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Abstract— For an nt transmit, nr receive antenna system
(nt × nr system), a full-rate space time block code (STBC)
transmits min(nt, nr) complex symbols per channel use. In this
paper, a scheme to obtain a full-rate STBC for 4 transmit
antennas and anynr, with reduced ML-decoding complexity
is presented. The weight matrices of the proposed STBC are
obtained from the unitary matrix representations of Cliffo rd
Algebra. By puncturing the symbols of the STBC, full rate
designs can be obtained fornr < 4. For any value of nr, the
proposed design offers the least ML-decoding complexity among
known codes. The proposed design is comparable in error per-
formance to the well known perfect code for 4 transmit antennas
while offering lower ML-decoding complexity. Further, when
nr < 4, the proposed design has higher ergodic capacity than
the punctured Perfect code. Simulation results which corroborate
these claims are presented.

I. I NTRODUCTION AND BACKGROUND

Complex orthogonal designs (CODs) [1], [2], although
provide linear Maximum Likelihood (ML) decoding, do not
offer a high rate of transmission. A full-rate code for annt×nr

MIMO system transmitsmin(nt, nr) complex symbols per
channel use. Among the CODs, only the Alamouti code for
2 transmit antennas is full-rate for a2 × 1 MIMO system. A
full-rate STBC can efficiently utilize all the degrees of freedom
the channel provides. Generally, an increase in the rate also
results in an increase in the ML-decoding complexity. The
Golden code [3] for 2 transmit antennas is an example of
a full-rate STBC for any number of receive antennas. Until
recently, the ML-decoding complexity of the Golden code was
known to be of the order ofM4, whereM is the size of the
signal constellation. However, it was shown in [4], [5] that
the Golden code has a decoding complexity of the order of
M2

√
M only. A lot of attention is being given to reducing the

ML-complexity of full-rate codes. Current research focuses
on obtaining high rate codes with reduced ML-decoding
complexity (refer to Sec. II for a formal definition), since
high rate codes are essential to exploit the available degrees
of freedom of the MIMO channel. For 2 transmit antennas,
the Silver code [6], [7], is a full-rate code with full-diversity
and an ML-decoding complexity of orderM2. For 4 transmit
antennas, Biglieri et. al. proposed a rate-2 STBC which has an
ML-decoding complexity ofM4

√
M for square QAM without

full-diversity [8]. It was, however, shown that there was no
significant reduction in error performance at low and medium

SNR when compared with the then best known code - the
DjABBA code [6]. This code was obtained by multiplexing
Quasi-orthogonal designs (QOD) for 4 transmit antennas [9].
Currently, the best full-rate STBC for4× 2 system with full
diversity and an ML-decoding complexity ofM4

√
M is the

one given in [4]. This code was obtained by multiplexing
the coordinate interleaved orthogonal designs (CIODs) for4
transmit antennas [10]. These results show that codes obtained
by multiplexing low complexity STBCs can result in high rate
STBCs with reduced ML-decoding complexity and without
any significant degradation in the error performance when
compared with the best existing STBCs. Such an approach
has also been adopted in [11] to obtained high rate codes from
multiplexed orthogonal designs.

The well known full-rate STBC for 4 transmit antennas is
the Perfect code [12]. It is full-diversity, full-rate, information-
lossless and DMG optimal. On the negative side, its ML-
decoding complexity is of the order ofM16. By puncturing
the layers of the Perfect code, one can obtain full-rate designs
for nr < 4 receive antennas. However, for 2 receive antennas,
Biglieri’s code and the code proposed in [4] beat the punctured
Perfect code (puncturing refers to replacing certain symbols
with zeros. Since the Perfect code has 4 layers, fornr < 4, the
symbols corresponding to4−nr layers are punctured.) in error
performance [8], [4], while having lower ML-decoding com-
plexity as well. It is natural to ask if such similar advantages
can be obtained fornr > 2 receive antennas. In this paper,
we answer this question in the affirmative by generalizing the
result in [4] to any number of receive antennas. In particular,
the contributions of this paper are:

1) We propose a full-rate STBC for 4 transmit antennas
and any value ofnr. This is done by successively con-
structing full-rate STBCs for 2,3 and 4 receive antennas.
The weight matrices of the STBCs are obtained from the
unitary matrix representations of Clifford Algebras. For
any nr, the ML-decoding complexity of the proposed
STBC is lower than that of the Perfect code by a factor
of M3 for non-regular QAM constellations (for square
QAM, it is lower by a factor ofM ).

