 and

Ri ≤ log
∣∣∣
(
INi

+ ρiiHiiH
†
ii

)∣∣∣ , Ibi, for i ∈ 1, 2;

R1 +R2 ≤ log
∣∣∣
(
IN2 + ρ12H12H

†
12 + ρ22H22H

†
22

)∣∣∣+

log
∣∣∣
(
IM1 + ρ11H11P

−1
12 H

†
11

)∣∣∣ , Ib3;

R1 +R2 ≤ log
∣∣∣
(
IN1 + ρ21H21H

†
21 + ρ11H11H

†
11

)∣∣∣

log
∣∣∣
(
IM2 + ρ22H22P

−1
21 H

†
22

)∣∣∣ , Ib4;

R1 +R2 ≤ log
∣∣∣
(
IN1 + ρ11H11P

−1
12 H

†
11 + ρ21H21H

†
21

)∣∣∣

+ log
∣∣∣
(
IN2 + ρ12H12H

†
12 + ρ22H22P

−1
21 H

†
22

)∣∣∣ , Ib5;

2R1 +R2 ≤ log
∣∣∣
(
IN1 + ρ21H21H

†
21 + ρ11H11H

†
11

)∣∣∣+

log
∣∣∣
(
IN2 + ρ12H12H

†
12 + ρ22H22P

−1
21 H

†
22

)∣∣∣

+ log
∣∣∣
(
IN1 + ρ11H11P

−1
12 H

†
11

)∣∣∣ , Ib6;

R1 + 2R2 ≤ log
∣∣∣
(
IN2 + ρ12H12H

†
12 + ρ22H22H

†
22

)∣∣∣+

log
∣∣∣
(
IN1 + ρ21H21H

†
21 + ρ11H11P

−1
12 H

†
11

)∣∣∣

+ log
∣∣∣
(
IN2 + ρ22H22P

−1
21 H

†
22

)∣∣∣ , Ib7,

wherePij =
(
IMi

+ ρijH
†
ijHij

)
for i 6= j ∈ {1, 2}.

Remark 2: Note a similar set of upper bounds on the
capacity region was also derived in [1]. We see that the first
four bounds in Lemma 1 are identical to those in [1] and the
fifth bound can be shown to be equivalent. However, the last
two bounds are different. It should also be noticed that while
specialized to caseM1 = N1 = M2 = N2 = 1, the last two
bounds of [1] do not match with the corresponding bounds
of[4] whereas, all the bounds of Lemma 1 do.

Next we find the achievable rate region of a simple Han-
Kobayashi [11] coding scheme. Suppose each user’s message
is divided into two parts (private and public, respectively) and
is encoded using a random Gaussian code. Thus the codewords
can be written as

X1 = U1 +W1 andX2 = U2 +W2, (9)

whereU1,W1 and U2,W2 are (the private and public parts
of the messages ofTx1 andTx2, respectively) mutually inde-
pendent complex Gaussian random vectors using the following
channel dependent power split (note this power split satisfies
the power constraint in (1)) among the private and common
parts:Ki1 = E(WiW

†
i ) andKi2 = E(UiU

†
i ), where

Ki1 =
IMi

2
andKi2 =

1

2

(
IMi

+ ρijH
†
ijHij

)−1

. (10)

We refer to this coding scheme asHK(K11,K12,K21,K22)
scheme.

Lemma 2: For a given channel realizationH , the
HK(K11,K12,K21,K22) scheme, whereKij , 1 ≤ i, j ≤ 2
is given by (10), can achieve all the rate pairs(R1, R2) such
that (R1, R2) ∈ {Rc (H, ρ̄) − (2N1, 2N2)}, whereRc (H, ρ̄)
is as given in Lemma 1.

Using Lemma 1 and 2, respectively and similar method as
in the proof of Theorem2 in [8] it can be proved that (for
more details refer to [10])

d∗IC(r1, r2) =min
i∈I

dOi
(ri), (11)

whereρ−dOi
(ri)=̇Pr (Ibi ≤ ri) , (12)

for i ∈ I = {1, · · · , 7} and r3 = r4 = r5 = (r1 + r2),
r6 = (2r1 + r2) andr7 = (r1 + 2r2).

