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Entanglement generation with a quantum channel
and a shared state
Mark M. Wilde and Min-Hsiu Hsieh

Abstract—We introduce a new protocol, the channel-state
coding protocol, to quantum Shannon theory. This protocol
generates entanglement between a sender and receiver by coding
for a noisy quantum channel with the aid of a noisy shared
state. The mother and father protocols arise as special cases of
the channel-state coding protocol, where the channel is noiseless
or the state is a noiseless maximally entangled state, respectively.
The channel-state coding protocol paves the way for formulating
entanglement-assisted quantum error-correcting codes that are
robust to noise in shared entanglement. Finally, the channel-state
coding protocol leads to a Smith-Yard superactivation, where we
can generate entanglement using a zero-capacity erasure channel
and a non-distillable bound entangled state.

Index Terms—channel-state coding protocol, superactivation,
mother protocol, father protocol

I. INTRODUCTION

Quantum Shannon theory is the study of the ultimate
capability of a noisy quantum system to preserve correlations
[1], [2]. A noisy quantum channel possesses various capacities:
its quantum capacity governs its ability to transmit quantum
information [3], [4], [5], its classical capacity governs its
ability for noiseless classical communication [6], [7], and its
private capacity governs its ability for noiseless private com-
munication [5], [8]. A noisy bipartite state possesses various
distillation yields. Its distillable entanglement determines the
amount of maximal entanglement that we can recover from it
[9], [10], [11]. Its distillable secret key determines its private
correlations [10], [11], and its distillable common randomness
determines its classical correlations [12].

In their pioneering unification of quantum Shannon theory
[13], [1], Devetak et al. formulated the mother and father
protocols. The mother protocol exploits a noisy bipartite state
and noiseless quantum communication to establish noiseless
entanglement between two parties. The father protocol ex-
ploits a noisy quantum channel and noiseless entanglement
to transmit noiseless quantum information from a sender to a
receiver. Since this work, various authors have unified quantum
Shannon theory in other ways [14], [15], [16], [17].

In this paper, we introduce a new protocol, the channel-state
coding protocol, that exploits both a noisy bipartite state and
a noisy quantum channel to establish noiseless entanglement
between two parties. In the operation of the independent and
identically distributed (IID) version of the protocol, we assume
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that the sender and receiver use the channel and the state
the same number of times. One might think that the optimal
strategy is one of the following three strategies:

1) Distill entanglement from the state and generate entan-
glement with a quantum channel code. The total en-
tanglement generated is then the sum of the distilled
entanglement and the entanglement generated from the
channel.

2) Distill entanglement and perform the father protocol if
enough entanglement is available. The amount of en-
tanglement generated is the net amount that the father
protocol can generate.

3) Perform quantum channel coding and follow with the
mother protocol if enough quantum communication is
available. The amount of entanglement generated is the
net amount that the mother protocol can generate.

It turns out that none of the above strategies is the best strategy.
The channel-state coding protocol is the best strategy here and
instead encodes both the input to the quantum channel and a
share of the noisy bipartite state.

The existence of the channel-state coding protocol has
some interesting ramifications. First, it addresses a practical
concern for the theory of entanglement-assisted coding [18],
where a sender exploits noiseless entanglement and a noisy
quantum channel to transmit quantum information. It is con-
jectured, but not yet demonstrated, that the performance of
an entanglement-assisted code decreases dramatically if the
entanglement is not perfect. The channel-state coding protocol
demonstrates that another strategy other than entanglement-
assisted coding is appropriate for this situation. In fact, the
motivation for the channel-state coding protocol was the
discovery of an entanglement-assisted code that corrects errors
on both the sender’s transmitted qubits and the receiver’s
share of the entanglement [19]. Secondly, the mother and
father protocols now arise as a special case of the channel-
state coding protocol. The mother arises when the quantum
channel that connects sender to receiver is a perfect quantum
channel. The father arises when the shared entanglement
between sender and receiver is perfect. Finally, it leads to
another instance of the superactivation effect [20], [21], [22].
Specifically, we can apply the Smith-Yard superactivation [20]
to show that it is possible to establish entanglement using a
quantum channel with zero capacity and a noisy bipartite state
with zero distillable entanglement.