2) Like the Perfect code, the proposed code is information
lossless fornr ≥ 4 receive antennas, while for lower
number of receive antennas, the proposed code has
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higher ergodic capacity than the punctured Perfect code.
3) The proposed code has full-diversity and a better symbol

error performance than the punctured Perfect code for
2 receive antennas at any SNR, while for the 3 and 4
receive antennas, although not a full-diversity STBC, its
performance is similar to that of the perfect code in
the low and medium SNR range. The reason for this is
explained in Subsection III-A.

The paper is organized as follows. In Section II, we present
the system model and the relevant definitions. The proposed
code is presented in Section III and the ML-decoding com-
plexity and the ergodic capacity issues are discussed in Section
IV. Simulation results are discussed in Section V and the
concluding remarks are made in Section VI.

Notations: Throughout, bold, lowercase letters are used to
denote vectors and bold, uppercase letters are used to denote
matrices. LetX be a complex matrix. Then,X† denotes the
Hermitian or the transpose ofX, depending on whetherX
is complex or real, resp., andj represents

√
−1. The set

of all real and complex numbers are denoted byR and C,
respectively. The real and the imaginary part of a complex
number x are denoted byxI and xQ, respectively.‖X‖
denotes the Frobenius norm ofX, andIT andOT denote the
T × T identity matrix and the null matrix, respectively. The
Kronecker product is denoted by⊗. For a complex random
variableX , E [X ] denotes the mean ofX .

For a complex variablex, the (̌.) operator acting onx is
defined as follows.

x̌ ,

[

xI −xQ

xQ xI

]

.

The (̌.) can similarly be applied to any matrixX ∈ Cn×m

by replacing each entryxij by x̌ij , i = 1, 2, · · · , n, j =
1, 2, · · · ,m , resulting in a matrix denoted by̌X ∈ R2n×2m.

Given a complex vectorx = [x1, x2, · · · , xn]
T , x̃ is defined

as
x̃ , [x1I , x1Q, · · · , xnI , xnQ]

T .

II. SYSTEM MODEL

We consider Rayleigh block fading MIMO channel with full
channel state information (CSI) at the receiver but not at the
transmitter. Fornt × nr MIMO transmission, we have

Y =

√

SNR

nt
HS + N (1)

where S ∈ Cnt×T is the codeword matrix whose average
energy is given byE(‖S‖2) = ntT , transmitted overT channel
uses,N ∈ Cnr×T is a complex white Gaussian noise matrix
with i.i.d entries∼ NC (0, 1) andH ∈ Cnr×nt is the channel
matrix with the entries assumed to be i.i.d circularly symmetric
Gaussian random variables∼ NC (0, 1). Y ∈ Cnr×T is the
received matrix.

Definition 1: (Code rate) Code rate is the average number
of independent information symbols transmitted per channel
use. If there arek independent complex information symbols

in the codeword which are transmitted overT channel uses,
then, the code rate isk/T complex symbols per channel use.

Definition 2: (Full-rate STBCs) For an nt × nr MIMO
system, if the code rate ismin (nt, nr), then the STBC is
said to befull-rate.

Assuming ML-decoding, the ML-decoding metric that is to
be minimized over all possible values of codewordsS is given
by

M (S) = ‖Y −
√

SNR

nt
HS‖2F (2)

Definition 3: (ML-Decoding complexity) The ML decod-
ing complexity is measured in terms of the maximum number
of symbols that need to be jointly decoded in minimizing the
ML decoding metric.
For eg., if the codeword transmitsk independent symbols of
which a maximum ofp symbols need to be jointly decoded,
the ML-decoding complexity is of the order ofMp, where
M is the size of the signal constellation. If the code has an
ML-decoding complexity of order less thanMk, the code is
said to admitreduced ML-decoding.

Definition 4: (Generator matrix) For any STBC that en-
codes k information symbols, thegenerator matrix G is
defined by the following equation [8].

ṽec (S) = Gs̃,

whereS is the codeword matrix,s , [s1, s2, · · · , sk]T is the
information symbol vector.

A codeword matrix of an STBC can be expressed in terms
of weight matrices (linear dispersion matrices) as follows [13].

S=
k

∑

i=1

siIA2i−1 + siQA2i.

Here, Ai, i = 1, 2, · · · , 2k are the complex weight matrices
for the STBC and should form a linearly independent set over
R. It follows that

G = [ ˜vec(A1) ˜vec(A2) · · · ˜vec(A2k)].