III. E XPLICIT DMT OF THE (n, n, n, n) IC

In this section we will evaluatedOi
(ri)’s given in equation

(11) which would yield the explicit DMT expressions for
the IC. Using the first and second bound of Lemma 1 in
equations (12) it can be proved that

dOi
(ri) = dn,n (ri) , ∀ ri ∈ [0, n], (13)

wheredp,q(r) is the optimal diversity order of a point-to-point
(PTP) MIMO channel withp transmit andq receive antennas
and i ∈ {1, 2}. To evaluatedO3 (r3), we write the boundIb3
of Lemma 1 in the following way

Ib3 =log
∣∣∣
(
In + ρH̃

†
11H̃11

)∣∣∣+ log
∣∣∣
(
In + ρH̃22H̃

†
22

)∣∣∣

+ log
∣∣∣
(
In + ραH21H

†
21

)∣∣∣ , where

H̃11=

(
ραH21H

†
21+In

)− 1
2

H11 and H̃22=H22(In+ραH
†
21H21)

− 1
2 . To

computedO3 we need the asymptotic joint distributions of the
eigen-values of mutually correlated matricesH̃

†
11H̃11, H̃22H̃

†
22

and H21H
†
21. This joint distribution can be derived using

Theorem1 of [12]. Now, following a similar approach as
in [8], dO3(rs) can be evaluated.

For α ≤ 1, dO3(rs) ={
αdn,3n(

rs
α
) + 2n2(1− α), for 0 ≤ rs ≤ nα;

2(1− α)dn,n(
(rs−nα)
2(1−α) ), for nα ≤ rs ≤ n(2− α);

(14)
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and forα ≥ 1, dO3 (rs) =

{
dn,3n(rs) + n2(α− 1), for 0 ≤ rs ≤ n;

(α− 1)dn,n(
(rs−n)
(α−1) ), for n ≤ rs ≤ nα.

(15)

where rs = (r1 + r2). Also, from symmetry we have
dO4(rs) = dO3 (rs). To evaluatedO5(rs), we write the bound
Ib5 of Lemma 1 in the following way

Ib5 = log
∣∣∣
(
In + ρH̃11H̃

†
11

)∣∣∣+ log
∣∣∣
(
In + ρH̃22H̃

†
22

)∣∣∣

+ log
∣∣∣
(
In + ραH21H

†
21

)∣∣∣+ log
∣∣∣
(
In + ραH12H

†
12

)∣∣∣ ,

with H̃ii=(In+ραHjiH
†
ji)

− 1
2 Hii(In+ραH

†
ij
Hij)

− 1
2 . Noting that,

given the eigenvalues ofH12H
†
12 andH21H

†
21 the eigenval-

ues of H̃11H̃
†
11 and H̃22H̃

†
22 are independent, we can use

Theorem 1 to find the joint distribution of the eigenvalues
of H̃11H̃

†
11, H̃22H̃

†
22, H12H

†
12 andH21H

†
21 (refer to [10] for

more details). Using this distribution result, equation (12) can
be evaluated fordO5 (rs) as follows.

For α ≤ 1

2
, dO5(rs) =

{
2αdn,3n

(
rs
2α

)
+ 2n2(1− 2α), for 0 ≤ rs ≤ 2nα;

2(1− 2α)dn,n

(
(rs−2nα)
2(1−2α)

)
, for 2nα ≤ rs ≤ 2n(1− α);

(16)

and for
1

2
≤ α, dO5 (rs) =

{
n2(2α− 1) + dn,3n(rs), for 0 ≤ rs ≤ n;

(2α− 1)dn,n

(
(rs−n)
(2α−1)

)
, for n ≤ rs ≤ 2nα.

