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An entropy inequality forq-ary random variables
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Eren Şaşoğlu
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Abstract—It is shown that given two copies of aq-ary input
channelW , whereq is prime, it is possible to create two channels
W− and W+ whose symmetric capacities satisfyI(W−) ≤

I(W ) ≤ I(W+), where the inequalities are strict except in trivial
cases. This leads to a simple proof of channel polarization in the
q-ary case.

Index Terms—Channel polarization, polar codes, entropy in-
equality.

I. I NTRODUCTION AND MAIN RESULT

Arıkan’spolar codes[1] are a class of ‘symmetric capacity’-
achieving codes for binary-input channels. Their block error
probability behaves roughly likeO(2−

√
N ) [2], whereN is

the blocklength, and they achieve this performance at an
encoding/decoding complexity of orderN logN .

Polar codes for non-binary input channels were considered
in [3]. As in the binary case, their construction is based on
recursively creating new channels from several copies of the
original: LetW be a discrete memoryless channel with input
alphabetX = {0, . . . , q − 1}. Throughout this note,q will
be assumed to be a prime number. The output alphabetY
may be arbitrary. We will letI(W ) ∈ [0, 1] denote the mutual
information developed acrossW with uniformly distributed
inputs1, i.e.,

I(W ) =
∑

x∈X ,y∈Y

1

q
W (y | x) log

W (y | x)
∑

x′

1
q
W (y | x′)

.

Let X1, X2 be independent, uniformly distributed inputs to
two independent copies ofW , and letY1, Y2 be the corre-
sponding outputs. Consider the one-to-one mappingX1, X2 →
U1, U2

U1 = X1 +X2

U2 = X2,
(1)

where ‘+’ denotes modulo-q addition. Observe thatU1 and
U2 are independent and uniformly distributed overX . Define
the channels

W− : U1 → Y1Y2,

W+ : U2 → Y1Y2U1,

1All logarithms in this note will be to the baseq.

described through the conditional output probability distribu-
tions

W−(y1, y2 | u1) =
1

q

∑

u2∈X
W (y1 | u1 − u2)W (y2 | u2),

W+(y1, y2, u1 | u2) =
1

q
W (y1 | u1 − u2)W (y2 | u2).

It follows from the chain rule of mutual information that
I(W−)+ I(W+) = 2I(W ). It is also easy to see thatW+ is
better thanW , whereasW− is worse, in the sense that

I(W−) ≤ I(W ) ≤ I(W+). (2)

SinceW− andW+ are alsoq-ary input channels, the above
procedure can be applied to each of them, creating the chan-
nelsW−− := (W−)−, W−+ := (W−)+, W+− := (W+)−,
andW++ := (W+)+. Repeating this proceduren times, one
obtains2n channels,W s, s ∈ {−,+}n, with

∑

s
I(W s) =

2nI(W ). The main observation that leads the author of [1] to
construct polar codes is that these channels arepolarized in
the following sense:

Theorem 1 ([1],[3]) .

lim
n→∞

1

2n
#
{
s ∈ {−,+}n : I(W s) ∈ (1− δ, 1]

}
= I(W ),

lim
n→∞

1

2n
#
{
s ∈ {−,+}n : I(W s) ∈ [0, δ)

}
= 1− I(W ),

for all δ > 0.

The proofs given in [1] and [3] for Theorem 1 are based on
the following arguments: The symmetric mutual informations
of the channelsW s created by the above procedure have a
martingale property, from which it follows that they must
converge for almost all paths in the construction. This shows
that both limits in Theorem 1 exist. To prove the claim on these
limits’ values, it would be sufficient to show that (2) holds with
strict inequalities for allW s, unlessI(W s) ∈ {0, 1}. Observe,
however, that since the output alphabets of channelsW s grow
as the construction size increases, this approach would require
the aforementioned inequality to hold uniformly for allq-ary
input channels. This difficulty is circumvented in [1] and [3] by
appropriately defining an auxiliary channel parameterZ(W )
and proving the convergence ofZ(W s) to {0, 1} by the above
arguments, which then implies the convergence ofI(W s) to
{0, 1}.
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The purpose of this note is to provide a proof of Theorem 1
that avoids this indirect approach. In order to do so, we will
need the following theorem.

Theorem 2. If I(W ) ∈ (δ, 1− δ) for someδ > 0, then there
exists anǫ(δ) > 0 such that

I(W−) + ǫ(δ) ≤ I(W ) ≤ I(W+)− ǫ(δ).

The dependence ofǫ(δ) on the channelW is only throughδ,
and not through particular channel specifications (e.g., output
alphabet size).

Theorem 2 will be proved as a corollary to the following
lemma, which is the main result reported here.

Lemma 1. LetX1, X2 ∈ X , Y1, Y2 ∈ Y be random variables
with joint probability density

PX1Y1X2Y2
(x1, y1,x2, y2)

= PX1Y1
(x1, y1)PX2Y2

(x2, y2).
(3)

If
H(X1 | Y1), H(X2 | Y2) ∈ (δ, 1− δ)

for someδ > 0, then there exists anǫ(δ) > 0 such that

H(X1+X2 | Y1, Y2)−max{H(X1 | Y1), H(X2 | Y2)} ≥ ǫ(δ).