We structure this paper as follows. We first outline a general
channel-state coding protocol. Section III gives the proof
of the channel-state coding capacity theorem. This theorem
determines the ultimate rate at which a noisy quantum channel
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and a noisy state can generate maximal entanglement. We
then show how a special case of this protocol, doing quantum
channel coding and entanglement distillation, is inferior to
the channel-state coding protocol. Section V shows how the
father and mother protocol are special cases of the channel-
state coding protocol. We then show how it is possible to
obtain a Smith-Yard-like superactivation in the channel-state
coding protocol and conclude with some observations and
open questions.

II. CHANNEL-STATE CODING PROTOCOL

We begin by defining our channel-state coding protocol
for a quantum channel NA′

1→B1 and a noisy bipartite state
ρA2B2 . The noisy quantum channel NA′

1→B1 connects a
sender Alice to a receiver Bob, and Alice and Bob share the
noisy state ρA2B2 before the protocol begins. The channel has
an extension to an isometry UA

′
1→B1E1

N , defined on a bipartite
quantum system B1E1. Bob has access to system B1 and Eve
has access to system E1. The noisy state admits a purification
ψA2B2E2 where Eve shares a purifying system E2.

We appeal to the asymptotic setting where Alice and Bob
have access to n independent uses of the channel NA′

1→B1

and n copies of the bipartite state ρA2B2 (where n is as large
as we need it to be). We denote the n independent uses of the
channel as

NA′n
1 →Bn

1 ≡ (NA′
1→B1)⊗n,

and the n copies of the bipartite state ρA2B2 as

ρA
n
2B

n
2 ≡ (ρA2B2)⊗n.

Let UA
′n
1 →Bn

1 E
n
1

N and ψA
n
2B

n
2 E

n
2 similarly denote the nth exten-

sions of the respective isometry U
A′

1→B1E1

N and purification
ψA2B2E2 .

Alice’s task is to generate noiseless entanglement between
her and Bob by using the channel NA′n

1 →Bn
1 and the noisy

state ρA
n
2B

n
2 . At the end of the protocol, the generated entan-

glement should be close to the following state:

|Φ〉AB ≡ 1√
D

D∑
i=1

|i〉A |i〉B , (1)

where D indicates the amount of entanglement generated so
that the rate of entanglement generation is R ≡ log (D) /n.
We allow the free use of a forward classical channel from
Alice to Bob.

An (n,R, ε) channel-state code consists of three steps:
preparation, transmission, and channel decoding. We detail
each of these steps below.

Preparation. Alice possesses her share of the noisy bipartite
state ρA

n
2B

n
2 with purification ψA

n
2B

n
2 E

n
2 . Alice employs a

preparation map PAn
2→An

1A
n
2A

′n
1 that prepares the following

state for input to the channel:

ωA
n
1A

n
2A

′n
1 B

n
2 E

n
2 ≡ PAn

2→An
1A

n
2A

′n
1 (ψA

n
2B

n
2 E

n
2 ),

where An1 and An2 are systems with the same respective
dimension as the input to the channel and Alice’s share of
the state.

A1A2

E1

B1
B2

Eve

Alice

Bob
B

A2

E2

A’1

D

P Eve
UN

Fig. 1. (Color online) The most general protocol for generating entanglement
with a noisy state ρA2B2 and a noisy channel NA′

1→B1 . It is implicit in the
above diagrams that the systems A1, A′

1, B1, E1, A2, B2, E2 are actually
the respective n-copy systems An

1 , A′n
1 , Bn

1 , En
1 , An

2 , Bn
2 , En

2 . A good
protocol generates the maximally-entangled state ΦAB shared between Alice
and Bob.

