
ar
X

iv
:0

90
7.

50
30

v2
  [

cs
.IT

]  
19

 S
ep

 2
00

9
1

Existence of new inequalities for representable

polymatroids

Terence Chan, Alex Grant and Doris Kern

Abstract

An Ingletonian polymatroid satisfies, in addition to the polymatroid axioms, the inequalities of

Ingleton (Combin. Math. Appln., 1971). These inequalitiesare required for a polymatroid to be repre-

sentable. It is has been an open question as to whether these inequalities are also sufficient. Representable

polymatroids are of interest in their own right. They also have a strong connection to network coding.

In particular, the problem of finding the linear network coding capacity region is equivalent to the

characterization of all representable, entropic polymatroids. In this paper, we describe a new approach

to adhere two polymatroids together to produce a new polymatroid. Using this approach, we can construct

a polymatroid that is not inside the minimal closed and convex cone containing all representable

polymatroids. This polymatroid is proved to satisfy not only the Ingleton inequalities, but also the

recently reported inequalities of Dougherty, Freiling andZeger. A direct consequence is that these

inequalities are not sufficient to characterize representable polymatroids.

I. INTRODUCTION

The idea of network coding was first proposed in the seminal paper [1] as a means to increase

achievable transmission throughput in data communications networks. In the traditional packet-

switched routing approach, intermediate network nodes canonly duplicate received packets and

forward them to subsequent nodes. In contrast, network coding allows arbitrary computational

data processing at intermediate nodes. For example, intermediate nodes may forward arbitrary

linear combinations of several received packets. In the single source multicast scenario, network

coding significantly increases maximal transmission throughput, and achieves the max-flow min-

cut bound. It was subsequently proved [2] that linear network codes suffice to achieve maximal

throughput for this case.
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While the easily computable maximum flow (and associated minimum cut) determines the

maximal attainable throughput in the single source scenario, this bound is not tight in general

(multiple sources and multiple sinks). In [3], first steps were made to characterize transmission

throughput for the general case viaentropy functions(polymatroids whose ground set is a set

of random variables, and whose rank function is Shannon entropy). Inner and outer bounds on

throughput were obtained in this way. Using the same idea, anexact characterization of the

set of all achievable throughputs was later obtained [4]. Analogous bounds for networks where

intermediate nodes are restricted to use only linear codes were obtained in [5] viarepresentable

entropy functions.

Unfortunately, these entropy function based characterizations are implicit in nature, since an

explicit characterization of the set of all entropy functions is still missing. Characterization of this

set is one of the major open problems in information theory. Similarly, the set of all representable

entropy functions has no explicit characterization. Notably, this set is a subset of representable

polymatroids, whose characterization is one of the major open problems in matroid theory.

This lack of explicit, computable results could prompt one to question this approach based on

entropy functions. Although it leads to attractive implicit characterizations, perhaps the difficulties

that arise are somehow an artefact of the approach. One couldtherefore be tempted to seek

simpler characterizations of transmission throughput that avoid the need to precisely know the

set of entropy functions. For instance, [1] demonstrated that a much simpler characterization is

possible in the single source scenario where the max-flow min-cut bound is tight. Unfortunately,

a recent paper [6] disproved the existence of any simpler characterization for the general case.

Using a specially contructed network, it was proved that if one can determine the set of all

achievable throughputs in the special network, then one canalso determine the set of all entropy

functions (and vice-versa). Hence, determining achievable throughput for network coding is in

general no simpler than determining the set of entropy functions. A similar duality was obtained

in the same paper between the set of throughputs achieved by linear codes and the set of

representable entropy functions.

These results [3]–[6] indicate a very close tie between characterization of (representable)

entropy functions and throughput achievable with (linear)network codes. Characterization of

entropy functions is equivalent to finding all linear information inequalities that hold regardless of
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the underlying joint distribution [3]. It is a well known result, extending back to Shannon [7] that

entropy and mutual information are both nonnegative, correpsonding exactly to the polymatroid

axioms. No further information inequalities were found forfifty years, until [8] reported the

first “non-Shannon” information inequality. The significance of that result lay not only in the

inequality itself, but also in its construction. This particular approach for construction has been the

main ingredient in every non-Shannon inequality that has been subsequently discovered. Using

this appraoch, new inequalities can be found mechanically [9] and there are in fact infinitely many

such independent inequalities even when there are only fourrandom variables involved [10].

Despite this progress, a complete characterization is still missing, and we still only have one

basic approach for finding new inequalities.

This situation does not improve for representable entropy functions. In addition to the poly-

matroid inequalities, it is well known that representable entropy functions satisfy Ingleton’s

inequalities [11]. Specifically, letW1, . . . ,W4 be vector subspaces. Then

0 ≤ dim 〈W1,W2〉+ dim 〈W1,W3〉+ dim 〈W1,W4〉+ dim 〈W2,W3〉+ dim 〈W2,W4〉

− dim 〈W1〉 − dim 〈W2〉 − dim 〈W3,W4〉 − dim 〈W1,W2,W3〉 − dim 〈W1,W2,W4〉 (1)

where〈Wi,Wj〉 is the minimal vector subspace containingWi∪Wj , and similar for〈Wi,Wj,Wk〉.

It has been an open problem since 1971 as to whether these inequalities are also sufficient as

well as being necessary conditions for representability.

Very recently, several new inequalities for representablepolymatroids were reported at the 2009

Workshop on Applications of Matroid Theory and Combinatorial Optimization to Information

and Coding Theory [12]1. These inequalities were found by adapting the approach in [8], [9]. It

was verified numerically that the newly obtained inequalities (which we shall refer to asDFZ

inequalities) completely characterize representable entropy functions involving five variables (the

Ingleton inequalities are already known to be sufficient forfour variables). It is not known if

these inequalities remain sufficient for more than five variables.

