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polymatroids
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Abstract

An Ingletonian polymatroid satisfies, in addition to the ypohtroid axioms, the inequalities of
Ingleton (Combin. Math. Appln., 1971). These inequalit@e required for a polymatroid to be repre-
sentable. It is has been an open question as to whether trezpeaiities are also sufficient. Representable
polymatroids are of interest in their own right. They alsoda strong connection to network coding.
In particular, the problem of finding the linear network auglicapacity region is equivalent to the
characterization of all representable, entropic polyoidg. In this paper, we describe a new approach
to adhere two polymatroids together to produce a hew polyitatUsing this approach, we can construct
a polymatroid that is not inside the minimal closed and c&ngene containing all representable
polymatroids. This polymatroid is proved to satisfy notyohe Ingleton inequalities, but also the
recently reported inequalities of Dougherty, Freiling abelger. A direct consequence is that these

inequalities are not sufficient to characterize represdatpolymatroids.

. INTRODUCTION

The idea of network coding was first proposed in the seminpépfL] as a means to increase
achievable transmission throughput in data communicati@iworks. In the traditional packet-
switched routing approach, intermediate network nodesocéy duplicate received packets and
forward them to subsequent nodes. In contrast, networkngodilows arbitrary computational
data processing at intermediate nodes. For example, iatbate nodes may forward arbitrary
linear combinations of several received packets. In thglsisource multicast scenario, network
coding significantly increases maximal transmission tghput, and achieves the max-flow min-
cut bound. It was subsequently proved [2] that linear nétvemdes suffice to achieve maximal

throughput for this case.
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While the easily computable maximum flow (and associatedrmim cut) determines the
maximal attainable throughput in the single source scené#nis bound is not tight in general
(multiple sources and multiple sinks). In [3], first stepsravenade to characterize transmission
throughput for the general case \@atropy functiongpolymatroids whose ground set is a set
of random variables, and whose rank function is Shannorogy)r Inner and outer bounds on
throughput were obtained in this way. Using the same ideagxatt characterization of the
set of all achievable throughputs was later obtained [4Jalégous bounds for networks where
intermediate nodes are restricted to use only linear codse wbtained in [5] viaepresentable

entropy functions

Unfortunately, these entropy function based charactioiza are implicit in nature, since an
explicit characterization of the set of all entropy funasds still missing. Characterization of this
set is one of the major open problems in information theamil8rly, the set of all representable
entropy functions has no explicit characterization. Nbtathis set is a subset of representable

polymatroids, whose characterization is one of the majenoproblems in matroid theory.

This lack of explicit, computable results could prompt oa@tiestion this approach based on
entropy functions. Although it leads to attractive imgicharacterizations, perhaps the difficulties
that arise are somehow an artefact of the approach. One toeitdfore be tempted to seek
simpler characterizations of transmission throughput évaid the need to precisely know the
set of entropy functions. For instance, [1] demonstrated #hmuch simpler characterization is
possible in the single source scenario where the max-flowamitbound is tight. Unfortunately,
a recent paper [6] disproved the existence of any simplerackexization for the general case.
Using a specially contructed network, it was proved thatrie @an determine the set of all
achievable throughputs in the special network, then oneatsndetermine the set of all entropy
functions (and vice-versa). Hence, determining achievéiimloughput for network coding is in
general no simpler than determining the set of entropy fanst A similar duality was obtained
in the same paper between the set of throughputs achieveihégr Icodes and the set of

representable entropy functions.

These results [3]-[6] indicate a very close tie between attarization of (representable)
entropy functions and throughput achievable with (lineagjwork codes. Characterization of

entropy functions is equivalent to finding all linear infation inequalities that hold regardless of

October 24, 2018 DRAFT



the underlying joint distribution [3]. It is a well known nel$, extending back to Shannon [7] that
entropy and mutual information are both nonnegative, paoading exactly to the polymatroid
axioms. No further information inequalities were found fdty years, until [8] reported the
first “non-Shannon” information inequality. The significanof that result lay not only in the
inequality itself, but also in its construction. This padiar approach for construction has been the
main ingredient in every non-Shannon inequality that hamnlsibsequently discovered. Using
this appraoch, new inequalities can be found mechanic@llsrid there are in fact infinitely many
such independent inequalities even when there are only rematom variables involved [10].
Despite this progress, a complete characterization isrstising, and we still only have one

basic approach for finding new inequalities.

This situation does not improve for representable entrametions. In addition to the poly-
matroid inequalities, it is well known that representabtdér@py functions satisfy Ingleton’s

inequalities [11]. Specifically, letly, ..., W, be vector subspaces. Then

0 S dim <W1, W2> + dim <W1, W3> + dim <W1, W4> + dim <W2, W3> + dim <W2, W4>
— dlm <W1> — dlm <W2> — dlm <W3, W4> — dlm <W1, Wg, W3> — dlm <W1, WQ, W4> (l)

where(WV;, W,) is the minimal vector subspace containifguV;, and similar for(W;, W;, Wy).
It has been an open problem since 1971 as to whether thesealitexs are also sufficient as

well as being necessary conditions for representability.

