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The diversity-multiplexing tradeoff of the
symmetric MIMO 2-user interference channel

Sanjay Karmakar = Mahesh K. Varanasi

Abstract—The fundamental diversity-multiplexing tradeoff ~ CSIT. Finally, unlike the DMT framework in a point-to-point
(DMT) of the quasi-static fading, symmetric 2-user MIMO  (PTP) channel[8], where there is a single communicatida lin

interference channel (IC) with channel state information a the  \vhich can be characterized by a single SNR, in a multiuser
transmitters (CSIT) and a short term average power constrait is tti h th t hand. it i tural to all th
obtained. The general case is considered where the interfemce- Setting such as e one at hand, 1t 1S natural 1o aflow the
to-noise ratio (INR) at each receiver scales differently fom the SNRs and INRs of different links to vary with a nominal SNR

signal-to-noise ratio (SNR) at the receivers. The achievdlity of  denoted ag such that the ratio of the SNR or INR in dB to the
the DMT is proved by showing that a simple Han-Kobayashi nominal SNR in dB is held fixed as nominal SNR grows. This
coding scheme can achieve a rate region which is within a jqeq was introduced i [4] leading to characterization @ th
constant (independent of SNR) number of bits from a set of so-called Generalized DoF (GDoF) region of thesser SISO
upper bounds to the capacity region of the IC. In general, on} g ’ 9 .
part of the DMT curve with CSIT can be achieved by Coding IC Latel‘, th|S teChanue was extended to the DMT scenario
schemes which do not use any CSIT (No-CSIT). A result in for the SISO IC in[[2], [9]. Following a similar approach, we
this paper establishes a threshold for the INR beyond whichite  mathematically model the INRs at both the receivers@s
DMT with CSIT coincides with that with No-CSIT. Our result  ¢5- somea > 0 and denote the SNRs at each receiverpby

also settles one of the conjectures made ihl[1]. Furthermoreghe : .
fundamental DMT of a class of non-symmetric ICs with No-CSIT We should refer to the corresponding DMT as the generalized

is also obtained wherein the two receivers have different nabers DMT (GDMT) to distinguish it from the case when= 1, i.e.,
of antennas. SNR=INR in all the links but for simplicity we will hencefdrt

refer to the GDMT simply as the DMT.

For the sake of simplicity in this paper, we characterize the
. ) DMT of a symmetric2-user MIMO IC with CSIT havingn

The 2-user IC is one of the most basic models of a genergltennas at each node. The DMT of thgymmetricMIMO
multiuser wireless network in which several transmit-ife€e |c with CSIT will be reported in[[10]. We also characterize
pairs communicate with each other in the face of interfeeenqhe DMT of a class ohsymmetridMIMO IC with No-CSIT
The 2-user single-input single-output (SISO) IC being relazng > 1. To the best of our knowledge, this is the first
tively better understood [2] [3] [4] we consider in this papeesyit on the DMT of theasymmetric2-user MIMO IC with
the more general problem of characterizing the DMT of thgy_cs|T. In [1] an upper bound to the usual DM& = 1) of
2-user IC having multiple antennas at each node (MIMO},e symmetric2-user MIMO IC with CSIT was derived and
Depending on the number of antennas at different nodegniectured to be tight. We prove this conjecture as a specia
the SNRs and INRs at different nodes, and the availabiliggse of the more general DMT result of this paper.
of CSIT, the2-user MIMO IC can be divided into different e rest of the paper is organized as follows. The channel
classes. In this paper, MIMO ICs which have equal number gfoqe| and the DMT notations in Sectin Il are followed by
antennas at all nodes are calgnmetridCs andasymmetric e asymptotic joint eigenvalue distribution of three nality
ICs, otherwise. While some recent results [5] and [6] paint {5 rejated random matrices (correlated in a special way),
a significant IOS_S m_degree_s of_freedom (DOF) Or capacity Pihich we derive in Sectioh IFA. In Sectidn 1B, we derive
log factor — which in turn implies a loss in DMT — due 10 & get of upper and lower bounds to the capacity region of the
complete lack of CSIT, the results ofi [7] shows that the DMy Mo 1C with CSIT. These bounds are then used to derive
with CSIT on a SISO IC can be achieved with only a single bjke DMT. In SectiorTll, we compute the explicit GDMT of
of feedback about the channel state. Anticipating thatlaimi ¢, symmetricIC with CSIT. Finally, in Sectior TII-A, we
results can be found for MIMO ICs, the DMT for MIMO ¢naracterize the DMT of a class asymmetricMIMO ICs
ICs with CSIT can be seen to be an important benchma‘mh No-CSIT.
relative to which the performance of practical schemes with Ngiation: We will denote the conjugate transpose of the