The objective of this paper is to understand properties of representable entropy functions (and

more generally, representable polymatroids). Our main contribution is a proof for the insufficiency

of the Ingleton and DFZ inequalities for charcterization ofrepresentable polymatroids.

1We became aware of this independent work during the preparation of early drafts of this manuscript.
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Whereas [12] constructively proves the insufficiency of theIngleton inequalities following the

Zhang-Yeung approach [8], our approach is totally different. We construct a polymatroid which

satisfies every Ingleton and DFZ inequality, but which is notcontained within the minimal closed

and convex cone containing all representable polymatroids. This directly establishes the existence

of further, yet-to-be-discovered linear inequalities forrepresentable polymatroids.

The organization of the paper is as follows. In Section II, wewill introduce the required

technical framework for the problem. Section III introduces a new method for constructing

a polymatroid by adhering together any two Ingleton polymatroids. We will prove that the

resulting polymatroids satisfy the Ingleton inequalities, and that this construction also preserves

representability. In Section V, we will construct an Ingleton polymatroid by adhering two

representablepolymatroids together. This constructed polymatroid willbe proved in Section

IV to lie outside the closed and convex cone containing all representable polymatroids. This

establishes the insufficiency of Ingleton’s inequalities.Finally, in Section VI, we prove that this

constructed polymatroid also satisfies the DFZ inequalities (for five variables), demonstrating

the insufficiency of the DFZ inequalities.

The following notational conventions will be used. Set union will be denoted by concatenation;

Singletons and sets with one element are not distinguished;GivenX = {X1, X2, . . . , Xn} and

any subsetα of the finite index set2 Nn = {1, 2, . . . , n}, the subscriptXα will mean the set

{Xi, i ∈ α}. For α, β ⊆ Nn, Xαβ = XαXβ = Xα ∪ Xβ all refer to the same set. Similarly,

for anyA,B ⊆ X , A ∪ B andAB are the same set.〈S〉 will denote the minimal vector space

spanned byS. We will usecon(S) to denote the minimal convex cone containing the setS and

con(S) to denote the closure ofcon(S). Finally, R, Z andFq are the reals, integers and a finite

field on q elements.

2If n is understood, the subscript may be dropped for simplicity.
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II. BACKGROUND

A polymatroidover theground setX = {X1, X2, . . . , Xn} is a tuple(X ,h) where therank

functionh : 2X 7→ R+ satisfies the following axioms for allA,B ⊆ X ,

h(∅) = 0 (R1)

A ⊆ B =⇒ h(A) ≤ h(B) (R2)

h(A ∪ B) + h(A ∩ B) ≤ h(A) + h(B). (R3)

A polymatroid (X ,h) is called amatroid [13], if it further satisfies the cardinality bound,

h(A) ≤ |A|, and the integrality constrainth(A) ∈ Z, for all A,B ⊆ X .

For anyA,B, C ⊆ X , define the generalized information expressions as follows:

H (A | C) , h(AC)− h(C) (2)

I (A;B | C) , h(AC) + h(BC)− h(C)− h(ABC). (3)

when C = ∅ we write H(A) = h(A) and I(A;B) = H(A) − H(A | B) (consistent with the

above definitions). It is straightforward to prove that(X ,h) is a polymatroid if and only if (R1)

holds and both (2) and (3) are nonnegative for all choices ofA,B andC.

Polymatroids arise in many different contexts. For example, let X = {X1, . . . , Xn} be a set

of random variables. This naturally induces a polymatroid(X ,h) such thath(A) is the Shannon

entropyH(A) of the subset of random variables inA. In this case, (2) and (3) are merely the

usual definitions for conditional entropy and mutual information, and(X ,h) is a polymatroid due

to the nonnegativity of (conditional) entropies and mutualinformation. We emphasise however

that the definitions (2) and (3) are made for arbitrary polymatroids (where the rank function may

not induced by random variables).

Polymatroids can also be induced by vector subspaces. LetX = (X1, . . . , Xn) be a set of

subspaces of a vector spaceW over a finite fieldFq. Define h(A) as the dimension of the

minimal vector subspace containing all the subspaces inA,

h(A), dim〈A〉 (4)

Then (X ,h) is also a polymatroid. These subspace induced polymatroids(called representable

polymatroids) are of the main objects of interest in this paper.
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According to definitions (2) and (3) above, whenh is defined as in (4), we can useH(A) to

denotedim〈A〉 for any set of vector subspacesA. Furthermore, the following lemma may be

easily verified.

Lemma 1:Let X = (X1, . . . , Xn) be a set of vector subspaces andA,B ⊆ X . Then

H(A|B) = dim〈A,B〉 − dim〈B〉 (5)

I(A;B) = dim (〈A〉 ∩ 〈B〉) (6)

Furthermore, ifV = 〈A〉 ∩ 〈B〉, thenI(A;B|V ) = 0.

We shall classify polymatroids as follows.

Definition 1 (Classification):A polymatroid(X ,h), and associated rank functionh, is called

• q-representableif there exists vector subspaces{V1, . . . , Vn} overFq such that for allα ⊆

Nn, H(Xα) = dim〈Vα〉 as defined in (4).