Very recently, several new inequalities for representpblgmatroids were reported at the 2009
Workshop on Applications of Matroid Theory and Combinab®ptimization to Information
and Coding Theory [1@] These inequalities were found by adapting the approac8]jri9]. It
was verified numerically that the newly obtained inequadit{which we shall refer to a3FZ
inequalitie3 completely characterize representable entropy funstiovolving five variables (the
Ingleton inequalities are already known to be sufficient flmur variables). It is not known if

these inequalities remain sufficient for more than five \@des.

The objective of this paper is to understand properties mfegentable entropy functions (and
more generally, representable polymatroids). Our maitrdartion is a proof for the insufficiency

of the Ingleton and DFZ inequalities for charcterizationrgresentable polymatroids.
We became aware of this independent work during the preparaf early drafts of this manuscript.
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Whereas [12] constructively proves the insufficiency of limgleton inequalities following the
Zhang-Yeung approach [8], our approach is totally differéde construct a polymatroid which
satisfies every Ingleton and DFZ inequality, but which is cmttained within the minimal closed
and convex cone containing all representable polymatrdidiis directly establishes the existence

of further, yet-to-be-discovered linear inequalities fepresentable polymatroids.

The organization of the paper is as follows. In Secfidn II, wid introduce the required
technical framework for the problem. Sectidnl Il introdsca new method for constructing
a polymatroid by adhering together any two Ingleton polywids. We will prove that the
resulting polymatroids satisfy the Ingleton inequalitiaad that this construction also preserves
representability. In Section]V, we will construct an Ingletpolymatroid by adhering two
representablepolymatroids together. This constructed polymatroid ve#l proved in Section
[VIto lie outside the closed and convex cone containing glresentable polymatroids. This
establishes the insufficiency of Ingleton’s inequalitiemally, in Sectiori_VIl, we prove that this
constructed polymatroid also satisfies the DFZ inequaliffer five variables), demonstrating

the insufficiency of the DFZ inequalities.

The following notational conventions will be used. Set urwall be denoted by concatenation;
Singletons and sets with one element are not distinguisBan X = {X;, X,,..., X,,} and
any subsety of the finite index sét N, = {1,2,...,n}, the subscriptX, will mean the set
{Xi,i € a}. Fora,8 C N, Xus = XoXs = X, U X; all refer to the same set. Similarly,
for any A,B C X, AU B and . AB are the same setS) will denote the minimal vector space
spanned bys. We will usecon(S) to denote the minimal convex cone containing theSeind
con(S) to denote the closure @bn(S). Finally, R, Z andF, are the reals, integers and a finite

field on ¢ elements.

2If n is understood, the subscript may be dropped for simplicity.
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[I. BACKGROUND

A polymatroidover theground setY = {X;, X,,..., X,,} is a tuple(X’, h) where therank

functionh : 2% — R satisfies the following axioms for allt, B C X,

h(0) =0 (R1)
ACB = h(A) <h(B) (R2)
h(AUB) +h(ANB) < h(A) + h(B). (R3)

A polymatroid (X', h) is called amatroid [13], if it further satisfies the cardinality bound,
h(A) < | A|, and the integrality constraint(.A) € Z, for all A,B C X.

For any A, B,C C X, define the generalized information expressions as follows
H(A|C) 2 h(AC) —h(C) (2)
I(A;B|C) 2 h(AC) +h(BC) —h(C) — h(ABC). 3)

whenC = () we write H(A) = h(A) and I(A;B) = H(A) — H(A | B) (consistent with the
above definitions). It is straightforward to prove ttiat, h) is a polymatroid if and only if[(R1)
holds and both[{2) and](3) are nonnegative for all choicegl,d8 andC.

Polymatroids arise in many different contexts. For examigeX’ = {X;,..., X, } be a set
of random variables. This naturally induces a polymatfgidh) such thath(.A) is the Shannon
entropy H(.A) of the subset of random variables it In this case,[(2) and{3) are merely the
usual definitions for conditional entropy and mutual infation, and( X', h) is a polymatroid due
to the nonnegativity of (conditional) entropies and mutuérmation. We emphasise however
that the definitiond (2) and](3) are made for arbitrary polyoids (where the rank function may

not induced by random variables).

Polymatroids can also be induced by vector subspacesXlet (X;,...,X,) be a set of
subspaces of a vector spate over a finite fieldF,. Define h(A) as the dimension of the

minimal vector subspace containing all the subspace4,in
h(A) 2 dim(A) (4)

Then (X, h) is also a polymatroid. These subspace induced polymatfoaled representable

polymatroids) are of the main objects of interest in thisgrap
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According to definitions[(2) and3) above, whhris defined as in[{4), we can ugé(.A) to
denotedim(.A) for any set of vector subspacet Furthermore, the following lemma may be

easily verified.
Lemma 1:Let X = (X,...,X,) be a set of vector subspaces aAdB C X. Then
H(A|B) = dim(A, B) — dim(B) (5)
I(A; B) = dim ({(A) N (B)) (6)
Furthermore, ift = (A) N (B), thenI(A; B|V) = 0.
We shall classify polymatroids as follows.