III. C ODE CONSTRUCTION USINGCLIFFORD ALGEBRA

In this section, we show how the full-rate STBC with
reduced ML-decoding complexity can be constructed using
unitary matrix representations of Clifford algebras. Thisap-
proach was first taken in [6] to obtain a full-rate STBC for
4 × 4 MIMO systems. But here, we look at designing an
STBC so that it achieves reduced ML-decoding, acceptable
error performance when compared with the best existing code,
which is the Perfect code and has higher ergodic capacity than
the punctured Perfect code fornr < 4. We construct a full-rate
STBC for any number of receive antennas by using a full-rate
code for 1 receive antennas to successively construct full-rate
codes for 2,3 and 4 receive antennas. The design is based on
the following lemma.

Lemma 1: If n = 2m and matricesF1, · · · ,F2m, which are
of sizen× n, anticommute pairwise, then the set of products
Fλ1

1 Fλ2

2 · · ·Fλ2m

2m with λi ∈ {0, 1}, i = 1, 2, · · · , 2m forms a



basis for the22m dimensional space of alln×n matrices over
C.

Proof: Available in [14].
As a byproduct of the lemma, the set{Fλ1

1 Fλ2

2 · · ·Fλ2m

2m ,
jFλ1

1 Fλ2

2 · · ·Fλ2m

2m } forms a basis for the22m+1 dimensional
space of alln × n matrices overR. We choose the matrices
from this set to be weight matrices of our STBC. Forn = 4,
the following matrices (not necessarily unique), which are
obtainable from the unitary matrix representations of Clifford
algebra [2], are the 4 pairwise anticommuting matrices.

F1 =









j 0 0 0
0 −j 0 0
0 0 −j 0
0 0 0 j









, F2 =









0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0









,

F3 =









0 j 0 0
j 0 0 0
0 0 0 j
0 0 j 0









, F4 =









0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0









.

So, X , {Fλ1

1 Fλ2

2 Fλ3

3 Fλ4

4 , jFλ1

1 Fλ2

2 Fλ3

3 Fλ4

4 }, λi ∈ {0, 1},
i = 1, 2, 3, 4, is the linearly independent (overR) set of
weight matrices. Since we want reduced ML-decoding as well,
the appropriate ordering of weight matrices is important. To
illustrate with an example, the Silver code [7] has 8 weight
matrices corresponding to 8 real symbols (or 4 complex
symbols), among which the first 4 are the weight matrices
of the Alamouti code. Hence, when the last four real symbols
are fixed, the first four symbols can be independently decoded.
This would not have been achievable if the weight matrices
were randomly allocated. So, for 4 transmit antennas, to con-
struct a full-rate code with reduced ML-decoding complexity,
we first need to construct a low decoding complexity code
using some of the weight matrices fromX . For 4 transmit
antennas, the best multi-group decodable code is the rate-1,
single-complex symbol decodable (SSD) code which has been
extensively studied in literature and is known in many forms
- CIOD [10], MDCQOD [15], CUW-SSD code [16]. It is to
be noted that all these codes have the same coding gain but
different weight matrices. For our construction of a full-rate
STBC, we make use of the CIOD. The codeword of the CIOD
is as follows.

Sciod
1 (s1, · · · , s4) = s1I (I4 − F1F2F3) + s1Q(F1 − F2F3)

+ s2I(F1F3 − F2) + s2Q(F3 − F1F2)

+ s3I(I4 + F1F2F3) + s3Q(F1 + F2F3)

+ s4I(−F2 − F1F3) + s4Q(F3 + F1F2).(3)

In (3), the symbols take values from a QAM constellation
which is rotated by an angle of(1/2)tan−12 rad. This angle
maximizes the coding gain for the code [10]. We can obtain
a full-rate STBC for 2 receive antennas by obtaining 8 more
weight matrices on post-multiplication of the weight matrices
of the CIOD byF4. This does not spoil the linear independence
of the resulting set of weight matrices, which is evident from
Lemma 1. So, the resulting rate-2 code has the codeword

matrix as follows.