Transmission. Alice sends the A′n1 system of the state
ωA

n
1A

n
2A

′n
1 B

n
2 E

n
2 through the channel UA

′n
1 →Bn

1 E
n
1

N . This trans-
mission generates the state

ωA
n
1A

n
2B

n
1 E

n
1 B

n
2 E

n
2 ≡ UA

′n
1 →Bn

1 E
n
1

N (ωA
n
1A

n
2A

′n
1 B

n
2 E

n
2 ). (2)

Channel Decoding. Bob receives the above state from the
channel and performs a decoding map DBn

1 B
n
2→B resulting in

the state

(ω′)
An

1A
n
2BE

n
1 E

n
2 ≡ DBn

1 B
n
2→B(ωA

n
1A

n
2B

n
1 E

n
1 B

n
2 E

n
2 ). (3)

The ideal state after Bob’s decoding map is close in trace
distance to the following product state:

ΦAB ⊗ σEn
1 E

n
2 ,

where ΦAB is the state in (1), the subspaces of the systems
An1A

n
2 in which the entanglement is encoded are isomorphic to

system A (Alice can perform some isometry to map between
these spaces), and σE

n
1 E

n
2 is some constant state on Eve’s

systems En1E
n
2 . The criterion for a successful channel-state

code is that∥∥∥(ω′)
An

1A
n
2BE

n
1 E

n
2 − ΦAB ⊗ σEn

1 E
n
2

∥∥∥
1
≤ ε,

where ε > 0. Figure 1 depicts all of the above steps in a
general channel-state coding protocol.

III. THE CHANNEL-STATE CAPACITY THEOREM

A rate R is achievable if there exists an (n,R−δ, ε) channel-
state code for any ε, δ > 0 and sufficiently large n.

Theorem 1: The entanglement generation capacity E(N ⊗
ρ) of a quantum channel N and a bipartite state ρ is

E(N ⊗ ρ) = lim
l→∞

1

l
E(1)(N⊗l ⊗ ρ⊗l), (4)

where the “one-shot” capacity E(1)(N ⊗ ρ) is

E(1)(N ⊗ ρ) = max
P

I (A1A2〉B1B2)ω . (5)

The maximization is over all preparations PA2→A1A2A
′
1 and

the coherent information I (A1A2〉B1B2)ω is with respect to
the following state:

NA′
1→B1(PA2→A1A2A

′
1(ρA2B2)). (6)



3

The proof of the above capacity theorem consists of two
parts. The first part that we prove is the converse theorem.
The multi-letter converse theorem states that the capacity in the
above theorem is optimal—any given coding scheme that has
asymptotically good performance cannot perform any better
than the rate in (4). The second part that we prove is the
direct coding theorem. The proof of the direct coding theorem
gives a coding scheme that achieves the capacity in (4).

Converse: We provide an upper bound on the entan-
glement generation rate R of a general channel-state coding
protocol that allows the help of classical communication.
Consider the following chain of inequalities:

nR = I (A〉B)Φ

= I (An1A
n
2 〉B)Φ

≤ I (An1A
n
2 〉B)ω′ + ε′

≤ I (An1A
n
2 〉Bn1Bn2 )ω + ε′.

The first and second equalities result from evaluating the
coherent information of the state ΦAB and realizing that the
system A and the subspace of An1A

n
2 where Alice encodes the

entanglement are isomorphic. The maximally entangled state
ΦAB and (ω′)A

n
1A

n
2B in (3) are ε-close for a good code. Noting

this fact, the first inequality results from an application of the
Alicki-Fannes’ inequality [23] where ε′ ≡ 4ε logD + 2H(ε),
H(ε) is the binary entropy function, and limε→0H(ε) = 0.
The last inequality results from quantum data processing [24],
where we evaluate the coherent information with respect to
the state ωA

n
1A

n
2B

n
1 E

n
1 B

n
2 E

n
2 in (2). The converse theorem holds

because the state ωA
n
1A

n
2B

n
1 E

n
1 B

n
2 E

n
2 is a state of the form (6).