Definition 1 (Classification):A polymatroid (X', h), and associated rank functidn is called

. g¢-representabldf there exists vector subspacég, ..., V,} overF, such that for alle C
N, H(X,) = dim(V,) as defined in[{4).

« representablef is ¢-representable for somge

« even representablié is 2™-representable for some positive integer

« 0dd representabld is p™-representable for some odd primpeand a positive integein

. Ingletonianif it satisfies the Ingleton inequality}, (A, As, A3, A4) > 0 for all subsets
Ay, Ag, Az, Ay € X where

Jh (.A1, AQ, Ag, .A4) e h(AlAQ) + h<A1A3) + h<A1A4) + h(AQ.Ag) + h(A2A4)
~ h(A;) — h(As) — h(A3Ay) — h(ALAsAy) — h(A A AL). (7)

According to [11], if a polymatroid X', h) is representable, then it is also Ingletonian. A
natural question then arise#re the Ingleton inequalities sufficient to characterizgresentable

polymatroids?n this paper, we will show that the answer to this questionagative.

Following the framework for information inequalities peeged in [14], it is useful to treat a
rank function as a vector or point in2*!-dimensional real Euclidean space whose coordinates
are indexed by the power set &f. Thus a pointh € R2* s specified by its coordinates as
h = (h(A) : A C X). While a polymatroid is defined by a ground set and a rank fanct
the ground set is actually implicitly defined by the rank fiioc. Hence, strictly speaking, a

polymatroid (X', h) is no more than a rank function that satisfies the polymattoékioms.
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In other words, a polymatroid is merely a point in an Euclidespace and characterization of
representable polymatroids is equivalent to charactegifhose points induced by representable

polymatroids.

Regarding polymatroids as pointsm?‘x‘ permits us to define metrics and limits on the set of
polymatroids. Lefl,[X] be the set of alj-representable rank functions afdx] = (J, T [X])
be the set of all representable rank functions.

Definition 2: A polymatroid (X', h) (and the corresponding rank functid) is calledalmost
representabléf there exists a sequence of representable rank funcfigr}$°, and a sequence of
positive numbersg; such thath = lim;_,, ¢;g;. On the other handa is calledcc-representab
if h € con(Y[X]).

A linear inequality involving polymatroids is merely a liaeinequality overR2™"'. We are
interested to determine necessary conditions (lineanialéees in particular) on the rank function
h under which it is representable. In this paper, completeathearization of representable rank
functions means an explicit determination@fi(Y[X]) or the set of linear inequalities satisfied

by points incon(Y[X]). The following proposition may be directly verified.

Proposition 1: A linear inequality ", c;H(.A) > 0 holds for all representable polymatroids
(i.e. is a valid subspace rank inequality) if and only)if. ¢;h(.A) > 0 for all h € con(Y[X]).

IIl. CREATING NEW POLYMATROIDS

We now propose an approach to perturb an Ingletonian pohpidah a way that preserves the
Ingletonian property. This is achieved by Theorfedm 1. Welshddsequently show in Theoreims 2
and[3 that this perturbation also preserves (almost) reptability. In Sectioi 1V, we will
use this approach to perturb a membercofi(Y[X]), taking it outside ofcon(Y[X]). This
perturbed polymatroid will be used to show the existenceewi subspace rank inequalities for

representable polymatroids.

Theorem 1 {-pertubation): Let (), h) be an Ingletonian polymatroid. Lét< ¢ < h()) and
define forallA C Y

g(4) 2 min(h(A4), h(Y) - ¢). (8)

3 “cc” is @ mnemonic for “Closed and Convex cone”.

October 24, 2018 DRAFT



Then (), g) is also an Inlgetonian polymatroid.
Proof: We need to prove that
Jg (V1,V2, V35, V4) >0 9)
for all Vi, ...V, C Y. To simplify notation, define
J& V1, Ve, V3, Vi) £ g(ViVa) + 8V Vs) + g(ViVs) + 8(VaVs) + (Vo V)
Jg V1, V2, V3, V) 2 g(V1) + 8(V2) + g(VsVi) + g(Vi1)2Vs) + gV Vo V).
With these definitions, the Ingleton inequality (9) is wariit
Jg V1, Va2, V3, Vy) > Jg (Vi, Vo, V3, Vy). (10)

It is straightforward to prove thgfy, g) is a polymatroid. We must additionally show that it is
Ingletonian. Let
U={(1,2),(1,3),(2,3),(1,4),(2,4)}.

be the collection ofv C N such that the summanglV;,: € o) appears g (Vi, Va, Vs, V).
Let Q = {a C N, : h(Y) — e <h(V;,i € a)}. ThusQ identifies summands id* and J~ for
which thee-perturbation in[(B) bites. Note that if € @, theng(V;,i € a) > g(V;,i € ) for
all 3 C N,.

We will now proceed on a case-by-case basis, proving thatd@R)s in the following distinct

and exhaustive cases.
Case 1. QNU = 0.
Inequality [9) clearly holds and follows from the fact th{at, h) is Ingletonian,/; = Jy and
Jg < Jy-
Case2: QNU ={(1,2)}.