We will prove Lemma 1 in Section III.
Proof of Theorem 2: It suffices to show thatI(W ) −

I(W−) ≥ ǫ(δ), as the equalityI(W−) + I(W+) = 2I(W )
will then imply the second half of the claim. LetX1, X2 ∈ X
denote two independent and uniformly distributed inputs to
two copies ofW , and letY1, Y2 ∈ Y be the corresponding
outputs. SinceW is memoryless,X1, X2, Y1, Y2 are jointly
distributed as in (3). Further,I(W ) ∈ (δ, 1− δ) implies

1− I(W ) = H(X1 | Y1) = H(X2 | Y2) ∈ (δ, 1− δ). (4)

It then follows from Lemma 1 that

I(W )− I(W−) = H(X1 +X2 | Y1Y2)−H(X1 | Y1)

≥ ǫ(δ),

completing the proof.

II. PROOF OFTHEOREM 1

Let B1, B2, . . . be {−,+}-valued i.i.d. random variables
with Pr[B1 = −] = Pr[B1 = +] = 1

2 . Let I0, I1, . . . be
random variables defined as

I0 = I(W )

In = I(WB1,...,Bn) n = 1, 2, . . .

Note thatIn takes values in[0, 1]. Further, it follows from
the relation I(W−) + I(W+) = 2I(W ) that E[In+1 |
In, . . . , I0] = In. Hence, the processI0, I1, . . . is a bounded
martingale, and therefore converges almost surely to a[0, 1]-
valued random variableI∞. Note, on the other hand, that

Pr[In ∈ (δ, 1−δ)] =
1

2n
#
{
s ∈ {−,+}n : I(W s) ∈ (δ, 1−δ)

}
.

To conclude the proof, it thus suffices to show thatPr[I∞ =
1] = I(W ) and Pr[I∞ = 0] = 1 − I(W ). To that
end, note that the almost sure convergence ofIn implies
E[|In+1 − In|] = E[I(WB1...Bn+) − I(WB1...Bn)] → 0. It
follows from Theorem 2 that the latter convergence implies
I∞ ∈ {0, 1} with probability1. Due to the martingale property
of In we haveE[I∞] = E[I0] = I(W ), from which it follows
thatPr[I∞ = 1] = 1 − Pr[I∞ = 0] = I(W ), completing the
proof.

III. PROOF OFLEMMA 1

In what follows, H(p) and H(X) will both denote the
entropy of a random variableX ∈ X with probability
distribution p. We will let pi, i ∈ X denote the probability
distribution with

pi(m) = p(m− i).

The cyclic convolution of vectorsp andr will be denoted by
(p ∗ r). That is,

(p ∗ r) =
∑

i∈X
p(i)ri =

∑

i∈X
r(i)pi.

We will also letunif(X ) denote the uniform distribution over
X . We will use the following lemmas in the proof:

Lemma 2. Let p be a distribution overX . Then,

‖p− unif(X )‖1 ≥
1

q log e
[1−H(p)].

Remark 1. Lemma 2 partially complements Pinsker’s inequal-
ity by providing a lower bound to theL1 distance between an
arbitrary probability distribution and the uniform distribution
by their Kullback–Leibler divergence.

Proof:

1−H(p) =
∑

i∈X
p(i) log

p(i)

1/q

≤ log e
∑

i

p(i)

[
p(i)− 1/q

1/q

]

≤ q log e
∑

i

p(i)|p(i)− 1/q|

≤ q log e‖p− unif(X )‖1,

where we used the relationln t ≤ t− 1 in the first inequality.

Remark 2. Lemma 2 holds for distributions over arbitrary
finite sets. That|X | is a prime number has no bearing on the
above proof.

Lemma 3. Let p be a distribution overX . Then,

‖pi − pj‖1 ≥
1−H(p)

2q2(q − 1) log e
.

for all i, j ∈ X , i 6= j. That is, unlessp is the uniform
distribution, its cyclic shifts will be separated from eachother
in theL1 distance.



Proof: Let j = i + m for somem 6= 0. We will show
that there exists ak ∈ X satisfying

|p(k)− p(k +m)| ≥
1−H(p)

2q2(q − 1) log e
,

which will yield the claim since‖pi − pj‖1 =
∑

k∈X |p(k)−
p(k +m)|.

Suppose thatH(p) < 1, as the claim is trivial otherwise.
Let p(ℓ) denote theℓth largest element ofp, and letS = {ℓ :
p(ℓ) ≥ 1

q
}. Note thatS is a proper subset ofX . We have

|S|
∑

ℓ=1

[p(ℓ) − p(ℓ+1)] = p(1) − p(|S|+1)

≥ p(1) − 1/q

≥
1

2(q − 1)
‖p− unif(X )‖1

≥
1−H(p)

2q(q − 1) log e
.