We can phrase the direct coding theorem as a resource
inequality [1]:

〈N ⊗ ρ〉+I (A1A2;E1E2)ω [c→ c] ≥ I (A1A2〉B1B2)ω [qq] .
(7)

The above resource inequality is an asymptotic statement of
achievability. Suppose Alice has access to n independent uses
of the noisy quantum channel N , n shares of n respective
copies of the noisy bipartite state ρ, and nI (A1A2;E1E2)ω
bits of classical communication. Then she can reliably gener-
ate nI (A1A2〉B1B2)ω ebits of entanglement with Bob. The
entropic quantities are with respect to the state

NA′
1→B1(PA2→A1A2A

′
1(ρA2B2)),

where PA2→A1A2A
′
1 is a preparation operation equivalent to

appending the state ρA2B2 with a state φA1A
′
1 and performing

an isometric encoding EA′
1A2→A′

1A2 so that

PA2→A1A2A
′
1(ρA2B2) = EA′

1A2→A′
1A2(φA1A

′
1 ⊗ ρA2B2).

We are specifically counting the classical communication cost
in the above resource inequality and show how the amount in
(7) arises in the proof of the theorem.

The proof of the direct coding theorem exploits the obser-
vations and coding techniques from Refs. [25], [14]. We refer
the reader to these papers for details of carrying out the proof.

We first establish some notation and concepts for the proof.
Alice has many uses of the channel NA′

1→B1 available, and

A
A1

E1

B1

B2

EveAlice

Bob

E B
A2

E2

A’1

A’2

UN1

UN2

D

Fig. 2. (Color online) A coding scheme for the channel-state protocol.

we label this channel as NA′
1→B1

1 (with a subscript “1”) for
reasons that become clear later. Let UA

′
1→B1E1

N1
denote an

isometric extension of the channel NA′
1→B1

1 . Suppose Alice
prepares the state φA1A

′
1 on the systems A1A

′
1. Sending the

A′1 system of the state φA1A
′
1 through the channel UA

′
1→B1E1

N1

gives rise to a state φA1B1E1 where

φA1B1E1 ≡ UA
′
1→B1E1

N1
(φA1A

′
1).

The nth extensions of the above states, channel, and isometric
extension are respectively as follows: φA

n
1A

′n
1 , φA

n
1B

n
1 E

n
1 ,

NA′n
1 →Bn

1
1 , and UA

′n
1 →Bn

1 E
n
1

N1
.

Alice also has access to her share An2 of the state ρA
n
2B

n
2 .

There is another, more useful way of thinking about this shared
state. Let us first consider a purification ψA2B2E2 of the state
ρA2B2 . We can think of the purification ψA2B2E2 as arising
from sending a state ψA2A

′
2 through a channel NA′

2→B2

2 with
isometric extension UA

′
2→B2

N2
:

ψA2B2E2 = U
A′

2→B2

N2
(ψA2A

′
2).

The tensor power state ψA
n
2B

n
2 E

n
2 arises from sending n

copies of the state ψA2A
′
2 through the tensor power channel

U
A′n

2 →Bn
2 E

n
2

N2
. So, it is physically equivalent to say that Alice

has access to the system An2 of the state ψA
n
2A

′n
2 before the

A′n2 system is transmitted through the channel UA
′n
2 →Bn

2 E
n
2

N2
,

but she does not have access to system A′n2 .
Alice prepares the state φA

n
1A

′n
1 alongside the state

ψA
n
2A

′n
2 . She performs an initial entangling, isometric encoder

EA′
1A2→A′

1A2 on each copy φA1A
′
1 ⊗ ψA2A

′
2 of the state, so

that the overall encoding is a tensor power that we denote by

EA′n
1 A

n
2→A′n

1 A
n
2 (φA

n
1A

′n
1 ⊗ ψAn

2A
′n
2 ).