In this case,h(V;),) > h(Y) — e. By monotonicity of polymatroidsL.(R2)h(V;V,)Vs3) >
h(Y) — e. The left hand side of(10) thus becomes

Jg V1, Vo, V3, Vi) = Jif (Vi, V2, V3, Va) —h(ViVa) + h(Y) —e.
Similarly, its right hand side can be shown to be bounded atxywv
Jg V1, V2, V3, Vy) = Jy, (V1,V2, V3, Vi) —h(V1VoVs) + h(Y) —e.
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Thus [9) holds, sincé), h) is Ingletonian anda(V;V,) < h(V1V,Vs). A similar approach may
be used wher) N U is any one of(1, 3), (1,4), (2,3) or (2,4).

Case 3 QNU = {(1,3),(2,3)}.

As g is a polymatroid,g(V1Vs) + gV Vy) + g(WoVy) > g(Vh) + g(Ve) + g(WViWLV,) and
hence[(®) holds ag(V1Vs) +g(VaVs) = 2g(Y) > g(VsVy) + g(V1VeVs). Similarly, (9) holds if
QNU ={(1,4),(2,4)}.

Case4: QNU ={(1,2),(1,3)}.

Again, g(VoVs) +g(ViVa) +8(WVoVs) > g(Vi) +g(V2) +g(VsVy) and consequently (9) holds

becauseg is a polymatroid. Using the same argumeft, (9) also holdsnwhe) U is either
{(1,2),(1,4)},{(1,2),(2,3)} or {(1,2),(2,4)}.
Case5: QNU ={(1,3),(2,4)}.

Now g is a polymatroid and henggV; Vs)+g(VoVs)+g(ViVs) > g(Vh)+g(Vo) +g(Vi Vo Vs).
Consequently[{9) holds as in the previous case. Simil@)yholds wherQNU = {(1,4), (2,3)}.

Case6: QNU ={(1,3),(1,4)}.
In this case,[(9) holds becaugéV;Vs) + g(VoVs) +g(VaVi) > g(Vi) +g(Va) +g(VaVs V).
Case 7: |QNU|=3and@nNU = {(1,2),(2,3),(2,4)}.
Inequality [9) follows from
gV1Vs) +8(WViVy) = g(V1) + g(V1VsVa)
> g(V1) +8(VsVy).
A similar approach can be used for other cases wlgen U| > 3. n

In Theoreni L, we proved that theperturbation of an Ingletonian polymatroid is also Ingle-

tonian. Theorem]2 shows thatperturbation also preserves representability.

Theorem 2:Suppose(X', h) is representable and €, g.) be its e-perturbation [(B). Then

(X, g.) is almost representable for afy< ¢ < h(X). It is also representable if € Z.

Before we prove Theoref 2, we require some basic resultsdiegavector subspaces. Let

be a vector subspace of. Define A* as a subspace 61 such that

October 24, 2018 DRAFT



10

1) (A, A*) =W, and hence (A, A*) = H(W)

2) AnA*={0}.
Clearly, any vecton € W can be written uniquely a8 = u; +uy, whereu; € A* andu, € A.
We will refer tou; = T4(u) as the projection oft away from A. While T, (u) depends on the

choice of A*, it can be directly verified that the following lemma holds &l legitimate choices
of A*.

Lemma 2:Let B andC be subspaces d¥'. Then for any subspacé of IV,
Ta(B) £ {Ta(uw) : u€ B}
is a subspace dfl’. Furthermore,
H(Tx(B)) = H (B[ A), (11)
H(Ta((Bj,j € B))) = H(Ta(B;),j € B). (12)
Consequently,
1) H(Bj,j € B) = H(Ta(By),j € 8) = H(By,j € 8) — H(A)
2) IfH(B|C)=0(i.e.BCC),thenH (T4(B) | T4(C)) = 0. More generally, it (B | C;,i € a) =

0, thenH(TA(B) ‘ TA(CZ‘),i c Oé) = 0.
3) If BN A= {0} (ie.l(A; B)=0), thenH (B) = H (Ta(B)).

The projection operatdfs(-) has a natural interpretation. Specifically, {€t;, ..., X,,, A} be a
collection of subspaces i, which induces a representable polymatroid in the usual Bgy
Lemmal2, there exists subspadés,, . .., B,} of W such thatB; = T,(X;) and

H(Biica)=H(X;icalA). (13)

In other words, using the projection operatbx(-), one can transform any set of subspaces
{X1,...,X,}intoanothersef By, ..., B,} suchthatd (B;,i € a) = H(X;,i € a|A). Proof:
[Proof of Theoreni 2] SupposeY’, h) is representable. li(X') = 0, then the theorem is trivial.
Now supposéhr(X') > 0 and hencéh(X') > 1 (since it is the dimension of a space). We begin by
proving that(X', g.) is representable (and hence almost representable) wheh The argument

will subsequently be extended to cover other values. of
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First, as(X’, h) is representable, there exists subspdées € A/ such that
h(X;,i € a)= H(V;i € o) = dim(V;,i € a). (14)