• representableif is q-representable for someq

• even representableif is 2m-representable for some positive integerm

• odd representableif is pm-representable for some odd primep and a positive integerm

• Ingletonian if it satisfies the Ingleton inequalityJh(A1,A2,A3,A4) ≥ 0 for all subsets

A1,A2,A3,A4 ⊆ X where

Jh (A1,A2,A3,A4) , h(A1A2) + h(A1A3) + h(A1A4) + h(A2A3) + h(A2A4)

− h(A1)− h(A2)− h(A3A4)− h(A1A2A3)− h(A1A2A4). (7)

According to [11], if a polymatroid(X ,h) is representable, then it is also Ingletonian. A

natural question then arises –Are the Ingleton inequalities sufficient to characterize representable

polymatroids?In this paper, we will show that the answer to this question isnegative.

Following the framework for information inequalities presented in [14], it is useful to treat a

rank function as a vector or point in a2|X |-dimensional real Euclidean space whose coordinates

are indexed by the power set ofX . Thus a pointh ∈ R
2|X|

is specified by its coordinates as

h = (h(A) : A ⊆ X ). While a polymatroid is defined by a ground set and a rank function,

the ground set is actually implicitly defined by the rank function. Hence, strictly speaking, a

polymatroid (X ,h) is no more than a rank function that satisfies the polymatroidal axioms.
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In other words, a polymatroid is merely a point in an Euclidean space and characterization of

representable polymatroids is equivalent to characterizing those points induced by representable

polymatroids.

Regarding polymatroids as points inR2|X|
permits us to define metrics and limits on the set of

polymatroids. LetΥq[X ] be the set of allq-representable rank functions andΥ[X ] =
⋃

q Υq[X ])

be the set of all representable rank functions.

Definition 2: A polymatroid(X ,h) (and the corresponding rank functionh) is calledalmost

representableif there exists a sequence of representable rank functions{gi}∞i=1 and a sequence of

positive numbersci such thath = limi→∞ cigi. On the other hand,h is calledcc-representable3

if h ∈ con(Υ[X ]).

A linear inequality involving polymatroids is merely a linear inequality overR2|X|
. We are

interested to determine necessary conditions (linear inequalities in particular) on the rank function

h under which it is representable. In this paper, complete characterization of representable rank

functions means an explicit determination ofcon(Υ[X ]) or the set of linear inequalities satisfied

by points incon(Υ[X ]). The following proposition may be directly verified.

Proposition 1: A linear inequality
∑

i ciH(A) ≥ 0 holds for all representable polymatroids

(i.e. is a valid subspace rank inequality) if and only if
∑

i cih(A) ≥ 0 for all h ∈ con(Υ[X ]).

III. CREATING NEW POLYMATROIDS

We now propose an approach to perturb an Ingletonian polymatroid in a way that preserves the

Ingletonian property. This is achieved by Theorem 1. We shall subsequently show in Theorems 2

and 3 that this perturbation also preserves (almost) representability. In Section IV, we will

use this approach to perturb a member ofcon(Υ[X ]), taking it outside ofcon(Υ[X ]). This

perturbed polymatroid will be used to show the existence of new subspace rank inequalities for

representable polymatroids.

Theorem 1 (ǫ-pertubation): Let (Y ,h) be an Ingletonian polymatroid. Let0 ≤ ǫ ≤ h(Y) and

define for allA ⊆ Y

g(A) , min(h(A),h(Y)− ǫ). (8)

3 “cc” is a mnemonic for “Closed and Convex cone”.
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Then (Y , g) is also an Inlgetonian polymatroid.

Proof: We need to prove that

Jg (V1,V2,V3,V4) ≥ 0 (9)

for all V1, . . . ,V4 ⊆ Y . To simplify notation, define

J+
g (V1,V2,V3,V4), g(V1V2) + g(V1V3) + g(V1V4) + g(V2V3) + g(V2V4)

J−
g (V1,V2,V3,V4), g(V1) + g(V2) + g(V3V4) + g(V1V2V3) + g(V1V2V4).

With these definitions, the Ingleton inequality (9) is written

J+
g (V1,V2,V3,V4) ≥ J−

g (V1,V2,V3,V4) . (10)

It is straightforward to prove that(Y , g) is a polymatroid. We must additionally show that it is

Ingletonian. Let

U = {(1, 2), (1, 3), (2, 3), (1, 4), (2, 4)}.

be the collection ofα ⊆ N4 such that the summandg(Vi, i ∈ α) appears inJ+
g (V1,V2,V3,V4).

Let Q , {α ⊆ N4 : h(Y)− ǫ ≤ h(Vi, i ∈ α)}. ThusQ identifies summands inJ+ andJ− for

which theǫ-perturbation in (8) bites. Note that ifα ∈ Q, theng(Vi, i ∈ α) ≥ g(Vi, i ∈ β) for

all β ⊆ N4.

We will now proceed on a case-by-case basis, proving that (9)holds in the following distinct

and exhaustive cases.

Case 1: Q ∩ U = ∅.

Inequality (9) clearly holds and follows from the fact that(Y ,h) is Ingletonian,J+
g = J+

h and

J−
g ≤ J−

h .

Case 2: Q ∩ U = {(1, 2)}.

In this case,h(V1V2) ≥ h(Y) − ǫ. By monotonicity of polymatroids (R2),h(V1V2V3) ≥

h(Y)− ǫ. The left hand side of (10) thus becomes

J+
g (V1,V2,V3,V4) = J+

h (V1,V2,V3,V4)− h(V1V2) + h(Y)− ǫ.

Similarly, its right hand side can be shown to be bounded above by

J−
g (V1,V2,V3,V4) = J−

h (V1,V2,V3,V4)− h(V1V2V3) + h(Y)− ǫ.
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Thus (9) holds, since(Y ,h) is Ingletonian andh(V1V2) ≤ h(V1V2V3). A similar approach may

be used whenQ ∩ U is any one of(1, 3), (1, 4), (2, 3) or (2, 4).