S2(s1, · · · , s8) = Sciod
1 (s1, · · · , s4) + S′

1(s5, · · · , s8)
where,

S′

1(s5, · · · , s8) = Sciod
1 (s5, · · · , s8)F4 (4)

= s5I(F4 − F1F2F3F4) + s5Q(F1F4 − F2F3F4)

+ s6I (F1F3F4 − F2F4) + s6Q(F3F4 − F1F2F4)

+ s7I (F4 + F1F2F3F4) + s7Q(F1F4 + F2F3F4)

+ s8I (−F2F4 − F1F3F4)

+ s8Q(F3F4 + F1F2F4), (5)

Note that the code whose codeword matrix is shown in
(4) is also SSD, as its weight matrices are obtained by post-
multiplying the weight matrices of the CIOD by a unitary
matrix, which, in this case isF4. The rate-2 code described
above does not have full-diversity. Its performance can be
enhanced by using a complex scalar which results in the
following codeword matrix.

S2(s1, · · · , s8) = Sciod
1 (s1, · · · , s4) + ejπ/4S′

1(s5, · · · , s8).
(6)

In (6), the use of the complex scalarejπ/4 makes the code
have full-diversity with a high coding gain. The value of the
minimum determinant [17] obtained for this code is 10.24
for 4-/16-QAM and this was verified by exhaustive computer
search. The rate-2 code described above has the same coding
gain and ML-decoding complexity as the one presented in [4].

To obtain a full-rate for 3 and 4 receive antennas, we need to
obtain the remaining 8 and 16 weight matrices by multiplying
the weight matrices of the CIOD and the rate-2 code whose
codeword matrix is given in (6), respectively, byj. Note from
Lemma 1 that the above operation does not spoil the linear
independence of the resulting set of weight matrices overR.
Hence, the codeword of a rate-3 code is given as follows.

S3(s1, · · · , s12) = S2(s1, · · · , s8) + jSciod
1 (s9, · · · , s12) (7)

where,S2(s1, · · · , s8) is given by (6). The codeword matrix
of a full-rate STBC fornr ≥ 4 is as follows.

S4(s1, · · · , s16) = S2(s1, · · · , s8) + jS2(s9, · · · , s16). (8)

The full rate code fornr ≥ 4 is given below.

S4(s1, · · · , s16) = Sciod
1 (s1, · · · , s4)
+ ejπ/4Sciod

1 (s5, · · · , s8)F4

+ jSciod
1 (s9, · · · , s12)

+ jejπ/4Sciod
1 (s13, · · · , s16)F4. (9)

Note from (9) that the codeword matrix of the full-rate code
is obtained from independent codeword matrices of 4 separate
SSD codes. This property will be exploited in the next section
to achieve reduced ML-decoding complexity.

A. Performance of our code

The rate-2 code whose codeword matrix is given in (6) has a
minimum determinant of 10.24 for 4-QAM. The correspond-
ing minimum determinant of the punctured Perfect code is



3.6304. The minimum determinants of both the codes have
been calculated for 4-QAM with the average codeword energy
being 16 units, i.e,E‖S‖2 = ntT . As a result of a higher
minimum determinant and hence a better coding gain, our rate-
2 code is expected to perform better than the punctured Perfect
code.

For 3 receive antennas, our rate-3 code whose codeword
matrix is given in (7) does not offer full-diversity. It can be
noted that the rate-3 code is obtained by multiplexing a full-
diversity rate-2 code and a full-diversity rate-1 code. In other
words, each codeword matrix of our code has two individual
sub-codeword matrices - one sub-codeword matrix belonging
to the full-diversity rate-2 code and the other belonging to
the full-diversity rate-1 code. We say that our rate-3 code
has twoembeddedfull-diversity codes in it. Hence, though
the rate-3 code may not have full-diversity, meaning which
its minimum determinant is zero, the number of codeword
difference matrices which are not full-ranked is lesser than it
would be if the rate-3 code were constructed using arbitrary
weight matrices. This is because there are many instances
when two codewords of the rate-3 code are such that their
codeword difference matrix is the same as one of the codeword
difference matrices of one of the embedded full-diversity codes
(This happens when the two codewords of the rate-3 code
have a common sub-codeword matrix). Further, even if the
two codewords of the rate-3 code do not have a common
sub-codeword matrix, their difference matrix might still be
full-ranked. Hence, in comparison to the number of codeword
difference matrices of the rate-3 code, the number of non full-
ranked codeword difference matrices is very small. A similar
arguement can be done for the rate-4 code, which is full-rate
for nr ≥ 4 and can be seen from (8) to have two embedded
full-diversity rate-2 codes. Hence, we expect the rate-3 and
the rate-4 codes to perform very well atleast in the low and
medium SNR range. Simulation results presented later confirm
our expectations.