Assume without loss of generality that these subspacesvarean underlying field,. For any
positive integer, F, can be regarded as a subfield®f.. In fact, for eachi, let Vi(’”) be the

subspaces ovéf,~ spanned by/;. Then
dim(V,"™ i € a) = dim(V;,i € a) (15)
or equivalently,H (V;"™ i € a) = H(V;,i € a).
Let C = H(Vy) andQ 2 {a C N : H(V,) < C}. Then for eachy € Q,
HVM™)=H(V,)<C-1.
)

The volume (i.e. cardinality) ogf\/i(m),i € a) is at most(¢™)“~! while the volume of(V;(m
V™ is a proper subset af/;™ i € N).

acQ "1

NS
N is (¢™)C. Hence, for sufficiently largen, | J
Letu € (V"™ i € N} but not in Uaco V™. Let A = (u) and define
B 2 T,y(V\™). (16)
By Lemmd.2, it is straightforward to prove that(«) = H(B;,i € «). Henceg, is representable.

Repeating the same argument multiple times, we can alse pha¥ the theorem also holds when

€ IS a positive integer.

Now, suppose = k/¢ is rational. For any representabl&’, h), it is easy to find another

representablé X’ f) such thatf = /h. Consequently

g.(A) = min(h(A), h(X) — k/0) (17)
- % min(fh(A), th(X) — k) (18)
= % min(f(A), f(X) — k). (19)

is almost representable.

Finally, the remaining case whenis irrational can be proved by a continuity argument.
Specifically, letr; be a sequence of rational numbers converging, tinen it is easy to prove

thatlim;_, g,, = g.. Hence,g. is almost representable. [ |
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The final result of this Section, Theorém 3 is a direct coneaqge of the following proposition.

Proposition 2: Let {(X, h;)}2, be a sequence of representable polymatroids suchithat,, ¢;h; =

h, for some positive sequence of numbérs}>°,. Supposd < e < hy(&X'). For eachi, define
gi(A) £ min(c;hy;(A), c;h;(X) —€) (20)
go(A) = min(ho(A), ho(X) — ). (21)
Thenlim;_,., g; = go and g, is almost representable.
Proof: If ¢ = hy(X), then the proposition is obvious. Now, suppese hy(X). By the
continuity of min(a, b),
lim (min (¢;h;(A), ciby(X) — €)) = min <Z_1Lrgo cihi(A), lim c;hy(X) - e)

and hencédim;_, . g, = go.

On the other hand, sinckém; .., c;h; = hy and0 < € < hy(X), we have for sufficiently
largei that 0 < e < ¢;h;(X) or equivalently0 < e/¢; < h;(X). As h; is representableg; /c;
and henceg; are almost representable by Theorem 2. Consequentlymtsdy, is also almost

representable. [ |

Theorem 3:Supposé X', h) is almost representable. Let', g) be itse-perturbed polymatroid

as defined in[(8). Theg is almost representable.

IV. MAIN RESULTS

The main result of this paper is the following theorem, whisha direct consequence of
Theorem[b, which we prove in this section, and Theokém 6 inftflewing section (which

establishes the existence of certain matroids required i@oren’b).

Theorem 4 (Insufficiency of Ingleton’s inequalitieIkhere exists an Ingletonian polymatroid
that is not cc-representable. Consequently, there ararlimequalities satisfied by all repre-

sentable polymatroids but not implied by Ingleton’s indqisss.

So far, we have defined the concept @perturbation and proved that it preserves both

the Ingletonian property and representability. We will nage e-perturbation to construct an
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Ingletonian polymatroid that is not cc-representablestiive will need to establish a key lemma

concerningconnected matroidgl3, Chapter 4].

Definition 3 (Connected Matroid)A matroid (X', h) is connectedf for any pair of X; and

X, in X, there exists a circuit contains bofty and X,.

Definition 4: Let M = (X, h) be a matroid. Defin&€()/) as the set of equalities of the forms
H(A|B)=0orI(A;B)=0 satisfied by)M.

Lemma 3:1f a matroid M = (X', h) is connected andlY', g) is any polymatroid that satisfies
the set ofZ(M) equalities induced by, theng(X;) is constant for allX; € X andg = ch
for somec > 0.

Proof: SupposeX;, X, belong to a circuit in the matroid/. Then there exists a subset

of variablesA such that
H(X1|Xa, A) = H(X5| X1, A) = I(X15.A) = I(Xa5.4) = 0 (22)

where [22) is with respect th. By assumptiong satisfiesZ(M), which includes[(22). It is
easy to prove that ifX, g) is a polymatroid also satisfying (R2), theyiX;) = g(Xs). By the

connectedness af/, g(X;) is constant for allX; € X.

Now, let B be any subset oft. Since (X, h) is a matroid, there existsl C 5 such that
h(B|A) = 0 andh(A) = >y ., h(X;), and these identities belong I M ). By assumption,
(X, g) also satisfieZ(M), and henceg(B|A) = 0 andg(A) = >y 4 8(Xi). Thush(B) =
[Ah(X;) andg(B) = | 4| g(X,). .