She performs a typical subspace measurement of the systems
An1A

n
2 followed by a type measurement of the systems [25],

[14], ensuring that the systems An1A
n
2 and A′n1 A

′n
2 are maxi-

mally entangled. She performs a random unitary U , selected
from the Haar measure, on the systems An1A

n
2 . This unitary

is equivalent to applying the unitary UT to the systems
A′n1 A

′n
2 because the systems An1A

n
2 and A′n1 A

′n
2 are maximally

entangled [14]. She then performs a projective measurement
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Fig. 3. (Color online) Reduction of the coding scenario in Figure 2 to
entanglement generation for the product channel UN1

⊗ UN2
.

of the systems An1A
n
2 onto a subspace S ⊆ An1A

n
2 of size

|S|. This last measurement projects the systems A′n1 A
′n
2 onto

a subspace S′ ⊆ A′n1 A′n2 , where the subspace S′ is isomorphic
to the subspace S and the state on SS′ is maximally entangled
[25]. Let E denote these encoding operations on systems
An1A

n
2 , and let E ′ denote the equivalent operations occurring

on systems A′n1 A
′n
2 . Figure 2 gives a picture of this protocol,

and Figure 3 gives a picture of a protocol that is formally
equivalent to the one in Figure 2. She sends Bob the result
of the type measurement (requiring only a sublinear amount
of classical communication), and she sends the result of the
second projective measurement, requiring nI (A1A2;E1E2)
bits of classical communication [10], [11], so that he knows
in which subspace the entanglement is encoded.

We now can exploit the simplified proof of the quantum
coding theorem (Theorem 1 of Ref. [25]). Bob can perform
a reliable decoding (resulting from a decoupling of Bob’s
outputs Bn1B

n
2 from Eve’s outputs En1E

n
2 ) if the size |S| of the

subspace S is not too large [25]: |S| < 2n(H(B1B2)−H(E1E2)).
The rate of this code is

log |S|
n

< H (B1B2)−H (E1E2)

= H (B1B2)−H (A1A2B1B2)

= I (A1A2〉B1B2) .

We can maximize over all input states φA1A
′
1 and isometric

encoders EA′
1A2→A′

1A2 to have a code that achieves the one-
shot capacity:

max
φ,E

I (A1A2〉B1B2) ,

where the coherent information is with respect to the following
state:

NA′
1→B1(EA′

1A2→A′
1A2(φA1A

′
1 ⊗ ρA2B2)).

The maximization with respect to input states and encoders
is equivalent to performing a maximization over isometric
preparations.

This code achieves the one-shot capacity in (5). We can then
block the channels and states together to give a superchannel
NA′l

1→Bl
1 and superstate ρA

l
2B

l
2 . Applying the above proof

to this scenario gives a code that achieves the capacity in
Theorem 1.

IV. SPECIAL CASE

We can restrict the above protocol to obtain a special
case. Suppose Alice prepares a state ΦA

n
1A

′
1 and limits the

preparation to be of the form EA′
1→A′n⊗ΛA

n
2 , where the map

EA′
1→A′n

is a quantum channel encoding and the map ΛA
n
2 is

a quantum instrument [2] for entanglement distillation. Bob’s
decoding consists of an operation DBn

1→B′
1 ⊗ ΛB

n
2 , where

the map DBn
1→B′

1 is a quantum channel decoding and the
map ΛB

n
2 is a map that uses the classical information sent

by Alice. This protocol uses the forward classical channel for
entanglement distillation [9] and uses the quantum channel
for channel coding the system A′1 only. The one-shot entan-
glement generation capacity for this restricted scenario is

E(1)(N ⊗ ρ) = max
φA1A′

1

I (A1〉B1) + I (A2〉B2)

and is equal to the sum of the entanglement generation capac-
ity with the entanglement distillation capacity. This protocol
is not optimal because it is less than or equal to the one-shot
capacity in (4).