IV. ML-D ECODING COMPLEXITY AND ERGODIC

CAPACITY

The ML-decoding complexity of a code depends on the
weight matrices of the code [4]. Our proposed design is such
that for any number of receive antennas, reduced ML-decoding
can be achieved. To see this, our code whose codeword matrix
is as shown in (9) consists of 4 multiplexed rate-1 SSD codes.
This means that fornmin = min(4, nr), nmin SSD codes
can be multiplexed so that the code rate isnmin complex
symbols per channel use. So, for anynmin, one can fix the
last 4(nmin − 1) symbols and decode the first 4 symbols
independently (with an additional complexity increase by a
factor of onlyM ). Thus, for any number of receive antennas,
the worst case ML-decoding complexity is of the order of
M4(nmin−1)+1. This results in a reduction in ML-decoding
complexity by a factor ofM3 with respect to the Perfect code
for general constellations.

The channel can be modelled as follows (note thatnt =

T = 4 at all places below).

ṽec(Y) =

√

SNR

nt
Heq s̃+ ṽec(N),

whereHeq ∈ R2nrT×2nminT is given by

Heq =
(

IT ⊗ Ȟ
)

G,

with G ∈ R2ntT×2nminT being the generator matrix as in Def.

4, so thatṽec (S) = Gs̃. and

s̃, [s1I , s1Q, · · · , s(nminT )I , s(nminT )Q]
†.

When rotated QAM constellation is employed for our code,
with the angle of rotation beingθ = (1/2)tan−12,

s̃= Fx̃.

HereF = InminT ⊗ J, with

J ,

[

cos(θ) −sin(θ)
sin(θ) cos(θ)

]

,

x , [x1, · · · , xnminT ]
†, andxi, i = 1, · · · , nminT , take values

from a QAM constellation.
The ML decoding metric can now be written as

M (x̃) = ‖ṽec (Y)−
√

SNR

nt
HeqFx̃‖2. = ‖y′−

√

SNR

nt
Rx̃‖2,

where,y′ = Q†ṽec(Y), and on QR-decomposition,HeqF =
QR, R ∈ R2nrT×2nminT . Specifically for our design, for any
number of receive antennas, theR- matrix has the following
structure.

R =











D X . . . X
O8 D . . . X
...

. . .
. . .

...
O8 O8 . . . D











(10)

whereX ∈ R8×8 is random non-sparse matrix whose entries
depend on the channel coefficients andD ∈ R8×8 has the
following structure.

D =





















x x 0 0 0 0 0 0
0 x 0 0 0 0 0 0
0 0 x x 0 0 0 0
0 0 0 x 0 0 0 0
0 0 0 0 x x 0 0
0 0 0 0 0 x 0 0
0 0 0 0 0 0 x x

0 0 0 0 0 0 0 x





















.

Here, x represents a non-zero entry. The structure of the
aboveR-matrix is due to the fact that the codeword matrix of
our code is comprised of multiplexed SSD-codeword matrices.
Note that for the CIOD, the entanglement between the real and
the imaginary parts of a symbol is due to the constellation
rotation, which is employed for full-diversity. This can also
be checked by direct computation. Correspondingly, for the
Perfect code, the matrixD in (10) is as shown at the top of
the next page.

Clearly, theR-matrix for our code has more zero entries
than theR-matrix of the Perfect code. This means that the



DPerfect =

























x 0 x 0 x 0 x 0
0 x 0 x 0 x 0 x
0 0 x 0 x 0 x 0
0 0 0 x 0 x 0 x
0 0 0 0 x 0 x 0
0 0 0 0 0 x 0 x
0 0 0 0 0 0 x 0
0 0 0 0 0 0 0 x

























, DEAST =

























x 0 x 0 0 0 0 0
0 x 0 x 0 0 0 0
0 0 x 0 0 0 0 0
0 0 0 x 0 0 0 0
0 0 0 0 x 0 x 0
0 0 0 0 0 x 0 x
0 0 0 0 0 0 x 0
0 0 0 0 0 0 0 x

























.

nr (Rx Antennas) code Min. Determinant
ML Decoding complexity order
square QAM Non-rectangular

