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Abstract

We establish an information inequality that is intimately connected to the evaluation of the
sum rate given by Marton’s inner bound for two receiver broadcast channels with a binary input
alphabet. This generalizes a recent result where the inequality was established for a particular
channel, the binary skew-symmetric broadcast channel. The inequality implies that randomized
time-division strategy indeed achieves the sum rate of Marton’s inner bound for all binary input
broadcast channels.

1 Introduction

A two-receiver broadcast channel models the communication scenario where two (independent)
messages are to be transmitted from a sender X to two receivers Y,Z. Each receiver is interested in
decoding his/her message. A transition probability matrix given by p(y, z|x) models the stochastic
nature of the errors introduced during the communication. For formal definitions and early results
the reader can refer to [1, 2].

1.1 Background

The following region obtained by Marton[3] represents the best-known achievable region to-date:

Bound 1. [3] The set of rate-pairs (R1, R2) satisfying the following constraints:

R1 ≤ I(U,W ;Y )

R2 ≤ I(V,W ;Z)

R1 +R2 ≤ min{I(W ;Y ), I(W ;Z)} + I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W )

for any set of random variables (U, V,W ) such that (U, V,W ) → X → (Y,Z) forms a Markov chain
are achievable.

Recently Gohari and Ananthram[4] used a remarkable perturbation-based argument to establish
that it suffices to consider (U, V,W ) with alphabet sizes bounded by |U | ≤ |X|, |V | ≤ |X|, |W | ≤
|X| + 4 to compute the extreme points of Bound 1. In general the computation of Marton’s inner
bound is difficult, and prior to [4], this bound was not strictly evaluatable. Even with these bounds
on cardinalities, explicit evaluation of the bounds is still a difficult task.

The following region represents an outer-bound to the capacity region of the broadcast channel.
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Bound 2. [5] The union of rate-pairs (R1, R2) satisfying the following constraints:

R1 ≤ I(U ;Y )

R2 ≤ I(V ;Z)

R1 +R2 ≤ I(U ;Y ) + I(V ;Z|U)

R1 +R2 ≤ I(V ;Z) + I(U ;Y |V )

over all pairs of random variables (U, V ) such that (U, V ) → X → (Y,Z) forms a Markov chain
forms an outer-bound to the capacity region of the broadcast channel.

The capacity regions of special classes of broadcast channels have been established and in every
case it turns out that Bounds 1 and 2 agree. In order to study whether the Bounds 1 and 2
are indeed different or whether they are different representations of the same region, the authors
[6] studied a particular channel called the binary skew-symmetric broadcast channel (BSSC). The
authors conjectured that for BSSC the following inequality holds:

I(U ;Y ) + I(V ;Z)− I(U ;V ) ≤ max{I(X;Y ), I(X;Z)}. (1)

The authors further showed that, assuming (1) holds, the Bounds 1 and 2 differed for BSSC.
In [4], the authors established that Bounds 1 and 2 were indeed different for BSSC without

actually establishing that (1) was true. They verified that (1) was indeed plausible by confirming
it for a large number of (randomly-generated) samples from the cardinality constrained space.

In [7] the validity of the inequality (1) was established rigorously using a modification of the
perturbation-based arguments[4]. Further the authors[7] also established that in order to compute
the maximum sum-rate for Marton’s inner bound it suffices to consider |W | ≤ |X|, |U | ≤ |X|, |V | ≤
|X|, a mild improvement over the results of [4] for the sum-rate computation. Further this result
also quantifies the gap between the sum-rate estimates given by the inner and outer bounds for the
BSSC.

1.2 Summary of results

The main result of the paper is the following:

Theorem 1. Consider a five tuple of random variables (U, V,X, Y, Z) such that (U, V ) → X →
(Y,Z) forms a Markov chain and further let |X| = 2. Then the following inequality holds:

I(U ;Y ) + I(V ;Z)− I(U ;V ) ≤ max{I(X;Y ), I(X;Z)}. (2)

This generalizes (1) to be true for every binary-input broadcast channel. Combining this result
with the cardinality bounds for the sum-rate obtained in [7], we also establish that the maximum
sum rate given by Marton’s coding strategy indeed matches that given via the randomized time-
division strategy[5], a much simpler achievable strategy for any binary input broadcast channel.