limited CSIT must be compared. On the other hand, thgairix A by AT and its determinant dst|. A € C**™ would
DMT without CSIT serves as a baseline from where markqgean thatd is an x m matrix with entries inC where.C

improvements must be sought by an efficient use of ”mitﬁ}‘épresents the field of complex numbers. The symhols

¥ .- .
S. Karmakar and M. K. Varanasi are both with the Department éf < Vy and (z) represents_, the minimum and ma:XImum
Electrical Computer and Energy Engineering, University @florado at betweenr andy and the maximum of: and 0, respectively.

Boulder, Boulder, CO, 30809 USA e-mail: (sanjay.karmakesi@ado.edu, A|| the Iogarithms in this paper are with bage We denote
varanasi@colorado.edu).

This work was supported in part by the US National SciencenBation the distribution OT a Complex C|rCUIar|y Symmetr'c GQUHS'a
Grant CCF-0728955. random vector with zero mean and covariance maffjxby

I. INTRODUCTION


http://arxiv.org/abs/1006.1149v1

CN(0,Q). If R represents a set of points iR? then R + r;log(p) bits per channel use. Let us denGfe= {41, %2 }.
(c1,¢2) ={(R1 £ c1,Ra £ ¢2) : (R1,R2) € R}. The diversity order of the IC with coding scherdeand rates
(R1, R2) is defined as
Il. CHANNEL MODEL AND PRELIMINARIES

Consider the MIMO IC shown in Figudg 1. Transmitter dic(r1,r2,¢) = lim —W
(T'xz,) and transmitteR (T'xz2) have M, and M, antennas, re- g glp
spectively, and receivdr (Rz1) and receivel (Rxz2) haveN; where P.(p) = (P.,(p) V P.,(p)) with P. (p) denoting
and N, antennas, respectively. Henceforth, such an IC will e probability of error (averaged over channel statitats
referred to as aiMy, N1, Ma, N2) IC. H;; € CNi*Miis the receiveri. Finally, the fundamental DMT (henceforth, just
channel matrix betweefiz; andRz;. H;; for1 <i,j < 2are DMT) of the IC, denoted ag;(r1,72), is defined as
mutually independent and contain mutually independent and
identically distributed (i.i.d.CA/(0,1) entries. Following[[9], djc(r1,r2) = max drc(r1,re, ), @)
we also incorporate a real-valued attenuation factor, geho CEE
as;;, for the signal transmitted froffiz; to receiverRx;. At
time t, Txz; chooses a vectak;; € CM:x! and sends/P; X
into the channel. The input signals are assume to satisfy
following short term average power constraint:

: (6)

where @ represents the collection of all coding schemes that
e CSIT and the short term power constraint (equalibn (1)).
ote the diversity orded; (1, 2) is a function of the relative
scaling parameters of the different linka)( However, for
brevity, we will not mention them explicitly.
r(Qu) < My, ¥ i = 1,2, whereQy = E (X;yX[,) . (1)
Hiy,

Txq (Mj) » Rx;(Ny) A. Asymptotic Eigenvalue Distribution
Hiz In this subsection, we will derive the joint distributiontbie
scaling parameters of the eigenvalues of three correlated r
Hy: dom Wishart matrices, which will be used later in secfioh Il
H-, to derive the DMT of the MIMO IC.
Txo (Mz) > Rxo (N2)

Theorem 1: Let H;, € C"*™ for i € {1,2,3} are three
. ) mutually independent random matrices with i.i@N(0,1)
Fig. 1: The 2-user MIMO interference channel. entries andey > -+ > 2, >0, gy > - > pp > 0 and )\ >

th th ; ioned . h ved sia > An > 0 be the ordered non-zero eigen-valuesof =
Wit t_ ese a oremen_tlone assumptions, the receive SEIHI, Wy = HQHQT and W — H§H3, respectively, where
nals at timet can be written as 1 1

