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Abstract—The capacity region of a broadcast channel consist-  The extension of this result th-receivers is openg > 3.
ing of k-receivers that lie in a less noisy sequence is an open|n this paper we present a simple proof for the chse 3.
problem, when & > 3. We solve this problem for the case: = 3. Further our proof can also be used to provide an alternate

Generalizing this result, we prove that superposition codig is . :
optimal for a class of broadcast channels with a sequence ofds (much-simpler) proof fork = 2, although it must be noted

noisy receivers. The key idea is a new information inequaft that the original proof provides a strong-converse whilesou

for less noisy receivers, which may be potentially useful imther provides a weak-converse. A modern-day weak converse proof

problems as well. for the 2-receiver case may also be obtained using the outer

bounds in[[4],[[2], [6], however each of these uses Csiszar su

lemma which has no natural generalization to three recgiver
Consider the problem of reliable communicationfoin- Instead our proof relies on a information inequality (Lemma

dependent messagéd, ..., M, over a discrete-memorylesdI)) valid for less noisy-receivers which helps us by-pass the

broadcast channel (DM-BC), té-receiversYy,Ys,..., Y. use of Csiszar sum lemma.

respectively. A(2"% x ... x 2" n) code for the DM-BC  |ndeed using this lemma one can also obtain the capacity

consists of: (i) a message get: 271 x ... x [1: 2"7%], (i) region for a subset of-receiver less noisy broadcast channel

an encoder that assigns a codewofdm, ..., m) to each (which contains the 3-receiver less noisy broadcast chasne

message-tupléms, ..., my), and (i) & decoders, decodér well). However for clarity of exposition, we shall first ebtish

assigns an estimat@; (y;;) € [1 : 2"] or an error messagethe result for the 3-receiver less noisy broadcast chamml a

e to each received sequengg,, 1 < [ < k. We assume then present the general result for the clasg-oéceiver less

that the messages are uniformly distributed over is unifprmnoisy broadcast channel.

distributed overl : 2"%] x -..[1 : 2], The probability of

error is defined asoe(n) _ P{Uf_le + M} Il. THREE-RECEIVER LESS NOISY BROADCAST CHANNEL

A rate-tuple(Ry,- - - , Ry.) is said to be achievable if there The main result of the paper is the following:
exists a sequence ("1 x . . . x 2" n) codes withP™ — Theorem 1:The capacity region of a 3-receiver less noisy

0 asn — oo. The capacity region is defined as the closure afiscrete memoryless broadcast channel is given by the union
the union of all achievable rates. of rate triples(R1, R2, R3) satisfying:

Definition 1: A receiverY; is said to be less noigy[3] than
: . s Ry < I(X:Y1|V
receiverY; if I(U;Y,) > I(U;Y;) forall U — X — (Y., V). 1< I( | V)
We denote this relationship(partial-order) by = Y;. Ry < I(V;Y2|U)
Remark 1:Observe that this partial-order only depends on Rz < I(U;Y3)
the mgrglnal qlstr|but|on§(ys|x) andp(yt|x). over all choices of(U,V, X) such thatU — V — X —
Definition 2: A k-receiver less noisy broadcast channel i . . .
. ; ﬁ;l/,YQ,Yg) forms a Markov chain. Further it suffices to
a k-receiver discrete memoryless broadcast channel where co%sider|U| <IX|+1,|V] < (|IX] +1)2
receivers satisfy the partial ord&i > Y5 > --- = V4. - ’ - '
The capacity region for the-receiver broadcast channels. Achievability
was established (Proposition 3 [ [3]) to be the union of rate
pairs (R1, R2) satisfying

I. INTRODUCTION

The rate-triples are achievable using superposition gpdin
and jointly typical decoding. The arguments are standard in
Ri < I(X;Y1|U) literature and hence only a minor outline is provided.
Re < I(U:Y2) Consider a(U,V,X) such thatU — V — X —
- (Y1,Y5,Ys) forms a Markov chain. We will show the achiev-
over all choices ofU, X) such that/ - X — (Y7,Y3) forms ability of any rate-triple satisfyingR; < I(U;Y3),Rs <
a Markov chain. I(V;Ys|U), Ry < I(X;Y1]V).
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The encoding proceeds as follows: o (MY/TLY!I N V) = X, = (Yo, Y,) forms a

o Generate"?s sequence:” (ms) ~ [, pu(u;). Markov chain
e For eachms, generat2"?> sequences”(ms, ms) dis-  ® The receivey; is less noisy thary; implying, in partic-
tributed according tq ;" ; pv (v (vi|us). ular, that

e Finally for each (mg,m3) pair, generate 2"

v r—1 yri—1 v r—1 yri—1
2™ (mq1,me, m3) sequences distributed according to I(YSW’YMM’Yt,l ’1/'87T+1)ZI(}/‘57T’E’1|]V[’K,1 ’Ysm+1)'