(17)

Using a similar approach,dO6 (rt) can also be derived. For
evenn it is given as

For α ≤ 1

2
, dO6(rt) =






n2(2− α) + αdn,3n
(
rt
α

)
, 0 ≤ rt ≤ nα

2 ;

n2(2− 3α) + αdn,3n

(
r1t
2α + n

2

)
+ αdn,2n

(
r1t
2α

)
,

for 0 ≤ r1t = rt − nα
2 ≤ nα;

n2(1−α)+(1−2α)dn,n

(
r2t

(1−α)

)
+αdn,2n

(
r2t

(1−α)
+n

2

)
,

for 0 ≤ r2t = rt − 3nα
2 ≤ n(1−α)

2 ;

(1− 2α)dn,n

(
r3t

(3−4α) +
n
2

)
+ (1− α)dn,n

(
r3t

(3−4α)

)
,

for 0 ≤ r3t = rt − n(1+2α)
2 ≤ n(3−4α)

2 ;

(1− α)dn,n

(
(rt−n)
2(1−α)

)
, n(2− α) ≤ rt ≤ n(3− 2α),

(18)

and for
1

2
≤ α ≤ 1, dO6(rt) =





n2(2− α) + αdn,3n
(
rt
α

)
, 0 ≤ rt ≤ nα

2 ;
n2α+ αdn,3n

(
r1t +

n
2

)
+ (1− α)dn,2n

(
r1t
)
,

for 0 ≤ r1t = rt − n
2 ≤ nα;

n2(1−α)+(2α−1)dn,n

(
r2t
α

)
+(1−α)dn,2n

(
r2t
α

+n
2

)
,

for 0 ≤ r2t = rt − n(α+1)
2 ≤ nα

2 ;
(2α− 1)dn,n

(
r3t +

n
2

)
+ (1− α)dn,n

(
r3t
)
,

for 0 ≤ r3t = rt − n(1+2α)
2 ≤ n

2 ;

(1− α)dn,n

(
(rt−2nα)
2(1−α)

)
, n(1 + α) ≤ rt ≤ 2n.

(19)

and for1 ≤ α, dO6(rt) ={
n2(2α− 1) + dn,3n(rt), for 0 ≤ rt ≤ n;

(2α− 1)dn,n

(
(rt−n)
(2α−1)

)
, for n ≤ rt ≤ 2nα.

(20)

wherert = (2r1 + r2). From symmetry, we havedO6(r1 +
2r2) = dO7(r1 +2r2). Analytical expressions fordO6 for odd
n can be similarly derived and are not given here due to space
constraints.

Remark 3: It should be noted from equations (17) and
(20) that, on a(n, n, n, n) MIMO IC, for α ≥ 1, dO6 (dO7 )
provides a strictly tighter bound on the optimal DMT thandO5

if r1 6= 0 (r2 6= 0).
Theorem 2: The optimal diversity order,d∗IC(r1, r2) at a

multiplexing gain pair(r1, r2), of a (n, n, n, n) MIMO IC
(Figure 1), with CSIT, short term average power constraint,
(1) andα11 = α22 = 1, α12 = α21 = α ≥ 0, is given as

d∗IC(r1, r2) = min
1≤i≤7

{dOi
(ri)},

where r3 = r4 = r5 = (r1 + r2), r6 = (2r1 + r2) and
r7 = (r1 + 2r2) anddOi

s are given by equations (13)-(20).
Corollary 1: The optimal DMT of a(n, n, n, n) IC, with

CSIT andαij = 1, ∀ i, j ∈ {1, 2}, at a MG tuple(r1, r2) is
given as

d∗IC(r1, r2) = min{dn,n(r1), dn,n(r2), dn,3n(r1 + r2)}.
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Fig. 2: Different DMT bounds on a MIMO IC.

Remark 4: Corollary 1 follows from the fact that for
α = 1, the3rd bound of Lemma 1 is tighter than the5th, 6th or
7th in the special case considered. In fact, this was the reason
based on which the authors in [1] conjectured the result of
Corollary 1. However, the fact that this is not true in general,
i.e., for α 6= 1, is illustrated in Figure 2, where we have
plotted the outage exponents corresponding to all the bounds
of Lemma 1 on a(2, 2, 2, 2) IC with α = 1

3 . Contrary to the
case whenα = 1, in this case at high MGs the5th bound is
tighter than the3rd.