H, = ([n + paHQHQT)T H, (In + paHgHg)ii. Further,
Yie = nmaiv PrHu X + n21V/ PoHo1 Xo + 21, if we assume that; — »~ 5, 1 — p= and\; = p=, V1 <

Yor = o/ PrH12X1¢ + 122/ PoHoo Xot + Zoy, i <nandp — oo(p € RY), then the joint distribution off
whereZ;; € CNix1 are i.i.d ax’A’(0, I, ) across andt. The 9iven?y anda (with § = {B1,--+, Bn} with ¥ anda similarly

above equations can be equivalently written in the follguindefined) is given as

form:

Vir = v/SNRy1 H1i1 X1t + /INRoy Ho1 Xog + Z1, (2)
Yor = v/ INR12H12 X1t + /SNRao Hoo Xt + Zat,  (3)

where the normalized inputX;’s satisfy equation[{1) with

equality and SNR and INR;; are the signal-to-noise ratio B = {(3, ¥,d): 1 >0,0; + B; > a, and

and interference-to-noise ratio at receiverin the analysis

that follows, we will assume the following scaling paranste Yi +B; > a, Y(i+j) > (n+ 1)}-

(with respect to a nominal SNR) for the different SNRs and

INRSs. Remark 1: SinceWW, andW3 are independent so afeand
log(SNRy1) log(SNRys) a. Now importing the distributions off and & from [8] and

app = —— = gy = T 2 (4) . o
. log(p) * log(p) using it in

log(INng) 10g(|NR21)
a2 = —F/——~ =021 = —F———~ =
log(p) log(p)
For ease of notation, we will henceforth set SNR= p;;, the joint distribution of(3,7,a) can be derived. Further the
INR;; = pij, H = {H;;,1 <i,j <2}andp = {p;,1 < above theorem can be generalized to the case of non-square
i,7 <2} H;s, which is necessary to derive the DMT of an IC with
To define the DMT notation we follow [8]. We assume tha@rbitrary number of antennas at each node (this will be done
useri uses a coding schen¥ and is operating at a rate; = in [10]).

pES, it (8,7,d) € %;
0, otherwise

.

whereS = {E, 5,a,a}, £(S) is given by equation{8) and

() F(B,7.@) = f(B17,@)f(F,d) = f(BI7.@)f(7)f(@),



n (n—j)
2n+1-25)8; —n(a—a))t —na—y)" + D max{fa— B — (@ A%) A (i +a—a)}t | (8)
=1 i=1

£(S) =

B. Approximate capacity region where Uy, W1 and U, W, are (the private and public parts
In this subsection, we will find an upper and a lower bourfef the messages &fz; andT'z», respectively) mutually inde-
to the capacity region of the-user MIMO IC, which in the pendent complex Gaussian random vect.ors using thg folg?w!n
next subsection will be used to derive DMT upper and low&hannel dependent power split (note this power split sesisfi

bounds, respectively. We start with the upper bound. the power constrain} (1)) among theTprivate and common
Lemma 1: For the2-user MIMO IC shown in FigurEl1 and Parts: Kii = E(W; W) and K> = E(U;U]), where

given realization of channel matricd$, the capacity region Iy, 1 + -1

is contained in the following set of rate tuples K = andKip = 5 (IMi + piJ’Hinij) - (10)
RE(H, p) + (N1 log(My V Ma), Ny log(My V My)), We refer to this coding scheme &8C(K11, K12, K21, K22)

scheme.
whereR“(H, p) represents the set of rate pafi;, R2) such  Lemma 2: For a given channel realization#, the
thatRlaRQ >0 and HK(Kll,Klg,Kgl,Kgg) scheme, Wherd{ij, 1 <4, <2

is given by [1D), can achieve all the rate paifg, R2) such

A 7. ; .
= Iy, forie 1, that (Ry, Rs) € {R° (H, p) — (2N1,2N,)}, whereR¢ (H, p)

R; <log ‘ (INT: + piiHiiHiTi)

Ri+ Ry <lo (I 2 ovoHroHY - o Hon H )‘_,_ is as given in LemmA]1. . -
! ? S\ INe T ety 7 a2 a2 o Using Lemmdl anfll2, respectively and similar method as
1og‘(IM1 +p11H11P1*21H1Tl)‘ £ [3: in the proof of Theoren® in [8] it can be proved that (for

: : more details refer td_[10])
Ri + Ry <log (IN1 + pa1Ho1Hyy + p11H11H11)’

L] djc(r1,72) =mindo, (ri), (11)
10g ‘ (IM2 + p22H22P2_1 HQQ) ‘ - Ib4; Wherep_doi (TT):PI‘ (Ib < ,’,_) (12)

-1
Bt Ra < log (INI + i Py, +p21H21H%1)‘ fori € T ={1,---,7} andry = r4 = 15 = (r1 + 12),

+log ‘ (INz + 012H12H1T2 + P22H22P2_11H2TQ)‘ 2 Iis: r6 = (2r1 +r2) andry = (r1 + 2r2).