Corollary 1. The maximum value of the sum-rate for Marton’s inner bound for any binary-input
broadcast channel is given by

max
p(w,x)

min{I(W ;Y ), I(W ;Z)} + P{W = 0}I(X;Y |W = 0) + P{W = 1}I(X;Z|W = 1)

where |W | = 2.
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2 PROOF OF COROLLARY ??

1.2.1 Randomized time-division strategy

Randomized time-division (R-TD) strategy[5] corresponds to an achievable strategy for the follow-
ing setting of (U, V,W ) in Bound 1: W = 0 implies that U = X,V = ∅; and W = 1 implies that
V = X,U = ∅ (where ∅ refers to the trivial random variable). Observe that this corresponds to a
time-division strategy except that the slots for which communication occurs to one receiver is also
drawn from a codebook which conveys additional information.

1.2.2 Relationship between Theorem 1 and Γ∗
5

Recently there has been a lot of interest in information inequalities and the study of the structure
of the entropic space Γ∗

N . Theorem 1 refers to a subset, S, of points in Γ∗
5: those corresponding

to a five tuple of random variables (U, V,X, Y, Z) such that (U, V ) → X → (Y,Z) forms a Markov
chain and with a binary constraint on the cardinality of X, i.e. |X| = 2. It shows that the points
in S have to lie in the union of two half-spaces induced by the two hyperplanes:

I(U ;Y ) + I(V ;Z)− I(U ;V ) ≤ I(X;Y )

I(U ;Y ) + I(V ;Z)− I(U ;V ) ≤ I(X;Z).

Since the inequalities are tight, S is not a convex region in general. The non-convexity of the
region also gives a heuristic reasoning as to why Shannon-type inequalities may not be sufficient to
establish Theorem 1.

Before we go into the proof, we will show how Corollary 1 follows from Theorem 1.

2 Proof of Corollary 1

We reproduce the following lemma(Claim 4, section 3.1) from [7].

Lemma 1. [7] For a discrete memoryless broadcast channel, to compute the maximum of

λI(W ;Y ) + (1− λ)I(W ;Z) + I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ), 0 ≤ λ ≤ 1

over all choices of (U, V,W ) → X → (Y,Z) it suffices to restrict to |W| = |X |.

Hence it follows that to evaluate the Marton’s sum-rate for binary input broadcast channel it
suffices to look at |W| = 2.

Thus we need to show that the maximum sum-rate R̄ obtained by the randomized time-division
strategy indeed matches the maximum sum rate R given by Marton’s inner bound.

Proof. Clearly, we have R ≥ R̄ as R̄ is a restriction of the choice of U, V,W .
Consider a U, V,W that achieves the maximum sum-rate R. We consider two cases:
Case 1:

I(X;Y |W = 0) ≥ I(X;Z|W = 0) and I(X;Y |W = 1) ≥ I(X;Z|W = 1), or

I(X;Z|W = 0) ≥ I(X;Y |W = 0) and I(X;Z|W = 1) ≥ I(X;Y |W = 1).

W.l.o.g. say the former holds, i.e.

I(X;Y |W = 0) ≥ I(X;Z|W = 0) and I(X;Y |W = 1) ≥ I(X;Z|W = 1). (3)
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3 PROOF OF THEOREM ??

Clearly

R = min{I(W ;Y ), I(W ;Z)}+ I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W )

= min{I(W ;Y ), I(W ;Z)}+ P(W = 0)
(

I(U ;Y |W = 0) + I(V ;Z|W = 0)− I(U ;V |W = 0)
)

+ P(W = 1)
(

I(U ;Y |W = 1) + I(V ;Z|W = 1)− I(U ;V |W = 1)
)

(a)

≤ min{I(W ;Y ), I(W ;Z)} + P(W = 0)I(X;Y |W = 0) + P(W = 1)I(X;Y |W = 1)

≤ min{I(W ;Y ), I(W ;Z)}+ I(X;Y |W ) ≤ I(X;Y ) ≤ R̄,

where (a) follows from Theorem 1 and (3).