Case 3: Q ∩ U = {(1, 3), (2, 3)}.

As g is a polymatroid,g(V1V2) + g(V1V4) + g(V2V4) ≥ g(V1) + g(V2) + g(V1V2V4) and

hence (9) holds asg(V1V3) + g(V2V3) = 2g(Y) ≥ g(V3V4) + g(V1V2V3). Similarly, (9) holds if

Q ∩ U = {(1, 4), (2, 4)}.

Case 4: Q ∩ U = {(1, 2), (1, 3)}.

Again,g(V2V3)+g(V1V4)+g(V2V4) ≥ g(V1)+g(V2)+g(V3V4) and consequently (9) holds

becauseg is a polymatroid. Using the same argument, (9) also holds when Q ∩ U is either

{(1, 2), (1, 4)}, {(1, 2), (2, 3)} or {(1, 2), (2, 4)}.

Case 5: Q ∩ U = {(1, 3), (2, 4)}.

Now g is a polymatroid and henceg(V1V2)+g(V2V3)+g(V1V4) ≥ g(V1)+g(V2)+g(V1V2V3).

Consequently, (9) holds as in the previous case. Similarly,(9) holds whenQ∩U = {(1, 4), (2, 3)}.

Case 6: Q ∩ U = {(1, 3), (1, 4)}.

In this case, (9) holds becauseg(V1V2) + g(V2V3) + g(V2V4) ≥ g(V1) + g(V2) + g(V2V3V4).

Case 7: |Q ∩ U | = 3 andQ ∩ U = {(1, 2), (2, 3), (2, 4)}.

Inequality (9) follows from

g(V1V3) + g(V1V4) ≥ g(V1) + g(V1V3V4)

≥ g(V1) + g(V3V4).

A similar approach can be used for other cases when|Q ∩ U | ≥ 3.

In Theorem 1, we proved that theǫ-perturbation of an Ingletonian polymatroid is also Ingle-

tonian. Theorem 2 shows thatǫ-perturbation also preserves representability.

Theorem 2:Suppose(X ,h) is representable and let(X , gǫ) be its ǫ-perturbation (8). Then

(X , gǫ) is almost representable for any0 ≤ ǫ ≤ h(X ). It is also representable ifǫ ∈ Z.

Before we prove Theorem 2, we require some basic results regarding vector subspaces. LetA

be a vector subspace ofW . DefineA∗ as a subspace ofW such that

October 24, 2018 DRAFT
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1) 〈A,A∗〉 = W , and henceH(A,A∗) = H(W )

2) A ∩A∗ = {0}.

Clearly, any vectoru ∈ W can be written uniquely asu = u1+u2 whereu1 ∈ A∗ andu2 ∈ A.

We will refer tou1 , TA(u) as the projection ofu away fromA. While TA(u) depends on the

choice ofA∗, it can be directly verified that the following lemma holds for all legitimate choices

of A∗.

Lemma 2:Let B andC be subspaces ofW . Then for any subspaceA of W ,

TA(B), {TA(u) : u ∈ B}

is a subspace ofW . Furthermore,

H (TA(B)) = H (B | A) , (11)

H (TA(〈Bj , j ∈ β〉)) = H (TA(Bj), j ∈ β) . (12)

Consequently,

1) H (Bj , j ∈ β) ≥ H (TA(Bj), j ∈ β) ≥ H (Bj , j ∈ β)−H (A)

2) If H (B | C) = 0 (i.e.B ⊆ C), thenH (TA(B) | TA(C)) = 0. More generally, ifH (B | Ci, i ∈ α) =

0, thenH (TA(B) | TA(Ci), i ∈ α) = 0.

3) If B ∩A = {0} (i.e. I (A;B) = 0), thenH (B) = H (TA(B)).

The projection operatorTA(·) has a natural interpretation. Specifically, let{X1, . . . , Xn, A} be a

collection of subspaces inW , which induces a representable polymatroid in the usual way. By

Lemma 2, there exists subspaces{B1, . . . , Bn} of W such thatBi , TA(Xi) and

H (Bi, i ∈ α) = H (Xi, i ∈ α | A) . (13)

In other words, using the projection operatorTA(·), one can transform any set of subspaces

{X1, . . . , Xn} into another set{B1, . . . , Bn} such thatH (Bi, i ∈ α) = H(Xi, i ∈ α|A). Proof:

[Proof of Theorem 2] Suppose(X ,h) is representable. Ifh(X ) = 0, then the theorem is trivial.

Now supposeh(X ) > 0 and henceh(X ) ≥ 1 (since it is the dimension of a space). We begin by

proving that(X , gǫ) is representable (and hence almost representable) whenǫ = 1. The argument

will subsequently be extended to cover other values ofǫ.
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First, as(X ,h) is representable, there exists subspacesVi, i ∈ N such that

h(Xi, i ∈ α) = H(Vi, i ∈ α), dim〈Vi, i ∈ α〉. (14)

Assume without loss of generality that these subspaces are over an underlying fieldFq. For any

positive integerm, Fq can be regarded as a subfield ofFqm . In fact, for eachi, let V (m)
i be the

subspaces overFqm spanned byVi. Then

dim〈V (m)
i , i ∈ α〉 = dim〈Vi, i ∈ α〉 (15)

or equivalently,H(V
(m)
i , i ∈ α) = H(Vi, i ∈ α).

Let C = H(VN ) andQ, {α ⊆ N : H(Vα) < C}. Then for eachα ∈ Q,

H(V (m)
α ) = H(Vα) ≤ C − 1.

