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Abstract—The capacity region of a broadcast channel consist-
ing of k-receivers that lie in a less noisy sequence is an open
problem, when k ≥ 3. We solve this problem for the casek = 3.
Generalizing this result, we prove that superposition coding is
optimal for a class of broadcast channels with a sequence of less
noisy receivers. The key idea is a new information inequality
for less noisy receivers, which may be potentially useful inother
problems as well.

I. I NTRODUCTION

Consider the problem of reliable communication ofk in-
dependent messagesM1, ...,Mk over a discrete-memoryless
broadcast channel (DM-BC), tok-receiversY1, Y2, . . . , Yk

respectively. A(2nR1 × · · · × 2nRk , n) code for the DM-BC
consists of: (i) a message set[1 : 2nR1 ]× · · · × [1 : 2nRk ], (ii)
an encoder that assigns a codewordxn(m1, . . . ,mk) to each
message-tuple(m1, . . . ,mk), and (iii) k decoders, decoderl
assigns an estimatêml(y

n
l,1) ∈ [1 : 2nRl ] or an error message

e to each received sequenceynl,1, 1 ≤ l ≤ k. We assume
that the messages are uniformly distributed over is uniformly
distributed over[1 : 2nR] × · · · [1 : 2nRk ]. The probability of
error is defined asP (n)

e = P{∪k
l=1M̂l 6= M}.

A rate-tuple(R1, · · · , Rk) is said to be achievable if there
exists a sequence of(2nR1×· · ·×2nRk , n) codes withP (n)

e →
0 asn → ∞. The capacity region is defined as the closure of
the union of all achievable rates.

Definition 1: A receiverYs is said to be less noisy[3] than
receiverYt if I(U ;Ys) ≥ I(U ;Yt) for all U → X → (Ys, Yt).

We denote this relationship(partial-order) byYs � Yt.
Remark 1:Observe that this partial-order only depends on

the marginal distributionsp(ys|x) andp(yt|x).
Definition 2: A k-receiver less noisy broadcast channel is

a k-receiver discrete memoryless broadcast channel where the
receivers satisfy the partial orderY1 � Y2 � · · · � Yk.

The capacity region for the2-receiver broadcast channel
was established (Proposition 3 in [3]) to be the union of rate
pairs(R1, R2) satisfying

R1 ≤ I(X ;Y1|U)

R2 ≤ I(U ;Y2)

over all choices of(U,X) such thatU → X → (Y1, Y2) forms
a Markov chain.

The extension of this result tok-receivers is open,k ≥ 3.
In this paper we present a simple proof for the casek = 3.

Further our proof can also be used to provide an alternate
(much-simpler) proof fork = 2, although it must be noted
that the original proof provides a strong-converse while ours
provides a weak-converse. A modern-day weak converse proof
for the 2-receiver case may also be obtained using the outer
bounds in [4], [2], [6], however each of these uses Csiszar sum
lemma which has no natural generalization to three receivers.
Instead our proof relies on a information inequality (Lemma
1) valid for less noisy-receivers which helps us by-pass the
use of Csiszar sum lemma.

Indeed using this lemma one can also obtain the capacity
region for a subset ofk-receiver less noisy broadcast channel
(which contains the 3-receiver less noisy broadcast channel as
well). However for clarity of exposition, we shall first establish
the result for the 3-receiver less noisy broadcast channel and
then present the general result for the class ofk-receiver less
noisy broadcast channel.

II. T HREE-RECEIVER LESS NOISY BROADCAST CHANNEL

The main result of the paper is the following:
Theorem 1:The capacity region of a 3-receiver less noisy

discrete memoryless broadcast channel is given by the union
of rate triples(R1, R2, R3) satisfying:

R1 ≤ I(X ;Y1|V )

R2 ≤ I(V ;Y2|U)

R3 ≤ I(U ;Y3)

over all choices of(U, V,X) such thatU → V → X →
(Y1, Y2, Y3) forms a Markov chain. Further it suffices to
consider|U | ≤ |X |+ 1, |V | ≤ (|X |+ 1)2.

A. Achievability

The rate-triples are achievable using superposition coding
and jointly typical decoding. The arguments are standard in
literature and hence only a minor outline is provided.