Case 2:

I(X;Y |W = 0) ≥ I(X;Z|W = 0) and I(X;Z|W = 1) ≥ I(X;Y |W = 1). (4)

Observe that

R = min{I(W ;Y ), I(W ;Z)}+ I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W )

= min{I(W ;Y ), I(W ;Z)}+ P(W = 0)
(

I(U ;Y |W = 0) + I(V ;Z|W = 0)− I(U ;V |W = 0)
)

+ P(W = 1)
(

I(U ;Y |W = 1) + I(V ;Z|W = 1)− I(U ;V |W = 1)
)

(a)

≤ min{I(W ;Y ), I(W ;Z)} + P(W = 0)I(X;Y |W = 0) + P(W = 1)I(X;Z|W = 1) ≤ R̄,

where (a) follows from Theorem 1 and (4).
This implies R ≤ R̄ and thus we complete the proof of Corollary 1.

3 Proof of Theorem 1

The idea of the proof is to fix a p(y, z|x) (i.e. a particular broadcast channel) and show that for all
po(x) we have that

max
p(u,v,x):p(x)=po(x)

I(U ;Y ) + I(V ;Z)− I(U ;V ) ≤ max{I(X;Y ), I(X;Z)}.

Denote LHS and RHS as the left-hand side and right-hand side of the inequality (2), respec-
tively. Let puv = P(U = u, V = v). Also we use the following notation: U ∧ V (and), U ∨ V (or),
U ⊕ V (xor), Ū (not).

Remark 1. From [4] (or see Fact 1 and Claim 1 in [7] for a self-contained shorter proof) it suffices
to establish Theorem 1 for the scenario |U| ≤ |X |, |V| ≤ |X | and X = f(U, V ), a deterministic
function of (U, V ).

The outline of the proof is as follows:

1. We first prove the inequality for some special settings, or “trivial” cases. (Section 3.1)

2. We show that it suffices to prove for the nontrivial cases X = U ∧ V and X = U ⊕ V .
(Section 3.2)

3. For X = U ∧ V , we show that the nontrivial maximum of LHS can only be achieved when
at least two of {p00, p01, p10} equal zero. This reduces the setting to one of the trivial cases.
(Section 3.3)
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3 PROOF OF THEOREM ??

4. For X = U ⊕ V , we show that the nontrivial maximum of LHS can only be achieved when
at least one of puv equals zero, which is reduced to the case X = U ∧ V . (Section 3.4)

For a binary-input channel X → Y , let {ai, âi} denote the transition probabilities, where

P(Y = i|X = 0) = ai, P(Y = i|X = 1) = âi, i = 1, . . . , N.

Similarly let

P(Z = i|X = 0) = bi, P(Z = i|X = 1) = b̂i, i = 1, . . . , N.

Remark 2. W.l.o.g. we can assume that all the terms, {ai, âi, bi, b̂i} are non-zero (or in general
positive). The validity of the inequality at boundary points, i.e. some of {ai, âi, bi, b̂i} are zero
follows from the continuity of mutual information.

Notation. X ⊥ Y : X and Y are independent.

Since U → X → Y and V → X → Z are Markov chains, from data processing inequality, we
know

I(U ;Y ) ≤ I(X;Y ), I(U ;Y ) ≤ I(U ;X),

I(V ;Z) ≤ I(X;Z), I(V ;Z) ≤ I(V ;X). (5)

With these inequalities, we first prove Theorem 1 for some special settings.

3.1 Proof for Special Settings

SS1. ai ≡ âi. Then X ⊥ Y , and thus I(U ;Y ) = I(X;Y ) = 0. Thus from (5) and the non-
negativity of I(U ;V ) we have I(V ;Z) − I(V ;U) ≤ I(X;Z), i.e. Theorem 1 holds. Similarly
Theorem 1 holds when bi ≡ b̂i.

SS2. U ⊥ X. Then I(U ;Y ) = I(U ;X) = 0. Again from (5) and the non-negativity of I(U ;V )
Theorem 1 holds. Similarly when V ⊥ X, Theorem 1 also holds.