2R; + Ry < IOg‘(INl + por Hoy HY, +p11H11H1T1)’+ lIl. EXPLICIT DMT OF THE (n, n,n,n) IC
lo ‘(I + p1oH1oHo 4 pooHoo PV HI )’ Inthis_ section we yvill evaluatéoli(n-)’s given in eq.uation
B\ Tt TPy e (II) which would yield the explicit DMT expressions for
+log (INl +p11H11Pf21H1T1) £ Iis: the IC. Using the first and second bound of Lemhpia 1 in
equations[(12) it can be proved that

Ry +2R» < 1o ’(1 4 proHipH + pooH HT)‘+
' ? & ae Pt 2 pratie 2 dOi(’ri):dn,n (Ti)a VriG[O, n]a (13)

1 —1 g7t
log ‘ (INI +pnHaty, + pufn by Hll)‘ whered,, ,(r) is the optimal diversity order of a point-to-point

+log (IN2 T p22H22P2—11H2TQ) . (PTP) MIMO channel withp transmit andy receive antennas
andi € {1,2}. To evaluatedo, (r3), we write the bounds
whereP,; = (I, + pinIjHij) for i # j € {1,2}. of Lemmal1 in the following way

Remark 2: Note a similar 'set of upper bounds on the f,. ﬂog‘(fn +pflelgu)‘ +1Og‘(]n+pﬁ22f[52)‘
capacity region was also derived in [1]. We see that the first

four bounds in LemmA]1 are identical to those[ih [1] and the + log ‘ (In + p“Hnggl)‘ , Where
fifth bound can be shown to be equivalent. However, the last
two bounds are different. It should also be noticed thatevhil; _( oy g

1
2 ~ _1
T 21+In) Hy; and H22:H22(1n+PQH2TlH21) 2. To
specialized to cas@f; = N; = M, = Ny = 1, the last two

; . omputedo, we need the asymptotic joint distributions of the

bounds of [[1] do not match with the corresponding bounti% . C = T Tr ot
- en-values of mutually correlated matridés, H11, Hoo H.

of[4] whereas, all the bounds of Lemrh 1 do. d y i v, Hoa

) X . . and H,1 HJ,. This joint distribution can be derived usin
Next we find the achievable rate region of a simple Ha 212t > ISHIDUL ved using

Fh 1 of [12]. Now, followi imil h
Kobayashi[[11] coding scheme. Suppose each user’s messlﬁgl%(}redm (TO) <[:an] be ()ev\\;;;lluoatzv(\jllng a similar approach as
is divided into two parts (private and public, respectiyeind » F0s s :
is encoded using a random Gaussian code. Thus the codeword&or o < 1, dp,(rs) =

can be written as { ady 30 (=) 4+ 202(1 — @), for 0 < r, < na;
©)

. (14)

X1=U:+W; anng =Us + W, 2(1 - a)dnn((;(s;_n(jc)))’ for na <r, < n(2 - a)



and fora > 1, do,(rs) = and forl < o, do,(r:) =
{ n?(2a — 1) + dp 30(r¢), for 0 <r, <n;
(2

a—1)dyn (((T' ")) for n < r: < 2na.

wherer; = (2r1 + r2). From symmetry, we havéo,(r1 +
where r, = (r1 + r2). Also, from symmetry we have 2r2) = do.(r1 +2r2). Analytical expressions fafo, for odd
do, (rs) = do, (rs). To evaluatelo, (1), we write the bound 7 ¢an be similarly derived and are not given here due to space

I5 of Lemmal1 in the following way constraints.
Remark 3: It should be noted from equations {17) and

(20) that, on a(n,n,n,n) MIMO IC, for a > 1, do, (do,)
provides a strictly tighter bound on the optimal DMT thé&s
if 1 75 0 (7‘2 75 O)

Theorem 2: The optimal diversity orderd;(r1,72) at a
multiplexing gain pair(rq,72), of a (n,n,n,n) MIMO IC
(Figure[1), with CSIT, short term average power constraint,
@) andai; = gy = 1, ags = a1 = a > 0, is given as

(20)

(15)

{ dn,Sn(Ts) + nQ(a — 1), for 0 <rs <mn;

(a — l)dnﬂn(({;:?))), for n < r, < na.