Consider a (U, V,X) such thatU → V → X →
(Y1, Y2, Y3) forms a Markov chain. We will show the achiev-
ability of any rate-triple satisfyingR3 < I(U ;Y3), R2 <

I(V ;Y2|U), R1 < I(X ;Y1|V ).
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The encoding proceeds as follows:

• Generate2nR3 sequenceun(m3) ∼
∏n

i=1 pU (ui).
• For eachm3, generate2nR2 sequencesvn(m2,m3) dis-

tributed according to
∏n

i=1 pV |U (vi|ui).
• Finally for each (m2,m3) pair, generate 2nR1

xn(m1,m2,m3) sequences distributed according to∏n

i=1 pX|V,U (xi|vi, ui) =
∏n

i=1 pX|V (xi|vi).

ReceiverY3, upon receivingyn31, assignsM̂3 = m3 if there
is a unique sequenceun(m3) such that the pair(un(m3), y

n
31)

is jointly typical; otherwise receiverY3 declares an error.
This decoding succeeds with high probability as long as
R3 < I(U ;Y3).

ReceiverY2 performs successive decoding. (This is in gen-
eral worse than joint decoding, but in this situation successive
decoding is enough.) Upon receivingyn21, assignsM̄3 = m3

if there is a unique sequenceun(m3) such that the pair
(un(m3), y

n
21) is jointly typical; otherwise receiverY2 declares

an error. Assuming if finds a uniqueun(m3) sequence, it then
assignsM̂2 = m2 if there is a unique sequencevn(m2,m3)
such that the triple(un(m3), v

n(m2,m3), y
n
21) is jointly typ-

ical; otherwise receiverY2 declares an error. The first step
of decoding succeeds with high probability as long asR3 <

I(U ;Y2), but this holds asI(U ;Y2) ≥ I(U ;Y3) (sinceY2 is
a less-noisy receiver thanY3). The second step of decoding
succeeds with high probability as long asR2 < I(V ;Y2|U).

Similarly, receiverY1 also performs successive decoding.
The three steps of decoding will succeed with high probability
as long as the conditionsR3 < I(U ;Y1), R2 < I(V ;Y1|U),
and R1 < I(X ;Y1|V, U) = I(X ;Y1|V ) hold. SinceY1 �
Y2 � Y3 the first two conditions are automatically satisfied.
This completes the proof of achievability.

B. Converse

The interesting part of this proof is the converse, and in
particular the use of Lemma 1 to identify the auxiliary random
variables.

Lemma 1:Let Ys � Yt, and M be any random variable
such that

M → Xn → (Y n
s,1, Y

n
t,1)

form a Markov chain. Then the following hold:

1) I(Y i−1
s,1 ;Yt,i|M) ≥ I(Y i−1

t,1 ;Yt,i|M), 1 ≤ i ≤ n.

2) I(Y i−1
s,1 ;Ys,i|M) ≥ I(Y i−1

t,1 ;Ys,i|M), 1 ≤ i ≤ n.

Proof: The proof of Part 1 follows by progressively
flipping one co-ordinate ofY i−1

s1 to Y i−1
t1 , and showing that

the inequality holds at each flip using the less-noisy (Ys � Yt)
assumption.

Observe that for any1 ≤ r ≤ i− 1

I(Y r−1
t,1 , Y i−1

s,r ;Yti|M)

= I(Y r−1
t,1 , Y i−1

s,r+1;Yt,i|M) + I(Ys,r ;Yt,i|M,Y r−1
t,1 , Y i−1

s,r+1)

(a)

≥ I(Y r−1
t,1 , Y i−1

s,r+1;Yt,i|M) + I(Yt,r;Yt,i|M,Y r−1
t,1 , Y i−1

s,r+1)

= I(Y r
t,1, Y

i−1
s,r+1;Yti|M),

where(a) follows from the following two observations:

• (M,Y r−1
t,1 , Y i−1

s,r+1, Yti) → Xr → (Ys,r, Yt,r) forms a
Markov chain

• The receiverYs is less noisy thanYt implying, in partic-
ular, that

I(Ys,r;Yt,i|M,Y r−1
t,1 , Y i−1

s,r+1) ≥ I(Yt,r;Yt,i|M,Y r−1
t,1 , Y i−1

s,r+1).