3.2 Two Nontrivial Cases

According to Remark 1, to prove the inequality (2), it suffices to consider X = f(U, V ) with binary
U and V . Notice there are 16 possible functions f , and they can be classified into the following
equivalent (equivalence is due to relabeling) groups

G1: X = {0},X = {1}

G2: X = U,X = Ū ,X = V,X = V̄

G3: X = U ∧ V,X = Ū ∧ V,X = U ∧ V̄ ,X = Ū ∧ V̄

G4: X = U ∨ V,X = Ū ∨ V,X = U ∨ V̄ ,X = Ū ∨ V̄

G5: X = U ⊕ V,X = Ū ⊕ V

The reason that these are equivalent groups is that, in each group, all the cases can be reduced to
the first case by using some bijections. For example, in G3, let the distributions of (U, V ) be p(u, v)
and r(u, v) for X = U ∧ V and X = Ū ∧ V , respectively. The bijection is p00 ↔ r10, p01 ↔ r11,
p10 ↔ r00, p11 ↔ r01. Thus, we just need to prove Theorem 1 for the first function in each group.
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3 PROOF OF THEOREM ??

Further, notice for the case X = U∨V with q(u, v), by bijection p00 ↔ q11, p01 ↔ q01, p10 ↔ q10,
p11 ↔ q00, we can also use the same proof as for the case X = U ∧ V . That is, we use the fact that
X = U ∨ V ⇔ X̄ = Ū ∧ V̄ to reduce the proof of the “or” case of one channel to the “and” case of
another broadcast channel obtained by flipping U, V , and X.

So it remains to consider the first cases of the groups except G4.
The first two cases are trivial. For X = {0}, the theorem is reduced to −I(U ;V ) ≤ 0. For

X = U , i.e. I(U ;Y ) = I(X;Y ), the theorem follows from the data processing inequality, I(V ;Z) ≤
I(V ;U) = I(V ;X) (see Eqn.(5)). So finally we just need to consider the following two nontrivial
cases:

C3: X = U ∧ V

C5: X = U ⊕ V

3.3 Proof for Case X = U ∧ V

In this case, P(X = 0) = p11. Now we fix p11, the RHS keeps unchanged with given Y and Z. If
p11 equals to 0 (or 1), then X = {0} (or X = {1}), and it reduces to the group G1. So we just
need to consider p11 ∈ (0, 1). Take (p10, p01) as the free variables, with p00 = 1 − p11 − p01 − p10.
Thus the region of possible (p10, p01) is a right triangle containing the interior. The basic idea of
the proof is that:

1. We first prove Theorem 1 at the vertices of the region of (p10, p01). (Section 3.3.1)

2. Then we show that any nontrivial local maxima of LHS can only be one vertex of (p10, p01).
(Section 3.3.2 and 3.3.3)

3.3.1 Case C3-1: at least two of p00, p01, p10 = 0

When this happens, the condition reduces to {X = U, V = 1} or {X = V,U = 1} or {U = V = X};
which belong to group G2, where Theorem 1 holds. Here we mention that with p11 < 1, these three
probabilities cannot be zero simultaneously. However, for clarity, we still use “at least two” instead
of “exactly two”.

3.3.2 Case C3-2: exactly one of p00, p01, p10 = 0

For these cases, we show that nontrivial local maxima does not exist. Consider a Lyapunov pertur-
bation q(u, v, x) = p(u, v, x)[1 + εL(u, v)], ε ∈ R that maintains P(X = 0). This implies that the
perturbation satisfies

L11 = 0, p00L00 + p01L01 + p10L10 = 0 (6)

For any valid perturbation, at any local maxima of LHS, the first and second derivatives w.r.t. ε
must be = 0 and ≤ 0, respectively. Thus

HL(U, V ) = HE[L|U,Y ](U, Y ) +HE[L|V,Z](V,Z) (7)

E[E[L|U, V ]2] ≥ E[E[L|U, Y ]2] + E[E[L|V,Z]2] (8)

6
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where

HL(U, V ) =− p00L00 log p00 − p01L01 log p01 − p10L10 log p10

HE[L|U,Y ](U, Y ) =−
∑

ai(p00L00 + p01L01) log[ai(p00 + p01)]

−
∑

aip10L10 log[aip10 + âip11]

HE[L|V,Z](V,Z) =−
∑

bi(p00L00 + p10L10) log[bi(p00 + p10)]

−
∑

bip01L01 log[bip01 + b̂ip11],

and

E[E[L|U, V ]2] = p00L
2
00 + p01L

2
01 + p10L

2
10

E[E[L|U, Y ]2] =
(p00L00 + p01L01)

2

p00 + p01
+

∑ a2i p
2
10L

2
10

aip10 + âip11

E[E[L|V,Z]2] =
(p00L00 + p10L10)

2

p00 + p10
+

∑ b2i p
2
01L

2
01

bip01 + b̂ip11
.