The main result of this paper hinges on the following theorérdescribes an approach
to adhere two representable matroids together in such a maythie resulting polymatroid is
not cc-representable. We establish this theorem for caedauatroids that are even (and odd)
representable but not almost odd (even) representableeXistgence of suclstrictly evenand
strictly odd matroids will be established in Theorér 6. Together withareen[%, this provides
the proof of Theoreml4, namely the insufficiency of the Ingfeinequalities .

Theorem 5:Let (X}, @) (and (X, $5)) be an even (and odd) connected representable matroid
that is not almost odd (almost even) representable.(Retd) be the direct sum of these two
matroids, namelyt’ = X, U X, and®(A) = &, (ANA,) + Po(ANA,) forall A C X. Suppose
0 < e < min(Py (X)), Po(X,)). Then (X, ®¢) is not cc-representable.
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Proof: By definition of e-perturbation[(B), it is easily verified that
O(A) =P1(A), VAC K (23)
O (B) = ®(B), VB C Xs. (24)
Hence,®¢ satisfies all the equaliti€()/;) andZ(Ms).

Suppose to the contrary thét € con(Y[X]). Then by definition there exists a sequence of
pointsh; € con(Y[X]) such thatlim;_,,, h; = ®. As eachh, is a point in a2/*/-dimensional

Euclidean space, Caratheodory’s theorem allows éadb be written

2%l 41

hi = Z Ci,jfi,j (25)

7j=1
wherec; ; > 0 and d; ,f; ; is representable for somg; > 0.
Assume without loss of generality thhf(X') = f; ;(X) = ®°(X) for all ¢, j. Then allf; ; are
contained in the compact sgf € R : 0 < f(A) < ®<(X) for all A C X} andz:?fl“rl Cij=
1 (and henc® < ¢; ; < 1). According to the Bolzano-Weierstrass theorem, any bedrsgquence
in a finite dimensional Euclidean space has a convergenequbace. We may therefore assume

without loss of generality the existence of the followingilis for anyj = 1,..., 2%l +1

lim ¢; ; = ¢;
im0 J

lim f; ; = f;.
imoo Y

Henced< = Z?‘:Xl‘-i-l ij]
As eachf; is the limit of a sequence of polymatroid$; ;}°,, (X, f;) is also a polymatroid
for all j. Therefore,(X,f;) also satisfies equalities();) and Z(M;). On the other hand, as

€ >0, (X)) + P(Ay) > (X)), there is at least ong such that
£;(X1) + £;(A) > £;(X).

Consequently, botti;(X;) and f;(X,) are positive ag; is a polymatroid. Furthermore, since
(X, @) and (A5, ) are connected matroids, by Lemfa 3, there exists positinstants: and

¢ such that
fj (A) = C(I)l(A), VA - Xl, (26)

fj(B) = C/(I)Q(B), VB - Xg. (27)
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So far, we have proved that @ € con(Y[X]), then there exists a sequence of polymatroids
{(X,1;;)}2, such that (1), ;f; ; is representable for somg; > 0, and (2) its limitf; satisfies
(26) and [(2F). We may further assume without loss of gerigrdiiat d, ;f; ; is either even
representable or odd representable foriatbuppose first that alf, ;f; ; are even representable
for all . The fact thatlim; ,. f; ;(B) = f;(B) = ¢ ®2(B) thus implies that X, ®,) is almost
even representable, contradicting the hypothesis. Siyitzontradiction occurs ifl; ;f; ; are odd

representable for all. Contradiction occurs in both cases and hence the theorgmoved. ®

V. STRICTLY ODD AND EVEN MATROIDS

In this section, we will construct two representable malsgit;, ®,) and(X,, ®,) that satisfy
the conditions given in Theorem 5. These matroids corredporthe first and second networks
in [15, Section 11].

Define the matroid X}, ®,) with ®,(-) = dim(-) and ground set

Xy £ Y1, Ys, Y, Wy, Wo, W, Wy} (28)
Y, ={(w),i1=1,2,3 (29)
Wy = (u; + uy) (30)
Wa = (u + ug) (31)
W3 = (u; + uy + ug) (32)
W, = (u; + u3). (33)

whereu,, u,, us are linearly independent vectors over a finite field of evearatteristic. Clearly

(X1, 1) is even representable (and hence Ingletonian). In fact,ishihe Fano matroidZ’.
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Define the second matroidt,, ®,) with ®,(-) = dim(-) and

X2 {Zy,..., Zs, Vi, .., Va), (34)
Zi=(w),i=1,...,5 (35)
Vi = (u; +uy +ug) (36)
Vo = (us +uy + us) 37)
Vs = (u; + uy) (38)
Vi = (u; + us) (39)
Vs = (uy +u3) (40)
Ve = (ug + uy) (41)
Vi = (ug + uj) (42)
Vs = (us +u3) (43)

where {uy,...u;} are linearly independent over a finite field of odd charasteri Clearly

(X1, ;) is odd representable (and hence Ingletonian).