This yields us a chain of inequalities of the form

I(Y i−1
s,1 ;Yt,i|M) ≥ I(Yt,1, Y

i−1
s,2 ;Yti|M) ≥ · · ·

· · · ≥ I(Y i−2
t,1 , Ys,i−1;Yti|M) ≥ I(Y i−1

t,1 ;Yt,i|M),

thus establishing the Part 1 of the Lemma.
The proof of Part 2 follows identical arguments (replaceYti

by Ysi) as in the proof of Part 1 and is omitted.
The main converse follows using Fano’s inequality and the

above lemma.
Observe that

nR3 ≤ I(M3;Y
n
3,1) + nǫn

=

n∑

i=1

I(M3;Y3,i|Y
i−1
3,1 ) + nǫn

≤
n∑

i=1

I(M3, Y
i−1
3,1 ;Y3,i) + nǫn

(a)

≤
n∑

i=1

I(M3, Y
i−1
2,1 ;Y3,i) + nǫn

=

n∑

i=1

I(Ui;Y3,i) + nǫn,

whereUi = (M3, Y
i−1
2,1 ). Here(a) follows from Lemma 1.

From Fano’s inequality we also have

nR2 ≤ I(M2;Y
n
2,1|M3) + nǫn

=

n∑

i=1

I(M2;Y2,i|M3, Y
i−1
2,1 ) + nǫn

=

n∑

i=1

I(Vi;Y2,i|Ui) + nǫn,

whereVi = (M2,M3, Y
i−1
2,1 ).

Finally observe that

nR1 ≤ I(M1;Y
n
1,1|M2,M3) + nǫn

=

n∑

i=1

I(M1;Y1,i|M2,M3Y
i−1
1,1 ) + nǫn

(a)

≤
n∑

i=1

I(Xi;Y1,i|M2,M3, Y
i−1
1,1 ) + nǫn

(b)
=

n∑

i=1

I(Xi;Y1,i|M2,M3)− I(Y i−1
1,1 ;Y1,i|M2,M3) + nǫn

(c)

≤
n∑

i=1

I(Xi;Y1,i|M2,M3)− I(Y i−1
2,1 ;Y1,i|M2,M3) + nǫn



(d)

≤
n∑

i=1

I(Xi;Y1,i|M2,M3, Y
i−1
2,1 ) + ǫn

=
n∑

i=1

I(Xi;Y1,i|Vi) + nǫn.

Here(a), (b), and(d) follow from the data processing inequal-
ity and that

(M1,M2,M3, Y
i−1
1,1 , Y i−1

2,1 ) → Xi → Y1i

forms a Markov chain. The inequality(c) follows from Part
2 of Lemma 1.

let Q ∈ {1, 2, ..., n} to be a uniformly distributed random
variable independent of all other random variables. Setting
U = (UQ, Q), V = (VQ, Q), X = XQ completes the converse
in the standard way. ClearlyU → V → X forms a Markov
chain asVi = (Ui,M2).

The cardinality arguments are standard in literature (see [1],
[5]), and follows using the Fenchel-Eggleston strengthening of
the usual Caratheodory’s argument.

This completes the proof of the converse.
A natural question here is whether this approach generalizes

to more than three receivers. It appears to the authors that to
generalize this argument to more than three receivers, one has
to impose additional constraints on the class ofk-receiver less
broadcast noisy channels. Since this generalization leadsto a
rather interesting condition we shall define the class, and give
a brief outline as to why the proof generalizes naturally under
this setting.

III. T HE k-RECEIVER INTERLEAVABLE BROADCAST

CHANNEL

Definition 3: A k-receiver less noisy broadcast channel is
said to belong to be aninterleavablebroadcast channel if there
existsk − 1 virtual receiversV1, ..., Vk−1 satisfying:

• X → V1 → ... → Vk−1 forms a Markov chain and
• The following“interleaved” less noisy condition holds:

Y1 � V1 � Y2 � · · ·Yk−1 � Vk−1 � Yk. (1)

This class generalizes the 3-receiver less noisy broadcast
channel. Indeed, the following broadcast channels are some
examples belonging to this class :

1) A sequence of degraded receivers, i.e.X → Y1 → ... →
Yk; setVi = Yi+1,

2) A sequence of ”nested” less noisy receivers, i.e.Ys �
(Ys+1, ..., Yk); setVi = (Yi+1, ..., Yk),

3) A 3-receiver less noisy sequence, i.e.Y1 � Y2 � Y3; set
V1 = V2 = Y2.