Case 1: p00 = 0, p01, p10, p11 > 0
In this case, condition (8) implies that the following inequality holds for all valid perturbations

satisfying (6):

p01L
2
01 + p10L

2
10 ≥+ p01L

2
01 +

∑ a2i p
2
10L

2
10

aip10 + âip11

+ p10L
2
10 +

∑ b2i p
2
01L

2
01

bip01 + b̂ip11

=⇒ 0 ≥
∑ a2i p

2
10L

2
10

aip10 + âip11
+

∑ b2i p
2
01L

2
01

bip01 + b̂ip11
.

However, when p01, p10, p11 > 0, this cannot hold for all valid perturbations.

Case 2: p01 = 0, p00, p10, p11 > 0
In this case, condition (7) implies that

log p10 − log p00 =
∑

ai log[aip10 + âip11]−
∑

ai log[aip00]

=⇒
∑

ai log[aip10] =
∑

ai log[aip10 + âip11]

This equality cannot hold since ai, âi, p10, p11 > 0 (see Remark 2).

Case 3: p10 = 0, p00, p01, p11 > 0
Just as in Case 2, condition (7) implies that

∑

bi log[bip01] =
∑

bi log[bip01 + b̂ip11]

As before, this equality cannot hold since bi, b̂i, p01, p11 > 0.

7
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3.3.3 Case C3-3: all puv > 0

As P(X = 1) = p11 (equivalently H(Y ),H(Z) via the Markov chain (U, V ) → X → (Y,Z)) is kept
fixed, the local maxima of LHS is the same as that of

f(p10, p01) = H(U, V )−H(U, Y )−H(V,Z)

= −p00 log p00 − p01 log p01 − p10 log p10 − p11 log p11

+
∑

ai(p00 + p01) log[ai(p00 + p01)] +
∑

(aip10 + âip11) log[aip10 + âip11]

+
∑

bi(p00 + p10) log[bi(p00 + p10)] +
∑

(bip01 + b̂ip11) log[bip01 + b̂ip11].

At any local maxima, the gradient ∇f and Hessian matrix ∇2f must satisfy

∇f = ~0, ∇2f � 0, (9)

where ∇2f � 0 denotes that ∇2f is negative semi-definite. We now compute the gradient and the
Hessian to investigate locations of the local maxima.

1. First Derivative:
Differentiating w.r.t. the free variables we obtain:

∂f

∂p10
= log

p00
p10

−
∑

ai log
ai(p00 + p01)

aip10 + âip11
∂f

∂p01
= log

p00
p01

−
∑

bi log
bi(p00 + p10)

bip01 + b̂ip11
.

The condition ∇f = ~0 implies that

log
p00
p10

=
∑

ai log
ai(p00 + p01)

aip10 + âip11
(10)

log
p00
p01

=
∑

bi log
bi(p00 + p10)

bip01 + b̂ip11
. (11)

Using the concavity of logarithm, we have

p00
p10

≤
∑ a2i (p00 + p01)

aip10 + âip11
p00
p01

≤
∑ b2i (p00 + p10)

bip01 + b̂ip11
, (12)

where the equalities hold iff. (using Remark 2)

ai ≡ caâi, bi ≡ cbb̂i,

for some constants ca, cb respectively.
However since

∑

i ai =
∑

i âi = 1 we obtain that ca = 1 (similarly cb = 1). Thus equalities hold
iff.

ai ≡ âi, bi ≡ b̂i. (13)

8
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2. Second Derivative:

We now compute the Hessian G ≡ ∇2f , The second derivatives are

G11 =
∂2f

∂p210
= −

1

p00
−

1

p10
+

1

p00 + p01
+

∑ a2i
aip10 + âip11

G12 = G21 = −
1

p00

G22 =
∂2f

∂p201
= −

1

p00
−

1

p01
+

1

p00 + p10
+

∑ b2i
bip01 + b̂ip11

.