Is = log ‘ (I + pHqul)‘ +log ‘ (I + pHQQHQQ)

-Hog‘(l +p H21H21)‘+10g‘(1 + " Hio )

With A= (1 +p> H;i H, )’1 “(1 +p* HJ H; )’%. Noting that,

given the elgenvalues dﬁflgH12 and H21H21 the eigenval-

ues 01‘H11H11 and H22H22 are independent, we can use

Theorem[lL to find the joint distribution of the eigenvalues dic(r1,72) = min {do,(r:)},

of Hy H],, Hy,H}, Hy,HI, and Hy HJ, (refer to [10] for 1si<?

more details). Using this distribution result, equatioB)(tan wherers = ry = r5 = (r1 + 72), 76 = (2r1 + 72) and

be evaluated fotlo. (1) as follows. r7 = (r1 4+ 2re) anddo,s are given by equations_(13)-{20).
Corollary 1: The optimal DMT of a(n, n,n,n) IC, with

Fora < 1’ do. (rs) = CSIT anda;; = 1, Vi, j € {1,2}, at a MG tuple(ry,r2) is

2 given as
{ 2ady, 3n (;—;) +2n%(1 — 2a), for 0 <7y < 2no;

2(1 — 2a)dyp (M) for 2na < ry < 2n(1 — &F9)

2(1—2a

dic (r1,7m2) = Inin{dn_’n(rl), dnn (12), . 3n (r1+72)}

1
and for5 <a, do,(rs) =

) N\ ‘ —d @r,)
n2(2a — 1) + dy 30(rs), for 0 <r, < n; o . s
{ (20( _ 1)d (M) for n < r. < 2na (17) L% 4 \"" - dos(zrsym)
N\ (2a—1) )7 — '8 = : '% 350 \‘ R —d (rsym)
o st > oo dg@Br)
Using a similar approachip,(r;) can also be derived. For = 2st Ya O oM
evenn it is given as g o T,
] n=2, a=1/3 S
Foragé, dog(rs) = = 0:’ ‘::\
n2(2_a)+adn,3n (%), 0<r < %; o, o i ~/~/“~~;5~ -
n2(2 _ 30() + adn,3n % + %) + adn,Zn (T_i) , Symmetric multlplexmg gain, r, sym
for0<rf=r — = < na; Fig. 2: Different DMT bounds on a MIMO IC.
n2(1—a)+(1—2a)dn,n((1"?a))+adn,2n((1’}2&)+3>,
for 0 < 12 — py  3na’ < n(1l=a). (18) Remark 4: Corollary [ foIIow_s from the fact that for
=Tt Tt Ty =T 5 a = 1, the3"? bound of Lemmall is tighter than th&", 6t" or
(1= 20)dnn ((?,i—i;a) + %) + (1 —a)dnn ((3rt4a)) 7™ in the special case considered. In fact, this was the reason
for0<rd=r, — "(1;200 < "(3;400; based on which the authors inl [1] conjectured the result of
(re—n) Corollary[1. However, the fact that this is not true in gehera
(1= a)d (2(1—a)) n(2-a) <7< n(3-2a), ie. for); # 1, is illustrated in Figurd12, where Wg have
and forl <a <1, dog(r) = plotted the outage exponents corresponding to all the ound
2= T of Lemmall on &2,2,2,2) IC with « = 1. Contrary to the
n2(2 —a)+ adps, (&), 0<r < 22 case whem = 1, in this case at high MGs th&” bound is
na + ady, an (rf + %) + (1= @)dnon (r}) tighter than thes™.
for0<r! =r,— % <no Example 1: Consider an(4,4,4,4) IC, with a;; = 1
n2(17a)+(2a71)dn,n(%)+(1 @)dn, 2n(§+g), forall 1 < ¢j < 2andr, = ro = r. In Fig-
for 0< 12 =y — 2etl) < o (19) ure [3, min{do, (r),do, (2r)} represents the optimal DMT
(20 — D)y (r + 1) +2(1 —_a)zl (r3), with CSIT (Corollary[1) andmin{do, (r),dn 2. (2r)} repre-
for 0 < ’rg — _2 n(1+2a) < n. sents an achievable DMT when both the sources treat the
=t ¢ =72 channel to each receiver as a multiple-access channel (MAC)
(1—a)dnn ((?&3’;‘;)) n(l+a) <r < 2n. and use channel independent Gaussian codes. We see that at