From Remark 1 we know that the less-noisy ordering only
depends on the marginals. Hence without loss of generality
we can assume that the probability distribution factorizesas

follows:

p(xn, yn1 , . . . , y
n
k , v

n
1 , . . . , v

n
k−1)

=

n∏

i=1

p(xi|x
i−1)p(y1i, .., yki, v1i, .., vk−1,i|xi)

=

n∏

i=1

p(xi|x
i−1)p(y1i, .., yki|xi)p(v1i, .., vk−1,i|xi)

=
n∏

i=1

p(xi|x
i−1)p(y1i, .., yki|xi)p(v1i|xi)

k−1∏

j=2

p(vji|vj−1,i)

Here the first equality is due to the fact that the channel
is DMC without feedback, second is due to the fact that the
assumptions on the less noisy structure just depends on the
marginals, and third is due to the Markov chainX → V1 →
... → Vk−1.

Given this structure we immediately observe the following
Markov chain

V i−1
s,1 → V i−1

s−1,1 → Xn, Y n
1 , . . . , Y n

k ,M1, ...,Mk. (2)

for 1 ≤ s ≤ k − 1; (setV0 = X).
Theorem 2:The capacity region of a k-receiver interleav-

able less-noisy discrete memoryless broadcast channel is given
by the union of rate triples(R1, . . . , Rk) satisfying

Rl ≤ I(Ul;Yl|Ul+1), 1 ≤ l ≤ k,

over all choices of(U2, ...Uk, X) such that(Uk+1 = ∅) →
Uk → · · ·U2 → (U1 = X) → (Y1, Y2, . . . , Yk) forms
a Markov chain. Further it suffices to consider|Uk−r | ≤
(|X |+ 1)r+1, 1 ≤ r ≤ k − 2.

Proof: The proof is almost identical to that of the three
receiver broadcast channel. The achievability proof is standard
using superposition encoding and successive decoding and is
omitted here.

Let Mk
l+1 = (Ml+1, ...,Mk). Using Fano’s inequality,

observe that for1 ≤ l ≤ k.

nRl ≤ I(Ml;Y
n
l,1|M

k
l+1) + nǫn

=

n∑

i=1

I(Ml;Yl,i|M
k
l+1, Y

i−1
l,1 ) + nǫn

=

n∑

i=1

I(Ml, Y
i−1
l,1 ;Yl,i|M

k
l+1)

− I(Y i−1
l,1 ;Yl,i|M

k
l+1) + ǫn

(a)

≤ I(Ml, Y
i−1
l,1 ;Yl,i|M

k
l+1)

− I(V i−1
l,1 ;Yl,i|M

k
l+1) + ǫn

b)

≤ I(Ml, V
i−1
l−1,1;Yl,i|M

k
l+1)

− I(V i−1
l,1 ;Yl,i|M

k
l+1) + ǫn

(c)
= I(Ml, V

i−1
l−1,1;Yl,i|M

k
l+1, V

i−1
l,1 )ǫn

=

n∑

i=1

I(Ul,i;Yl,i|Ul+1,i) + nǫn,



where Ul,i = (Mk
l , V

i−1
l−1,1). We set V0 = X . Here the

inequalities(a), (b) follow from the Lemma 1 and thatVl−1 �
Yl � Vs−1. The equality(c) follows from the Markov chain
in (2).

Define Q to be a uniform random variable taking values
in {1, .., n} and independent of all other random variables. As
usual, we setUl = (Ul,Q, Q) andX = XQ. SinceX → V1 →
· · · → Vk−1 is a Markov chain it follows thatUk → Uk−1 →
· · · → U2 → X forms a Markov chain as well. The cardinality
arguments are again standard and omitted. This completes the
proof of the converse.

Remark 2: It is not very difficult to observe that in general
the 4-receiver less noisy broadcast channel is not aninterleav-
able broadcast channel. To observe this letZ1 � Z2 be any
pair of less noisy but not degraded (stochastically) receivers.
(Such a pair exists, see [3] or [7]). Now letY1, Y2 ≈ Z1

thus sandwichingV1 = Z1 andY3, Y4 ≈ Z2 thus sandwiching
V3 = Z2. HoweverX → V1 → V3 cannot be a Markov
chain by the assumption onZ1, Z2. Hence the problem of
determining the capacity ofk-receiver less noisy channel
k ≥ 4 is still very much open.

IV. CONCLUSION

We establish the capacity region for the 3-receiver less noisy
broadcast channel. We also compute the capacity region for
a class of k-receiver less noisy sequences that contain the
previously mentioned scenario. A new information inequality
is used to obtain the converse. and this technique also sim-
plifies the original proof [3] of the converse of the 2-receiver
broadcast channel.
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