As p01 > 0, we have G11 ≤ − 1
p00

− 1
p10

+ 1
p00+p01

+ 1
p10

< 0. Similarly we have G22 < 0. For G with
G11 < 0 and G22 < 0 to be negative semi-definite, it is necessary and sufficient that det(G) ≥ 0.

From (10) and (12) we have

G11 ≥ −
1

p00
−

1

p10
+

1

p00 + p01
+

p00
p10(p00 + p01)

= −
p01(p00 + p10)

p00p10(p00 + p01)
.

Similarly from (11) and (12) we have

G22 ≥ −
p10(p00 + p01)

p00p01(p00 + p10)
.

It is clear that equalities in the above two inequalities hold iff. (13) holds.
Since G11, G22 < 0 we have

G11G22 ≤
p01(p00 + p10)

p00p10(p00 + p01)
·

p10(p00 + p01)

p00p01(p00 + p10)
=

1

p200
= G2

12,

with equality holding only if (13) holds.
Thus det(G) < 0 or there is no local minima when all puv > 0 unless the channel parameters

satisfy (13). However when (13) holds, we know that the inequality is true as it corresponds to the
special setting SS1.

This completes the argument that the inequality is indeed true when X = U ∧ V as we have
already shown the validity of the inequality at the vertices of the region defined by (p10, p01), the
possible locations of the local maxima of the LHS.

3.4 Proof for Case X = U ⊕ V

Similar to the “and” case; we will show that nontrivial local maxima can’t be achieved when all
puv > 0. And when at least one of puv equals zero, it reduces to the case X = U ∧ V .

3.4.1 Case C5-1: at least one of puv = 0

This case can be reduced to the group G3 or G4, and further reduced to the case X = U ∧ V . For
example, if p01 = 0, X = U ⊕ V is a special case of X = U ∧ V̄ .

9



3 PROOF OF THEOREM ??

3.4.2 Case C5-2: all puv > 0

Just as in [7] we will consider a more general perturbation (see [7] for the motivation).
Consider a perturbation q(u, v, x) = p(u, v, x) + ελ(u, v, x) for some ε > 0. For a valid pertur-

bation, we require that λ001, λ010, λ100, λ111 ≥ 0 as the corresponding p(u, v, x) are zero. Further
let us require the perturbation maintains P(X = 0), that is

λ000 + λ010 + λ100 + λ110 = 0

λ001 + λ011 + λ101 + λ111 = 0. (14)

For any perturbation that satisfies the above conditions at any local maximum, it must be true
that the first derivative cannot be positive. This implies that

Hλ(U, V )−HE[λ|U,Y ](U, Y )−HE[λ|V,Z](V,Z) ≤ 0 (15)

where

Hλ(U, V ) =− (λ000 + λ001) log p00 − (λ010 + λ011) log p01

− (λ100 + λ101) log p10 − (λ110 + λ111) log p11

HE[λ|U,Y ](U, Y ) =−
∑

[ai(λ000 + λ010) + âi(λ001 + λ011)] log[aip00 + âip01]

−
∑

[ai(λ100 + λ110) + âi(λ101 + λ111)] log[aip11 + âip10]

HE[λ|V,Z](V,Z) =−
∑

[bi(λ000 + λ100) + b̂i(λ001 + λ101)] log[bip00 + b̂ip10]

−
∑

[bi(λ010 + λ110) + b̂i(λ011 + λ111)] log[bip11 + b̂ip01].

From Eqn.(14), we express λ000 and λ011 in the term of other λ(u, v, x) variables, that is

λ000 = −λ010 − λ100 − λ110,

λ011 = −λ001 − λ101 − λ111.