[Timi pxpvo (@ifvi wi) = Ty pX‘V(xfm)' This yields us a chain of inequalities of the form

ReceiverYs, upon receivingyy,, assignsi/s = ms if there
is a unique sequenag’ (m3) such that the paifu™(ms), y3,) I/ TH Y M) > 1(Y, 0, Y5 Ya M) > -
is jointly typical; otherwise receively; declares an error. > I(YIT2, Va1 Y| M) > IV Y| M)
This decoding succeeds with high probability as long as TRl e BRI = AL TR
Ry <I(U;Y3). thus establishing the Part 1 of the Lemma.

ReceiverY; performs successive decoding. (This is in gen- The proof of Part 2 follows identical arguments (replage
eral worse than joint decoding, but in this situation susives py v,.) as in the proof of Part 1 and is omitted. m
decoding is enough.) Upon receiving,, assignsMs = ms The main converse follows using Fano’s inequality and the

if there is a unique sequence’(ms) such that the pair gpove lemma.

(u™(m3),y51) is jointly typical; otherwise receiver, declares  pserve that

an error. Assuming if finds a uniqué'(ms) sequence, it then

assigns]\% = my if there is a unique sequeneé (msy, ms) nRs < ](M3;y37}1) + ney,

such that the tripléu™(ms), v™(ma, ms), y5, ) is jointly typ-

ical; otherwise receivell, declares an error. The first step

of decoding succeeds with high probability as longRas<

I(U;Y3), but this holds ad (U;Y>2) > I(U;Y3) (sinceYs is

a less-noisy receiver thari). The second step of decoding

succeeds with high probability as long &s < I(V; Y3|U).
Similarly, receiverY; also performs successive decoding.

The three steps of decoding will succeed with high probigbili

as long as the conditionBs; < I(U;Y1), R2 < I(V;Y1|U),

and Ry < I(X;Y1|V,U) = I(X;Y1]|V) hold. SinceY; *+ =

Y, = Y3 the first two conditions are automatically satisfied.

This completes the proof of achievability.
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whereU; = (Ms,Y;7"). Here(a) follows from Lemme[dl.

B. Converse From Fano’s inequality we also have
The interesting part of this proof is the converse, and in
particular the use of Lemnfd 1 to identify the auxiliary ranto nRy < I(My; Y5 [Ms) + ney,
variables. n
i—1
Lemma l:Let Y, = Y;, and M be any random variable = ZI(M%Y?,HM&YQJ ) + ney
such that —
M — X" — (Y1, Y,") ZZI(Vi;Yz,HUi)—FHGn,

N
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form a Markov chain. Then the following hold:
1) I(Y;;l;YMM) > I(Y;l_l;YtﬂM), 1<i<n. whereV; = (Ma, My, Y;71).
2) I(Y;El? YoalM) > I(Ytz,l_l? YilM), 1 <i<n. Finally observe that "
Proof: The proof of Part 1 follows by progressively
flipping one co-ordinate o¥; ! to Y;; !, and showing that nR1 < I(My;Y{"[Ma, M3) + ne,
the inequality holds at each flip using the less-noigy  Y;) n _
assumption. = > I(My;Yy| My, MsY{7") + ney,
Observe that forany <r <i—1 i
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_ _ I(X3; Y1, Mo, M3) — 1(Yy ' V1| Mo, Ms) + ne,
where(a) follows from the following two observations: '
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Here(a), (b), and(d) follow from the data processing inequal- _ ﬁp(mlxifl)p(yl- Ui |14, oy V—1.4] )

ity and that Pt
i—1 yri—1 n , k=1
(M, M2, M3, Y{17, Yo 1) = Xi = Vi = Hp($i|$z_l)p(y1ia s Yhi| i )p(v1i|z:) H p(vjilvj-1,)
i=1 j=2

forms a Markov chain. The inequality:) follows from Part
2 of Lemmd1.
let @ € {1,2,...,n} to be a uniformly distributed random

Here the first equality is due to the fact that the channel
is DMC without feedback, second is due to the fact that the
; . . .assumptions on the less noisy structure just depends on the
variable independent of all other random variables. S@tt"?narginF;Is and third is due to{he Markov]chaXn—p> Vi s
U=(Uq,Q),V =(Vg,Q), X = Xg completes the converse kal, !
n the standard way. Clearly’ — V' — X forms a Markov Given this structure we immediately observe the following
chain asV; = (Us, Ma). Markov chain