It is easy to prove thatX;, ®;) and (X, ®,) are both connected. Furthermorgl;, ®,)

satisfies the following equalities (recalling the notatiboonventions[(2),{3))

3
H(Y1,Ys, Y3) = > H(Y)) (44)
=1
H(W:i|YiYs) =0 H (W2 |YaY3) =0 (45)
H (W3 | YiW;) =0 H Wy | WiWs) =0
HY, | YsWy) =0 H (Ys | W3Wy) =0

H(Y; | WiW3) =0

It is worth pointing out explicitly that? (W, | W;WW5) = 0 because all vectors are defined over

a finite field of even characteristic (henag, + uz = u; + uy + us + u3).

Simiarly, (X», ) satisfies

H(Zy,....Z5) =Y H(Z) (46)
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H(Vi|Z,Z575) = 0 H(Va|Z32475) = 0 (47)
H(V5|Z125) =0 H(Vy|Z:1Z3) =0
H(Vs|Z2Z3) = 0 H(Vs|Z3Z4) = 0
H(Vz|Z3Z5) = 0 H(Vs|Z4Z5) = 0
H(Z:[ViV5) =0 H(Zx[ViVy) =0
H(Zs|V3Vs) = 0 H(Zs|V3,..., Vi) =0
H(Z3|V2Vg) =0 H(Z4|VaV7) =0
H(Z5[VaVs) = 0.
In this case, we emphasis that(Z;|Vs,...,Vs) = 0 holds because the characteristic of the

underlying field is odd.

Theorem 6:(X, ;) defined by [(2B) is even representable but not almost odd septable.
Simiarly, (X, ®,) defined by[(34) is odd representable but not almost evenseptable.

Before we prove Theorehi 6, we will need two lemmas, which jggome elementary results

from linear algebra.

Lemma 4:Let {B,...,B,} and C be subspaces d’. Then for anya C N, there exists
a subspaced such thatH (A) = H(C | Bj,j€a) and H (T4(C) | T4 (B;),j € a) = 0.

Furthermore, for a given sequence of subspddes. .., B: C'}2, and k(i) > 0 such that

there exists a sequence of subspafeds s, such that for all3 C A,
H(AY) = H(C'| Bi,j € a)
H (Tqi (C) | Tai (B}),j€a) =0
: 1 o : 1 i
lim WH (Ta: (B;) 5 € B) = lim mH (Bl,jep).
Proof: It is easy to pick a subspacé of C' such thatH(A) = H(C | B;,j € «) and
that A and (B;,j € «) together span(C, B;,j € «). Then it is straightforward to prove that
H(T4(C) | Ta(By),j € a) =0, which proves the first part of the lemma.
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Similarly, for eachi, there exists a subspack such thatH (A") = H(C" | B, j € «), and
H(T4i(C") | Tai(B}),j € ) = 0. By Lemmal2, for anys

H(By) —H(A') <H(Ts(Bj).jef) <H(Bj). (48)
The remaining part of the lemma then followslas;_, .. -~ 0] H(A’) =0. [ |

Lemma 5:Let {By,..., B,} be a collection of subspaces agdC N. Then there exists a

subspaced such that

H(Ta(By)) = H (B; | Bﬁ\j) , Vi € B, (49)
H(Ty(By),j€pB)= Z H (T4 (B (50)
JEB
H(A)=H (Bg)— > H(B;|Ba;). (51)
JEB

Furthermore, for a sequence of subspagBs, ..., B:}2, and k(i) > 0 such that
1 i i i
lim ——  H (B}) - > H(B}|Bj,) | =0.
i—oo k (7) gt
there exists a sequence of subspadésuch that for allh C N,
ST H (T (B))) = H (Tu (BY) .j € )
jep

| T i
Z_lggomH(TAi (Bj),jéa)—ilgglomH(Ba).

Proof: Define A as the minimal subspace containiiy N (B;,j € 5\ i) for i € j.
Then it is straightforward to prove that for all A is a subspace ofB;,j € \ i) and hence
H(A|Bj,j € g\ i) =0. Similarly, for alli, B;NA = B;N(B;,j € f\i) and hencd (B;; A) =
I(B;; B;, j € p\i) and

H(Bl,...,Bn|A)=ZH(Bz'|A):H(Bi|Bﬁ\i)

Consequently[(49)-(51) holds. The remaining part of thente be proved similarly as in Lemma
4. u