Example 1: Consider an(4, 4, 4, 4) IC, with αij = 1
for all 1 ≤ i, j ≤ 2 and r1 = r2 = r. In Fig-
ure 3, min{dO1(r), dO3 (2r)} represents the optimal DMT
with CSIT (Corollary 1) andmin{dO1(r), dn,2n(2r)} repre-
sents an achievable DMT when both the sources treat the
channel to each receiver as a multiple-access channel (MAC)
and use channel independent Gaussian codes. We see that at
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low MGs, the fundamental DMT with CSIT can be achieved
with no CSIT at all. In the following subsection we shall show
that, for some antenna configurations this is true for all MGs.
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Fig. 3: DMT on a(4, 4, 4, 4) IC with and without CSIT.
It can be proved that, on an(n, n, n, n) IC with α ≥ 1 and

r1 = r2 = r, theHK (In, 0n, In, 0n) scheme can achieve the
following DMT (Lemma4, [13])

dMAC(r) = min {dn,n(r), ds(2r)} , where

ds(2r) =

{
dn,3n(2r) + n2(α− 1), for 0 ≤ 2r ≤ n;

(α− 1)dn,n(
(2r−n)
(α−1) ), for n ≤ 2r ≤ nα.

Comparing this with equation (15) we have
Theorem 3: The optimal diversity order,d∗IC1

(r) at a mul-
tiplexing gain pair(r, r), of a (n, n, n, n) MIMO IC, with
CSIT, short term average power constraint, (1) andα11 =
α22 = 1, α12 = α21 = α ≥ 1.25, can be achieved by the
HK (In, 0n, In, 0n) scheme, i.e.,d∗IC1

(r) = dMAC(r).
Note thatHK (In, 0n, In, 0n) scheme does not require any
CSIT. In the next section we consider asymmetric ICs where
the fundamental DMT with CSIT coincides with that with No-
CSIT.

A. DMT of an Asymmetric IC with No-CSIT

In this subsection, we derive the optimal DMT of the
2-user MIMO IC with No-CSIT for a particular antenna
configuration. In equations (14)-(15),dO3(r3) was evaluated
for Mi = Ni = n. However, note that the distribution
results in [12] are valid for arbitraryMi and Ni and can
be used to evaluatedO3(r3). Also dO3(r3), being an upper
bound (equation (11)) to the optimal DMT of an IC with
CSIT, is also an upper bound to the optimal DMT of the
corresponding IC with No-CSIT. However, it can be proved
that a joint maximum likelihood (ML) decoder at both the
receivers can achievedO3 (r3) if both the users use random
Gaussian codes (with identity as the covariance matrices),and
whenM1 = M2 = M , 2M ≤ N1 ≤ N2 and1 ≤ α.

Lemma 3: Consider the MIMO IC, as shown in Figure 1
with, M1 = M2 = M , 2M ≤ N1 ≤ N2 and 1 ≤ α. The
optimal DMT of this channel with No-CSIT, at multiplexing
gain pair(r1, r2), is given by

d∗IC,No−CSIT (r1, r2) = min {dM,Ni
(ri), dICs

(r1 + r2)}

wherei ∈ {1, 2} and fork ∈ {0, 1 · · · (M − 1)},

dICs
(rs) =





αdM,(M+N1)(
rs
α
) +M((rs − kα− 1)+

+(M − k)(1− α)) +M(N1 −M), ∀rs ∈ [kα, (k + 1)α];
dM,(N1−M)(rs −Mα), ∀rs ∈ [Mα,M(α− 1) +N1].

Note the optimal DMT for the case when2M ≤ N2 ≤ N1

can be similarly found.

IV. CONCLUSION

The fundamental DMT of the MIMO IC, with CSIT is
characterized. In general it is an upper bound for the No-
CSIT DMT of a corresponding MIMO IC. One class of ICs
is identified for which the DMTs with and without CSIT
coincide. However, finding all such MIMO ICs for which this
happens is an interesting open problem. It is shown that in the
DMT optimal scheme with full CSIT, a transmitter does not
utilize the channel information of the direct link at all butfully
uses the channel information of the cross link. Finding the
minimum amount of channel information which is sufficient
to achieve the full CSIT DMT is another interesting open
problem.
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