The volume (i.e. cardinality) of〈V (m)
i , i ∈ α〉 is at most(qm)C−1 while the volume of〈V (m)

i , i ∈

N〉 is (qm)C . Hence, for sufficiently largem,
⋃

α∈Q V
(m)
i is a proper subset of〈V (m)

i , i ∈ N〉.

Let u ∈ 〈V (m)
i , i ∈ N〉 but not in

⋃

α∈Q V
(m)
i . Let A = 〈u〉 and define

Bi , TA(V
(m)
i ). (16)

By Lemma 2, it is straightforward to prove thatgǫ(α) = H(Bi, i ∈ α). Hence,gǫ is representable.

Repeating the same argument multiple times, we can also prove that the theorem also holds when

ǫ is a positive integer.

Now, supposeǫ = k/ℓ is rational. For any representable(X ,h), it is easy to find another

representable(X , f) such thatf = ℓh. Consequently

gǫ(A) = min(h(A),h(X )− k/ℓ) (17)

=
1

ℓ
min(ℓh(A), ℓh(X )− k) (18)

=
1

ℓ
min(f(A), f(X )− k). (19)

is almost representable.

Finally, the remaining case whenǫ is irrational can be proved by a continuity argument.

Specifically, letνj be a sequence of rational numbers converging toǫ, then it is easy to prove

that limj→∞ gνj = gǫ. Hence,gǫ is almost representable.
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The final result of this Section, Theorem 3 is a direct consequence of the following proposition.

Proposition 2: Let {(X ,hi)}∞i=1 be a sequence of representable polymatroids such thatlimi→∞ cihi =

h0 for some positive sequence of numbers{ci}∞i=1. Suppose0 ≤ ǫ ≤ h0(X ). For eachi, define

gi(A), min(cihi(A), cihi(X )− ǫ) (20)

g0(A), min(h0(A),h0(X )− ǫ). (21)

Then limi→∞ gi = g0 andg0 is almost representable.

Proof: If ǫ = h0(X ), then the proposition is obvious. Now, supposeǫ < h0(X ). By the

continuity ofmin(a, b),

lim
i→∞

(min (cihi(A), cihi(X )− ǫ)) = min
(

lim
i→∞

cihi(A), lim
i→∞

cihi(X )− ǫ
)

and hencelimi→∞ gi = g0.

On the other hand, sincelimi→∞ cihi = h0 and 0 ≤ ǫ < h0(X ), we have for sufficiently

large i that 0 ≤ ǫ ≤ cihi(X ) or equivalently0 ≤ ǫ/ci ≤ hi(X ). As hi is representable,gi/ci

and hencegi are almost representable by Theorem 2. Consequently, its limit g0 is also almost

representable.

Theorem 3:Suppose(X ,h) is almost representable. Let(X , g) be itsǫ-perturbed polymatroid

as defined in (8). Theng is almost representable.

IV. M AIN RESULTS

The main result of this paper is the following theorem, whichis a direct consequence of

Theorem 5, which we prove in this section, and Theorem 6 in thefollowing section (which

establishes the existence of certain matroids required forTheorem 5).

Theorem 4 (Insufficiency of Ingleton’s inequalities):There exists an Ingletonian polymatroid

that is not cc-representable. Consequently, there are linear inequalities satisfied by all repre-

sentable polymatroids but not implied by Ingleton’s inequalities.

So far, we have defined the concept ofǫ-perturbation and proved that it preserves both

the Ingletonian property and representability. We will nowuse ǫ-perturbation to construct an
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Ingletonian polymatroid that is not cc-representable. First, we will need to establish a key lemma

concerningconnected matroids[13, Chapter 4].

Definition 3 (Connected Matroid):A matroid (X ,h) is connectedif for any pair of X1 and

X2 in X , there exists a circuit contains bothX1 andX2.

Definition 4: Let M = (X ,h) be a matroid. DefineI(M) as the set of equalities of the forms

H (A | B) = 0 or I (A;B) = 0 satisfied byM .

Lemma 3: If a matroidM = (X ,h) is connected and(X , g) is any polymatroid that satisfies

the set ofI(M) equalities induced byM , theng(Xi) is constant for allXi ∈ X andg = ch

for somec ≥ 0.

Proof: SupposeX1, X2 belong to a circuit in the matroidM . Then there exists a subset

of variablesA such that

H(X1|X2,A) = H(X2|X1,A) = I(X1;A) = I(X2;A) = 0 (22)

where (22) is with respect toh. By assumption,g satisfiesI(M), which includes (22). It is

easy to prove that if(X , g) is a polymatroid also satisfying (22), theng(X1) = g(X2). By the

connectedness ofM , g(Xi) is constant for allXi ∈ X .

Now, let B be any subset ofX . Since (X ,h) is a matroid, there existsA ⊂ B such that

h(B|A) = 0 andh(A) =
∑

Xi∈A
h(Xi), and these identities belong toI(M). By assumption,

(X , g) also satisfiesI(M), and henceg(B|A) = 0 and g(A) =
∑

Xi∈A
g(Xi). Thush(B) =

|A|h(Xi) andg(B) = |A| g(Xi).

The main result of this paper hinges on the following theorem. It describes an approach

to adhere two representable matroids together in such a way that the resulting polymatroid is

not cc-representable. We establish this theorem for connected matroids that are even (and odd)

representable but not almost odd (even) representable. Theexistence of suchstrictly evenand

strictly odd matroids will be established in Theorem 6. Together with Theorem 5, this provides

the proof of Theorem 4, namely the insufficiency of the Ingleton inequalities .