Substituting the above equations into Eqn.(15), we have

+ (λ010 + λ100 + λ110 − λ001) log p00 − (λ100 + λ101) log p10

+ (λ001 + λ101 + λ111 − λ010) log p01 − (λ110 + λ111) log p11

≤+
∑

[ai(λ100 + λ110) + âi(λ101 + λ111)] log
aip00 + âip01
aip11 + âip10

+
∑

[bi(λ010 + λ110)− b̂i(λ001 + λ101)] log
bip00 + b̂ip10

bip11 + b̂ip01
(16)

Since (16) holds for any λ110 and any nonnegative λ010, λ100, it implies that

log
p00
p11

=
∑

ai log
aip00 + âip01
aip11 + âip10

+
∑

bi log
bip00 + b̂ip10

bip11 + b̂ip01

log
p00
p01

≤
∑

bi log
bip00 + b̂ip10

bip11 + b̂ip01
(17)

log
p00
p10

≤
∑

ai log
aip00 + âip01
aip11 + âip10

. (18)
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These implications come from computing the coefficients of λ110, λ010, and λ100. The above three
equations lead to

log
p200

p01p10
≤ log

p00
p11

=⇒ p00p11 ≤ p01p10. (19)

Similarly, since the inequality (16) also holds for any λ101 and any nonnegative λ001, λ111, we obtain
that

log
p01
p10

=+
∑

âi log
aip00 + âip01
aip11 + âip10

−
∑

b̂i log
bip00 + b̂ip10

bip11 + b̂ip01

log
p01
p00

≤−
∑

b̂i log
bip00 + b̂ip10

bip11 + b̂ip01
(20)

log
p01
p11

≤+
∑

âi log
aip00 + âip01
aip11 + âip10

. (21)

The above three equations lead to

log
p201

p00p11
≤ log

p01
p10

=⇒ p00p11 ≥ p01p10. (22)

Combining (19) and (22) we obtain that

p00p11 = p01p10. (23)

This equality means that the equality holds in (17), (18), (20), and (21).
In particular, the equalities in (17) and (20) implies that

log
p00
p01

=
∑

bi log
bip00 + b̂ip10

bip11 + b̂ip01
=

∑

b̂i log
bip00 + b̂ip10

bip11 + b̂ip01
.

Taking a weighted sum, we get

(p00 + p10) log
p00
p01

=
∑

(bip00 + b̂ip10) log
bip00 + b̂ip10

bip11 + b̂ip01
(24)

From above and using K-L divergence, we have

log
p00
p01

=
∑ bip00 + b̂ip10

p00 + p10
log

bip00 + b̂ip10

bip11 + b̂ip01

≥ log
p00 + p10
p11 + p01

= log
p00
p01

Notice the last equality holds since p00p11 = p01p10. Since the K-L divergence inequality is indeed
an equality, we require that

bip00 + b̂ip10

bip11 + b̂ip01
≡

p00
p01

.
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From the above we obtain

(p01 − p11)(bi − b̂i) ≡ 0. (25)

Similarly using the fact that we have equalities in (18) and (21), we can obtain

(p10 − p11)(ai − âi) ≡ 0. (26)

Now we have two cases

1. bi ≡ b̂i, or ai ≡ âi. In this case the Theorem holds (special setting SS1).

2. p01 = p11, p10 = p11. Combining this with p00p11 = p01p10 (Eqn.(23)) one obtains that
puv = 1/4, and as a result U, V and X are mutually independent. The Theorem holds
(special setting SS2).

If neither of these two cases is satisfied, there would be no local maxima for puv > 0. This shows
that the inequality indeed holds when X = U ⊕ V . This completes the proof of Theorem 1.

4 Conclusion

An information theoretic inequality is established for binary input broadcast channels. This can be
used to show that the sum-rate given by Marton’s inner bound is indeed equivalent to that given
by randomized time-division strategy.

The proof technique is directly motivated from [7] and generalizes the result there. Clearly the
inequality fails when |X| ≥ 3 (for instance, the Blackwell channel), so a natural question is whether
there is a correct generalization for higher cardinality input-alphabets.

It would also be useful to find a more intuitive (geometric) argument to shed more light into
the actual counting of the sizes of typical sets. Here is an equivalent formulation which is related
to the sizes of certain typical sets. It can be shown that the information inequality is equivalent to
showing that

H(U |Y ) +H(V |Z) ≥ min{H(UV |Y ),H(UV |Z)}

whenever (U, V ) → X → (Y,Z) forms a Markov chain, X = f(U, V ) and |X| = 2.
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