The final ingredients that we require are the following ressfrom [15]. Although these results
were originally stated in terms of linear network coding acify, we can restate them purely in

terms of rank inequalities as follows.
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Theorem 7 (Dougherty, Freiling, ZegerBuppose thatt; = {Y31,Y5, Y3, Wy,..., Wy} is a
collection of vector subspaces over a finite field of odd attarsstic. If the resulting polymatroid
satisfies[(44) and (45), then [15, Theorem IV.3]

minz’:l,z,?, H(Yi) < %
max;_y 034 H(W;) = 5
Similarly, suppose that, = {7;,..., Z;, Vi, ..., Vgs} is a collection of vector subspaces over a
finite field of even characteristic. X, satisfies[(46) and_(47), then [15, Theorem 1V.4]
min,_y 5 H(Z;) < 10

ey

Proof: [Proof of Theorenil6] Suppose to the contrary that &,) is almost even repre-
sentable. Then by definition there exists a sequence of epeagentable polymatroidsX, g;)}5°,
and positive constantg such thatim; ., d;g; = ®,. While (X, ®,) satisfies[(46) and (47), these
constraints may not be satisfied bY, g;) in general. However, we can use Lemrhas 4[and 5 to
construct from{ (X', g;)}32, another sequence of even representable polymat{ditisg’)}2,
such thatg! satisfies[(46) and (47), ardn; ., d;g; = lim;_,, d;g; = Po. As such,

ming—; 5 g;(Zx)  ming—y 5 Po(Z) @ 4 (52)

ivoo maxp—1, sg (Vi) maxgp—; g Pa(Vi)
where (a) follows from connectivity aft’, ®,). The existence of such a sequeR¢&’, d;g’)}°,
contradicts Theorem 7 which proved that the limit](52) ishaed above by0/11. Thus(X', ®,)
cannot be almost even representable. Using the same argusneenan also prove thatt, ®,)

is not almost odd representable. [ |

VI. INSUFFICIENCY OFALL KNOWN RANK INEQUALITIES

In Section[]ll, we constructedX’, ®) € con(Y[X]) such that itse-pertubation(X, ) &
con(Y[X]). Theorem[ Il proved the existence of new subspace rank ingsighat are not
implied by Ingleton’s inequalities. This was achieved bypwing that(X', &) is Ingletonian. In
the following, we will give another proof for Theorem 1. Thadternative proof demonstrates
the kind of difficulties one may face when characterizingrespntable polymatroids. Finally,
we will generalize our main result to show that the newly disred DFZ inequalities are also

insufficient.
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Proof: [Alternative proof of Theorerl1] In [8] and [16], all the egtne vectorgon(Y[X])
are identified for|X'| = 4. It can be easily verified that all of the associated rank tions are
ternary representable. Hence, every vectordn(Y|X]) is almost representable. By Theorem

[3, its e-perturbed counterpart is almost representable.

Now, consider any Ingletonian polymatrofd’, h) and itse-perturbation(X’, g) defined as in
@). For any subset¥;,...,V, C X, h induces a polymatroid/V,, h’') via h'(a) £ h(V;,i €
«). Clearly,h’ is also Ingletonian, since for any subsets...,as C N, Juw(ag,...,qq) =
Jn(Vay, -, Va, ). Hence h' is also almost representable. By Theoigm 3, its pertunbasia@lso

almost representable.
Now, if h(X) — e > h'(VN,), then clearly
gVi,i € a) =h((V;,i € a) (53)
for all a. ThenJg(Va,, .- s Vo) = Ia(Vay, - -+, Vau) > 0.

On the other hand, suppose thgtt') — ¢ < h'(N;). Then

g(Vi,i € ) = min(h(V;,i € a), h(X) — ¢) (54)
= min(h'(e), h(X) —¢) (55)
= min(h'(e), h'(NVy) +h(X) —h'(Ny) —¢) (56)
= min(h'(a), W (N}) — v) (57)

wherev £ h’(N,) + € — h(X). Let
g'(a) = min(h'(a), h'(N;) —v).
Theng' is almost representable and hen&gV.,,,,....V.,) = Jy (o, ..., aq) > 0. u

Theorem 8 (Generalization)Supposg)| = n and that all vectorg € con(Y[)]) are almost
representable. Consider any valid subspace rank inegudlihe form
> cHVii€a)>0 (58)
aClNn
whereV; C ). Then for any cc-representable polymatrgitl,h) (i.e., h € con(Y[X])), its
perturbed counterpart will satisfy the inequality (58).nSequently(X’, ®¢) in Section[¥ will
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satisfy [68) and hence any inequalities involving no moranth subsets are insufficient to

characterizeon(Y[X]) in general.
Proof: The proof is similar to the alternative proof for Theorém 5. [ |

The newly discovered inequalities [12] were shown to be ceffit to characterizeon(Y[X])
when|X| < 5. In fact, it was further proved that all the extreme vectdrshe conecon(Y[X])
areg-representable, for sufficiently large As a result, every vector igon(Y[X]) will be almost
representable. By Theorem 8, these newly discovered itidgaare insufficient to characterize

con(Y[X]) in general.

VIlI. CONCLUSION

A complete characterization of representable polymasrdids been open for years. This
problem is fundamental in nature and is intimately relatethe information thoeretic problem
of the characterization of transmission throughput in ioeks with linear network coding. Until
quite recently it was not know whether Ingleton’s inequeditare sufficient to characterize all
representable polymatroids. In this paper, we have cartstiuan Ingletonian polymatroid that
satisfies all known (Ingleton and Dougherty-Freiling-Zggeubspace rank inequalities. As a
result, there are inequalities remaining to be discovevédile our approach does not suggest
how to construct these new inequalities, it at least dennatest some of the difficulties of the

problem.
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