Theorem 5:Let (X1,Φ1) (and(X2,Φ2)) be an even (and odd) connected representable matroid

that is not almost odd (almost even) representable. Let(X ,Φ) be the direct sum of these two

matroids, namelyX = X1 ∪X2 andΦ(A) = Φ1(A∩X1) +Φ2(A∩X2) for all A ⊆ X . Suppose

0 < ǫ ≤ min(Φ1(X1),Φ2(X2)). Then(X ,Φǫ) is not cc-representable.
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Proof: By definition of ǫ-perturbation (8), it is easily verified that

Φǫ(A) = Φ1(A), ∀A ⊆ X1 (23)

Φǫ(B) = Φ2(B), ∀B ⊆ X2. (24)

Hence,Φǫ satisfies all the equalitiesI(M1) andI(M2).

Suppose to the contrary thatΦǫ ∈ con(Υ[X ]). Then by definition there exists a sequence of

pointshi ∈ con(Υ[X ]) such thatlimi→∞ hi = Φǫ. As eachhi is a point in a2|X |-dimensional

Euclidean space, Caratheodory’s theorem allows eachhi to be written

hi =

2|X|+1
∑

j=1

ci,jfi,j (25)

whereci,j ≥ 0 anddi,jfi,j is representable for somedi,j > 0.

Assume without loss of generality thathi(X ) = fi,j(X ) = Φǫ(X ) for all i, j. Then allfi,j are

contained in the compact set{f ∈ R
2|X|

: 0 ≤ f(A) ≤ Φǫ(X ) for all A ⊆ X} and
∑2|X|+1

j=1 ci,j =

1 (and hence0 ≤ ci,j ≤ 1). According to the Bolzano-Weierstrass theorem, any bounded sequence

in a finite dimensional Euclidean space has a convergent subsequence. We may therefore assume

without loss of generality the existence of the following limits for anyj = 1, . . . , 2|X | + 1

lim
i→∞

ci,j = cj

lim
i→∞

fi,j = fj.

HenceΦǫ =
∑2|X|+1

j=1 cjfj .

As eachfj is the limit of a sequence of polymatroids{fi,j}∞i=1, (X , fj) is also a polymatroid

for all j. Therefore,(X , fj) also satisfies equalitiesI(M1) and I(M2). On the other hand, as

ǫ > 0, Φǫ(X1) + Φǫ(X2) > Φǫ(X ), there is at least onej such that

fj(X1) + fj(X2) > fj(X ).

Consequently, bothfj(X1) and fj(X2) are positive asfj is a polymatroid. Furthermore, since

(X1,Φ1) and(X2,Φ2) are connected matroids, by Lemma 3, there exists positive constantsc and

c′ such that

fj(A) = cΦ1(A), ∀A ⊆ X1, (26)

fj(B) = c′Φ2(B), ∀B ⊆ X2. (27)
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So far, we have proved that ifΦǫ ∈ con(Υ[X ]), then there exists a sequence of polymatroids

{(X , fi,j)}∞i=1 such that (1)di,jfi,j is representable for somedi,j > 0, and (2) its limitfj satisfies

(26) and (27). We may further assume without loss of generality that di,jfi,j is either even

representable or odd representable for alli. Suppose first that alldi,jfi,j are even representable

for all i. The fact thatlimi→∞ fi,j(B) = fj(B) = c′Φ2(B) thus implies that(X ,Φ2) is almost

even representable, contradicting the hypothesis. Similarly, contradiction occurs ifdi,jfi,j are odd

representable for alli. Contradiction occurs in both cases and hence the theorem isproved.

V. STRICTLY ODD AND EVEN MATROIDS

In this section, we will construct two representable matroids(X1,Φ1) and(X2,Φ2) that satisfy

the conditions given in Theorem 5. These matroids correspond to the first and second networks

in [15, Section II].

Define the matroid(X1,Φ1) with Φ1(·) = dim〈·〉 and ground set

X1 , {Y1, Y2, Y3,W1,W2,W3,W4} (28)

Yi = 〈ui〉, i = 1, 2, 3 (29)

W1 = 〈u1 + u2〉 (30)

W2 = 〈u2 + u3〉 (31)

W3 = 〈u1 + u2 + u3〉 (32)

W4 = 〈u1 + u3〉. (33)

whereu1,u2,u3 are linearly independent vectors over a finite field of even characteristic. Clearly

(X1,Φ1) is even representable (and hence Ingletonian). In fact, this is the Fano matroid,F7.
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Define the second matroid(X2,Φ2) with Φ2(·) = dim〈·〉 and

X2 , {Z1, . . . , Z5, V1, . . . , V8}, (34)

Zi = 〈ui〉, i = 1, . . . , 5 (35)

V1 = 〈u1 + u2 + u3〉 (36)

V2 = 〈u3 + u4 + u5〉 (37)

V3 = 〈u1 + u2〉 (38)

V4 = 〈u1 + u3〉 (39)

V5 = 〈u2 + u3〉 (40)

V6 = 〈u3 + u4〉 (41)

V7 = 〈u3 + u5〉 (42)

V8 = 〈u4 + u5〉 (43)

where {u1, . . .u5} are linearly independent over a finite field of odd characteristic. Clearly

(X1,Φ1) is odd representable (and hence Ingletonian).

It is easy to prove that(X1,Φ1) and (X2,Φ2) are both connected. Furthermore,(X1,Φ1)

satisfies the following equalities (recalling the notational conventions (2), (3))

H(Y1, Y2, Y3) =
3
∑

i=1

H(Yi) (44)

H (W1 | Y1Y2) = 0 H (W2 | Y2Y3) = 0 (45)

H (W3 | Y1W2) = 0 H (W4 | W1W2) = 0

H (Y1 | Y3W4) = 0 H (Y2 | W3W4) = 0

H (Y3 | W1W3) = 0

It is worth pointing out explicitly thatH (W4 | W1W2) = 0 because all vectors are defined over

a finite field of even characteristic (hence,u1 + u3 = u1 + u2 + u2 + u3).