The cardinality arguments are standard in literature (&ge [ - .
[5]), and follows using the Fenchel-Eggleston strengtheoif Vir = Vi = XYY My My (2)
the usual Caratheodory’s argument. for1<s<k—1; (setVy = X)

This completes the proof of the converse. B Theorem 2:The capacity region of a k-receiver interleav-
A natural question here is whether this approach genesalizgle less-noisy discrete memoryless broadcast channigkis g
to more than three receivers. It appears to the authorsahaby the union of rate triple$R;, .. ., R;) satisfying
generalize this argument to more than three receivers, ase h
to impose additional constraints on the clasg-o&ceiver less R < (U Yi|Upga), 1 <1<k,
broadcast noisy channels. Since this generalization I&Rés oyer all choices of(Us, ...Ux, X) such that(Uy.; = 0) —
rather interesting condition we shall define the class, anel 9;7, —, ...;7, - (U, = X) - (1,Ys,...,Y}) forms
a brief outline as to why the proof generalizes naturallyemdy Mmarkov chain. Further it suffices to considgr,_,| <
this setting. (IX|+ 1)+, 1<r<k-—2.
Proof: The proof is almost identical to that of the three
I1l. THE k-RECEIVER INTERLEAVABLE BROADCAST receiver broadcast channel. The achievability proof indsiad
CHANNEL using superposition encoding and successive decodingsand i
omitted here.
Definition 3: A k-receiver less noisy broadcast channel is Let Ml’fH = (Mi41,..., Mi). Using Fano’s inequality,
said to belong to be ainterleavablebroadcast channel if thereobserve that fod <1 < k.

existsk — 1 virtual receiversV, ..., V,,_1 satisfying:
o Tt ving nRy < I(Mi; Y| M) + neq

e X - Vi — ... — Vip_1 forms a Markov chain and n _
e The following“interleaved” less noisy condition holds: =3 I(My; Y ME 1, YT 4 nen
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This class generalizes the 3-receiver less noisy broadcast

: — 1YL Y M
channel. Indeed, the following broadcast channels are some (V15 ¥ial M) + en

H H . (a) .
examples belonging to this class 3 < I(Mlvylffl;yl.ﬂMﬁﬂ
1) A §equence of degraded receivers, Xe— Y; — ... — -~ I(Vlifl;Yz,ilMﬁl) te,
Yy setV; = Yiq1, b '
2) A sequence of "nested” less noisy receivers, Yg.> < I(Mlavl:l,lﬂ/l,HMzﬁl)

(Ys+la eeey Yk)r Set‘/; — (l/i-i—la ceey Yk)a
3) A 3-receiver less noisy sequence, ig.> Ys = Y3; set
Vi=Ve =Y.
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= I(My, V75 Yl M, VT Den
From Remarkl we know that the less-noisy ordering only n '

depends on the marginals. Hence without loss of generality = ZI(UZJ;YMUHM) + nep,

we can assume that the probability distribution factoriass i=1



where Uy, = (MF, V'), We setVy, = X. Here the
inequalities(a), (b) follow from the Lemmd1l and thdt;_; =
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Define ) to be a uniform random variable taking values
in {1,..,n} and independent of all other random variables. Ag]

usual, we set/; = (U, g, Q) andX = X. SinceX — V; —
-+« — Vi_1 is a Markov chain it follows that/;, — Uj_1 —

.-+ — Uy — X forms a Markov chain as well. The cardinality[3]
arguments are again standard and omitted. This completes th

proof of the converse. |
Remark 2:1t is not very difficult to observe that in general

the 4-receiver less noisy broadcast channel is nantnleav-

able broadcast channel. To observe this fat = Z5 be any

pair of less noisy but not degraded (stochastically) remsiv [6]

(Such a pair exists, seel[3] orl[7]). Now l&f,Y> ~ Z;

thus sandwiching’;, = Z; andYs, Yy ~ Z5 thus sandwiching 7

Vs = Z5. However X — V; — V3 cannot be a Markov
chain by the assumption o#;, Z>. Hence the problem of
determining the capacity ok-receiver less noisy channel
k > 4 is still very much open.

V. CONCLUSION
We establish the capacity region for the 3-receiver lessynoi

broadcast channel. We also compute the capacity region for
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a class of k-receiver less noisy sequences that contain the

previously mentioned scenario. A new information inegyali

is used to obtain the converse. and this technique also sim-

plifies the original proof[[B8] of the converse of the 2-reegiv
broadcast channel.
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