V. RESOURCE INEQUALITIES

We discuss some resource inequalities that follow from the
channel-state resource inequality in (7). We can generate a
“fully quantum” resource inequality, by applying rule I from
Ref. [1] to the resource inequality in (7). We can apply rule I
because the communicated classical information is coherently
decoupled. The resulting resource inequality resembles the
mother resource inequality:

〈N ⊗ ρ〉+1

2
I (A1A2;E1E2)ω [q → q] ≥ 1

2
I (A1A2;B1B2)ω [qq] .

There is also a sense in which the mother and father
protocol in Refs. [13], [1] arise as special cases of the channel-
state coding protocol. First, suppose that the state ρ⊗n is
equivalent to a rate E maximally entangled state ΦA

n
2B

n
2 with

nE ebits of entanglement where E ≥ I (A1;E1) /2. Then, it
is best to act with the father protocol. The resource inequality
is equivalent to that for the father protocol (modulo some
classical communication):

〈N〉+
1

2
I (A1;E1) [qq] ≥ 1

2
I (A1;B1) [q → q] .

Another special case of this protocol is the mother protocol.
Suppose that the channel N is a noiseless qubit channel
idA1→B1 of rate Q where Q ≥ I (A2;E2) /2. Then the re-
source inequality is equivalent to that for the mother protocol:

〈ρ〉+
1

2
I (A2;E2) [q → q] ≥ 1

2
I (A2;B2) [qq] .

VI. SUPERACTIVATION

We now discuss how the channel-state coding protocol can
lead to a superactivation effect. The main finding in Reḟ. [20]
was the following inequality:

1

2
P (N ) ≤ Q (N ⊗A) ,

where P (N ) denotes the private capacity of a channel N [5],
[8] and Q (N ⊗A) denotes the joint quantum capacity of the
channel N and a symmetric channel A (a symmetric channel
is one that behaves the same under interchange of its receiver
and its environment, and thus has zero quantum capacity by
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a no-cloning argument [26]). Smith and Yard showed that
an entanglement-binding channel N [27] , one that has zero
quantum capacity but non-zero private capacity, and a 50%
erasure channel [28], an example of a symmetric channel, can
combine to have a non-zero quantum capacity.

Devetak showed that the secret key generation capacity
K (N ) of quantum channel N is equal to its privacy capacity
P (N ), and he also showed that its entanglement generation
capacity E (N ) is equal to its quantum capacity Q (N ) [5].
Thus, it is possible to translate the above Smith-Yard inequality
as follows:

1

2
K (N ) ≤ E (N ⊗A) .

The question now is whether we can have the following
inequality for a noisy bipartite state ρAB and a noisy erasure
channel A:

1

2
K (ρ) ≤ E (ρ⊗A) . (8)

An example of the above inequality for our scenario follows
directly from the example of Smith and Yard in the appendix
of Ref. [20]. Suppose that we have the state |ρ〉XAC on
page 3 of the Supplementary Materials in Ref. [20]. Let us
relabel this state as |ρ〉XA2C . Sending the A2 system through
an entanglement-binding channel gives a state |ρ〉XB2E2C .
Discarding the C system leads to a state ρ on XB2, where
Alice possesses X and Bob possesses B2. Alice and Bob can
distill some secret key from this state (K (ρ) > 0), but cannot
distill any maximal entanglement (E (ρ) = 0). Suppose now
that the state is |ρ〉XB2E2C . Alice can send the C system
through a 50% erasure channel. By the same proof method in
Ref. [20], it is possible to show the inequality in (8) for this
particular setup. The key to this modification of the Smith-Yard
proof is that there is entanglement between Alice’s systems X
and C, implying that an entangling encoder in the channel-
state coding protocol outperforms a strategy such as the one
in Section IV, which is not able to generate any entanglement
for this state. Thus, we have a superactivation effect occurring
for the channel-state coding protocol.

VII. CONCLUSION

We have introduced a new protocol, the channel-state coding
protocol, that combines a noisy quantum channel with a
noisy quantum state to generate entanglement. This protocol
performs well when entanglement is not perfect and should
aid in the effort to examine entanglement-assisted codes with
imperfect entanglement. The channel-state coding protocol
also exhibits the superactivation effect, where a state with no
distillable entanglement and a zero-capacity quantum channel
can generate maximal entanglement. An open task is to
construct a protocol that achieves quantum communication
rather than mere entanglement generation.

M.M.W. thanks Andreas Winter for useful discussions and
acknowledges research grant SAIC-1669, the National Re-
search Foundation & Ministry of Education, Singapore, and
the Centre for Quantum Technologies.
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