In the above, the second inequality is obtained by observing
that p(1) − 1/q is smallest whenp(1) = · · · = p(q−1), and
the third inequality follows from Lemma 2. Therefore, there
exists at least oneℓ ∈ S such that

p(ℓ) − p(ℓ+1) ≥
1−H(p)

2q2(q − 1) log e
.

Given such anℓ, let A = {1, . . . , ℓ}. Sinceq is prime,X can
be written as

X = {k, k +m, k +m+m, . . . , k+m+ . . .+m
︸ ︷︷ ︸

q−1 times

}

for anyk ∈ X andm ∈ X\{0}. Therefore, sinceA is a proper
subset ofX , there exists ak ∈ A such thatk + m ∈ Ac,
implying

p(k)− p(k +m) ≥
1−H(p)

2q2(q − 1) log e
,

which yields the claim.

Lemma 4. Let p and r be two probability distributions over
X , with H(p) ≥ η andH(r) ≤ 1 − η for someη > 0. Then,
there exists anǫ1(η) > 0 such that

H(p ∗ r) ≥ H(r) + ǫ1(η).

Proof: Let ei denote the distribution with a unit mass on
i ∈ X . SinceH(p) ≥ η > H(ei) = 0, it follows from the
continuity of entropy that

min
i

‖p− ei‖1 ≥ µ(η) (5)

for someµ(η) > 0. On the other hand, sinceH(r) ≤ 1 − η,
we have by Lemma 3 that

‖ri − rj‖1 ≥
η

2q2(q − 1) log e
> 0 (6)

for all pairs i 6= j. Relations (5), (6), and the strict concavity
of entropy implies the existence ofǫ1(η) > 0 such that

H(p ∗ r) = H

(
∑

i

p(i)ri

)

≥
∑

i

p(i)H(ri) + ǫ1(η)

= H(r) + ǫ1(η).

Proof of Lemma 1: Let P1 and P2 be two random
probability distributions onX , with

P1 = PX1|Y1
(· | y1) wheneverY1 = y1,

P2 = PX2|Y2
(· | y2) wheneverY2 = y2.

It is then easy to see that

H(X1 | Y1) = E[H(P1)],

H(X2 | Y2) = E[H(P2)],

H(X1 +X2 | Y1, Y2) = E[H(P1 ∗ P2)].

Suppose, without loss of generality, thatH(X1 | Y1) ≥
H(X2 | Y2). It suffices to show that ifE[H(P1)],E[H(P2)] ∈
(δ, 1− δ) for someδ > 0, then there exists anǫ(δ) > 0 such
that E[H(P1 ∗ P2)] ≥ E[H(P1)] + ǫ(δ). To that end, define
the event

A = {H(P1) > δ/2, H(P2) < 1− δ/2}.

Observe that

δ < E[H(P1)]

≤
(
1− Pr[H(P1) > δ/2]

)
· δ/2 + Pr[H(P1) > δ/2],

implying Pr[H(P1) > δ/2] > δ
2−δ

. It similarly follows that
Pr[H(P2) < 1 − δ/2] > δ

2−δ
. Note further thatH(P1)

and H(P2) are independent sinceY1 and Y2 are. Thus,A
has probability at least δ2

(2−δ)2 =: ǫ2(δ). On the other hand,
Lemma 4 implies that conditioned onA we have

H(P1 ∗ P2) ≥ H(P1) + ǫ1(δ/2) (7)

for someǫ1(δ/2) > 0. Thus,

E[H(P1 ∗ P2)]

= Pr[A] · E[H(P1 ∗ P2) | A] + Pr[Ac] · E[H(P1 ∗ P2) | A
c]

≥ Pr[A] · E[
(
H(P1) + ǫ1(δ/2)

)
| A]

+ Pr[Ac] · E[H(P1) | A
c]

≥ E[H(P1)] + ǫ1(δ/2)ǫ2(δ),

where in the first inequality we used (7) and the relationH(p∗
r) ≥ H(p). Settingǫ(δ) := ǫ1(δ/2)ǫ2(δ) yields the result.



IV. D ISCUSSION

The proof of Theorem 2 does not extend trivially to the
case of composite input alphabet sizes. In particular, thatthe
cyclic group

(
{0, . . . , q − 1},+

)
is generated by each of its

non-zero elements is crucial to the proof of Lemma 3. On the
other hand, a weaker statement holds when the input alphabet
size is composite: Consider replacing the mapping (1) with

U1 = X1 +X2,

U2 = π(X2),
(8)

where π is a permutation overX , and define the channels
W− : U1 → Y1Y2 and W+ : U2 → Y1Y2U1 accordingly.
Then, it can be shown that there exists a permutationπ for
which Theorem 2 holds, irrespective of the input alphabet size.
The proof of this statement is similar to that of Theorem 2,
and therefore is omitted. It then follows that channels with
composite input alphabet sizes can be polarized in the sense

of Theorem 1 if the mapping in (8) is chosen appropriately
at each step of construction. Whether such channels can be
polarized by recursive application of afixed mapping is an
open question.
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