QAM

2

DjABBA 0.64 M6 M8

Punctured perfect code3.6304 M5
√
M M8

EAST code [19] 10.24 M4
√
M M6

The proposed code 10.24 M4
√
M M5

3
Punctured perfect code0.7171 M9

√
M M12

The proposed code 0 M8
√
M M9

4
Perfect code 0.2269 M13

√
M M16

The proposed code 0 M12
√
M M13

TABLE I

COMPARISON OF THE CODES FOR4 TRANSMIT ANTENNAS

interference between symbols is lesser for our code than
for the Perfect code. A consequence of this is that when
QAM constellations are employed, the average ML-decoding
complexity using a sphere decoder [18] is much lesser than the
worst case ML-decoding complexity ofM4(nmin−1)+1. Note
that the worst case ML-decoding complexity of our code is
lower than that of the Perfect code by a factor ofM3 only
for non-rectangular QAM constellations. But for square-QAM
constellations of sizeM , where the real and the imaginary
parts of a signal point can be independently decoded, the ML-
decoding of our code can be reduced further by a factor of√
M (from M4(nmin−1)+1 to M4(nmin−1)

√
M ) by quantizing

(the details are presented in [4]) and the decoding complexity
of the Perfect code can be reduced by a factor ofM2

√
M

(from M4nmin to M (4nmin−3)
√
M ). This is achieved by

noting from theR-matrix structure for the Perfect code that the
real parts of the symbolss1, s2, s3 ands4 can be independently
decoded from imaginary parts for square QAM constellations
and this reduces the complexity by a factor ofM2 and using
quantizing further reduces the complexity by a factor of

√
M .

Table I summarizes these facts. We have also used the EAST
code [19] for4×2 MIMO for comparison with our code. The
EAST code, which is full-rate ofnr = 2 has the following
R-matrix structure.

R =

[

D X
O8 D

]

,

with D having the structure shown at the top of this page.
Clearly, its worst case ML-decoding complexity order can

be as low asM4
√
M for square-QAM andM6 for non-

rectangular QAM constellations.
It was shown in [6] that a reduction in interference between

symbols leads to a better mutual information. The ergodic
capacity with the use of a space time code is given as follows
[20].

C =
1

2T
EHlog[det(I2nrT +

SNR

nt
HeqH†

eq)] (11)

Since our code has lesser interference between symbols than
the Perfect code, as is evident from theR-matrix structure
(hence, this is reflected inHeq), its ergodic capacity is expected
to be better for 2 and 3 receive antennas and this is confirmed
in Fig. 1. For,nr ≥ 4, it can be checked that the generator
matrix for our code is unitary, like that of the Perfect code.
Hence, fornr ≥ 4, our code is information lossless, like the
Perfect code.

V. SIMULATION RESULTS

In all the simulation scenarios in this section, we consider
the Rayleigh block fading MIMO channel.

A. 4× 2 MIMO

Fig. 2 shows the plots of the symbol error rate (SER) as a
function of the SNR at each receive antenna for four codes -
the DjABBA code, the punctured perfect code, our code and
the EAST code. Since the number of degrees of freedom of
the channel is only 2, we need to use the punctured Perfect
code, i.e the Perfect code with 2 of its 4 layers punctured. Our
code is the one given in (6). The constellation used is 4-QAM.
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Fig. 4. SER performance at 8 BPCU for codes for4× 4 systems



Our code and the EAST code have the best performance. It is
to be noted that the curves for our code and the EAST code
coincide.

B. 4× 3 MIMO

Fig. 3 shows the plots of the symbol error rate (SER) as a
function of the SNR at each receive antenna for two codes -
the punctured perfect code (puncturing one of its 4 layers) and
our code whose codeword is given in (7). The constellation
used is 4-QAM. Our punctured code has a marginally better
performance than the punctured perfect code in the low to
medium SNR range. As our code does not have full-diversity,
at a very high SNR, it might lose out on diversity gain.

C. 4× 4 MIMO

Fig. 4 shows the plots of the symbol error rate (SER) as a
function of the SNR at each receive antenna for our code and
the Perfect code. Our code nearly matches the Perfect code
in performance at low and medium SNR, while at high SNR,
it may lose out to the Perfect code due to the lack of full-
diversity. More importantly, our code has lower ML-decoding
complexity.

VI. D ISCUSSION

In this paper, we proposed a scheme to obtain a full-rate
STBC for 4 transmit antennas and any number of receive
antennas with reduced ML-decoding complexity. The design,
although not a full-diversity code for 3 and 4 receive antennas,
matches the Perfect code for 4 transmit antennas in error per-
formance, while beating it for4× 2 MIMO systems. In terms
of ergodic capacity, our proposed design has higher ergodic
capacity than the punctured Perfect code for 2 and 3 receive
antennas, while for4 × 4 MIMO systems, it is information
lossless, like the Perfect code. The scheme presented in this
paper can be applied to higher number of transmit antennas to
obtain similar advantages and this could provide the direction
of future research.
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