low MGs, the fundamental DMT with CSIT can be achievedherei € {1,2} and fork € {0,1--- (M — 1)},
with no CSIT at all. In the following subsection we shall show. (ra)
rs) =

that, for some antenna configurations this is true for all MGS!¢- .
adp, (N (52) + M((rs — ka — 1)
+(M —k)(1—a)+M(N1—M), Vrs € [ka, (k+ 1)al;

N
o

il \“ doj(’) dM,(lel\rf)(TS — MO(), VTS S [MCY, M(a — 1) + Nl]
164 Y - oy @D Note the optimal DMT for the case when/ < N, < N;
sl N o on can be similarly found.

I
N
T

IV. CONCLUSION

The fundamental DMT of the MIMO IC, with CSIT is
characterized. In general it is an upper bound for the No-
CSIT DMT of a corresponding MIMO IC. One class of ICs
is identified for which the DMTs with and without CSIT
' coincide. However, finding all such MIMO ICs for which this

happens is an interesting open problem. It is shown thatdn th

Fig. 3: DMT on a(4,4,4,4) IC with and without CSIT.  DMT optimal scheme with full CSIT, a transmitter does not

It can be proved that, on am,n,n,n) IC with « > 1 and utilize the channel information of the direct link at all Hutly
r1 =rg =r, the HK (I,,0,,1,,0,) scheme can achieve theuses the channel information of the cross link. Finding the
following DMT (Lemma4, [13]) minimum amount of channel information which is sufficient
to achieve the full CSIT DMT is another interesting open
problem.

I
S}
T

Diversity Order (d(kr))

i i n
0.5 3 3.5

1 15 2 25
Symmetric Multiplexing Gain

dyrac(r) = min{d, (), ds(2r)}, where
{ dp.3n(2r) + n?(a — 1), for 0 < 2r < n;

(v — 1)dn,n(((2(§:?))), for n < 2r < na.

Comparing this with equatiof_(L5) we have

Theorem 3: The optimal diversity orded; (r) at a mul-
tiplexing gain pair(r,r), of a (n,n,n,n) MIMO IC, with
CSIT, short term average power constrai, (1) and =
a2 = 1, aqp = a1 = o > 1.25, can be achieved by the [
HK (I, 0n, I, 0,,) SCheme, i.e.dic (1) = darac(r).
Note thatHK (1,0, I,,0,) scheme does not require any [4]
CSIT. In the next section we consider asymmetric ICs where
the fundamental DMT with CSIT coincides with that with No- [5]
CSIT.

ds(2r)
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A. DMT of an Asymmetric IC with No-CSIT

. . . . [71

In this subsection, we derive the optimal DMT of the
2-user MIMO IC with No-CSIT for a particular antenna
configuration. In equation§ (14)-(15)p, (r3) was evaluated

for M; = N; = n. However, note that the distribution
results in [12] are valid for arbitraryd/; and N; and can
be used to evaluatép,(r3). Also do,(r3), being an upper
bound (equation[(11)) to the optimal DMT of an IC withji0]
CSIT, is also an upper bound to the optimal DMT of the
corresponding IC with No-CSIT. However, it can be prove
that a joint maximum likelihood (ML) decoder at both the
receivers can achievéo, (r3) if both the users use randoml(12]
Gaussian codes (with identity as the covariance matriegs),
Whean =My =M, 2M < N; < No andl < a.

Lemma 3: Consider the MIMO IC, as shown in Figuié 1[13]
with, My = My = M, 2M < N1 < N and 1 < a. The
optimal DMT of this channel with No-CSIT, at multiplexing
gain pair(ry,72), is given by

El

dic.No—csir(T1,72) = min{duy N, (i), drc, (11 +72)}
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