Simiarly, (X2,Φ2) satisfies

H(Z1, . . . , Z5) =

5
∑

i=1

H(Zi) (46)
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H(V1|Z1Z2Z3) = 0 H(V2|Z3Z4Z5) = 0 (47)

H(V3|Z1Z2) = 0 H(V4|Z1Z3) = 0

H(V5|Z2Z3) = 0 H(V6|Z3Z4) = 0

H(V7|Z3Z5) = 0 H(V8|Z4Z5) = 0

H(Z1|V1V5) = 0 H(Z2|V1V4) = 0

H(Z3|V1V3) = 0 H(Z3|V3, . . . , V8) = 0

H(Z3|V2V8) = 0 H(Z4|V2V7) = 0

H(Z5|V2V6) = 0.

In this case, we emphasis thatH(Z3|V3, . . . , V8) = 0 holds because the characteristic of the

underlying field is odd.

Theorem 6:(X ,Φ1) defined by (28) is even representable but not almost odd representable.

Simiarly, (X ,Φ2) defined by (34) is odd representable but not almost even representable.

Before we prove Theorem 6, we will need two lemmas, which provide some elementary results

from linear algebra.

Lemma 4:Let {B1, . . . , Bn} andC be subspaces ofW . Then for anyα ⊆ N , there exists

a subspaceA such thatH (A) = H (C | Bj, j ∈ α) and H (TA(C) | TA (Bj) , j ∈ α) = 0.

Furthermore, for a given sequence of subspaces{Bi
1, . . . , B

i
n, C

i}∞i=1 andk(i) > 0 such that

lim
i→∞

1

k(i)
H
(

C i | Bi
j , j ∈ α

)

= 0,

there exists a sequence of subspaces{Ai}∞i=1 such that for allβ ⊆ Nn

H
(

Ai
)

= H
(

C i | Bi
j, j ∈ α

)

H
(

TAi

(

C i
)

| TAi

(

Bi
j

)

, j ∈ α
)

= 0

lim
i→∞

1

k (i)
H
(

TAi

(

Bi
j

)

, j ∈ β
)

= lim
i→∞

1

k (i)
H
(

Bi
j , j ∈ β

)

.

Proof: It is easy to pick a subspaceA of C such thatH(A) = H(C | Bj, j ∈ α) and

that A and 〈Bj, j ∈ α〉 together span〈C,Bj, j ∈ α〉. Then it is straightforward to prove that

H(TA(C) | TA(Bj), j ∈ α) = 0, which proves the first part of the lemma.
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Similarly, for eachi, there exists a subspaceAi such thatH(Ai) = H(C i | Bi
j , j ∈ α), and

H(TAi(C i) | TAi(Bi
j), j ∈ α) = 0. By Lemma 2, for anyβ

H
(

Bi
β

)

−H
(

Ai
)

≤ H
(

TA

(

Bi
j

)

, j ∈ β
)

≤ H
(

Bi
β

)

. (48)

The remaining part of the lemma then follows aslimi→∞
1

k(i)
H(Ai) = 0.

Lemma 5:Let {B1, . . . , Bn} be a collection of subspaces andβ ⊆ N . Then there exists a

subspaceA such that

H (TA (Bj)) = H
(

Bj | Bβ\j

)

, ∀j ∈ β, (49)

H (TA (Bj) , j ∈ β) =
∑

j∈β

H (TA (Bj)) , (50)

H (A) = H (Bβ)−
∑

j∈β

H
(

Bj | Bβ\j

)

. (51)

Furthermore, for a sequence of subspaces{Bi
1, . . . , B

i
n}

∞
i=1 andk(i) > 0 such that

lim
i→∞

1

k (i)

(

H
(

Bi
β

)

−
∑

j∈β

H
(

Bi
j | B

i
β\j

)

)

= 0.

there exists a sequence of subspacesAi such that for allα ⊆ N ,

∑

j∈β

H
(

TAi

(

Bi
j

))

= H
(

TAi

(

Bi
j

)

, j ∈ β
)

lim
i→∞

1

k (i)
H
(

TAi

(

Bi
j

)

, j ∈ α
)

= lim
i→∞

1

k (i)
H
(

Bi
α

)

.

Proof: Define A as the minimal subspace containingBi ∩ 〈Bj , j ∈ β \ i〉 for i ∈ β.

Then it is straightforward to prove that for alli, A is a subspace of〈Bj, j ∈ β \ i〉 and hence

H(A|Bj, j ∈ β \ i) = 0. Similarly, for all i, Bi ∩A = Bi ∩ 〈Bj, j ∈ β \ i〉 and henceI(Bi;A) =

I(Bi;Bj, j ∈ β \ i) and

H (B1, . . . , Bn | A) =
n
∑

i=1

H (Bi | A) = H
(

Bi | Bβ\i

)

Consequently, (49)-(51) holds. The remaining part of the lemma be proved similarly as in Lemma

4.

The final ingredients that we require are the following results from [15]. Although these results

were originally stated in terms of linear network coding capacity, we can restate them purely in

terms of rank inequalities as follows.
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Theorem 7 (Dougherty, Freiling, Zeger):Suppose thatX1 = {Y1, Y2, Y3,W1, . . . ,W4} is a

collection of vector subspaces over a finite field of odd characteristic. If the resulting polymatroid

satisfies (44) and (45), then [15, Theorem IV.3]

mini=1,2,3H(Yi)

maxj=1,2,3,4H(Wj)
≤

4

5
.

Similarly, suppose thatX2 = {Z1, . . . , Z5, V1, . . . , V8} is a collection of vector subspaces over a

finite field of even characteristic. IfX2 satisfies (46) and (47), then [15, Theorem IV.4]

mini=1,...,5H(Zi)

maxj=1,...,8H(Vj)
≤

10

11
.

Proof: [Proof of Theorem 6] Suppose to the contrary that(X ,Φ2) is almost even repre-

sentable. Then by definition there exists a sequence of even representable polymatroids{(X , gi)}∞i=1

and positive constantsdi such thatlimi→∞ digi = Φ2. While (X ,Φ2) satisfies (46) and (47), these

constraints may not be satisfied by(X , gi) in general. However, we can use Lemmas 4 and 5 to

construct from{(X , gi)}∞i=1 another sequence of even representable polymatroids{(X , g′
i)}

∞
i=1

such thatg′
i satisfies (46) and (47), andlimi→∞ dig

′
i = limi→∞ digi = Φ2. As such,

lim
i→∞

mink=1,...,5 g
′
i(Zk)

maxk=1,...,8 g
′
i(Vk)

=
mini=1,...,5Φ2(Zk)

maxk=1,...,8Φ2(Vk)

(a)
= 1, (52)

where (a) follows from connectivity of(X ,Φ2). The existence of such a sequence{(X , dig
′
i)}

∞
i=1

contradicts Theorem 7 which proved that the limit (52) is bounded above by10/11. Thus(X ,Φ2)

cannot be almost even representable. Using the same argument, we can also prove that(X ,Φ1)

is not almost odd representable.

VI. I NSUFFICIENCY OFALL KNOWN RANK INEQUALITIES

In Section III, we constructed(X ,Φ) ∈ con(Υ[X ]) such that itsǫ-pertubation(X ,Φǫ) 6∈

con(Υ[X ]). Theorem 1 proved the existence of new subspace rank inequalities that are not

implied by Ingleton’s inequalities. This was achieved by showing that(X ,Φǫ) is Ingletonian. In

the following, we will give another proof for Theorem 1. Thisalternative proof demonstrates

the kind of difficulties one may face when characterizing representable polymatroids. Finally,

we will generalize our main result to show that the newly discovered DFZ inequalities are also

insufficient.
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Proof: [Alternative proof of Theorem 1] In [8] and [16], all the extreme vectorscon(Υ[X ])

are identified for|X | = 4. It can be easily verified that all of the associated rank functions are

ternary representable. Hence, every vector incon(Υ[X ]) is almost representable. By Theorem

3, its ǫ-perturbed counterpart is almost representable.

Now, consider any Ingletonian polymatroid(X ,h) and itsǫ-perturbation(X , g) defined as in

(8). For any subsetsV1, . . . ,V4 ⊆ X , h induces a polymatroid(N4,h
′) via h′(α), h(Vi, i ∈

α). Clearly, h′ is also Ingletonian, since for any subsetsα1, . . . , α4 ⊆ N4, Jh′(α1, . . . , α4) =

Jh(Vα1
, . . . ,Vα4

). Hence,h′ is also almost representable. By Theorem 3, its perturbation is also

almost representable.

Now, if h(X )− ǫ ≥ h′(N4), then clearly

g(Vi, i ∈ α) = h(Vi, i ∈ α) (53)

for all α. ThenJg(Vα1
, . . . ,Vα4

) = Jh(Vα1
, . . . ,Vα4

) ≥ 0.

On the other hand, suppose thath(X )− ǫ ≤ h′(N4). Then

g(Vi, i ∈ α) = min(h(Vi, i ∈ α),h(X )− ǫ) (54)

= min(h′(α),h(X )− ǫ) (55)

= min(h′(α),h′(N4) + h(X )− h′(N4)− ǫ) (56)

= min(h′(α),h′(N4)− ν) (57)

whereν , h′(N4) + ǫ− h(X ). Let

g′(α), min(h′(α),h′(N4)− ν).

Theng′ is almost representable and henceJg(Vα1
, . . . ,Vα4

) = Jg′(α1, . . . , α4) ≥ 0.

Theorem 8 (Generalization):Suppose|Y| = n and that all vectorsg ∈ con(Υ[Y ]) are almost

representable. Consider any valid subspace rank inequality of the form

∑

α⊆Nn

cαH(Vi, i ∈ α) ≥ 0 (58)

whereVi ⊆ Y . Then for any cc-representable polymatroid(X ,h) (i.e., h ∈ con(Υ[X ])), its

perturbed counterpart will satisfy the inequality (58). Consequently(X ,Φǫ) in Section V will
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satisfy (58) and hence any inequalities involving no more than n subsets are insufficient to

characterizecon(Υ[X ]) in general.

Proof: The proof is similar to the alternative proof for Theorem 5.

The newly discovered inequalities [12] were shown to be sufficient to characterizecon(Υ[X ])

when |X | ≤ 5. In fact, it was further proved that all the extreme vectors of the conecon(Υ[X ])

areq-representable, for sufficiently largeq. As a result, every vector incon(Υ[X ]) will be almost

representable. By Theorem 8, these newly discovered inequalities are insufficient to characterize

con(Υ[X ]) in general.

VII. CONCLUSION

A complete characterization of representable polymatroids has been open for years. This

problem is fundamental in nature and is intimately related to the information thoeretic problem

of the characterization of transmission throughput in networks with linear network coding. Until

quite recently it was not know whether Ingleton’s inequalities are sufficient to characterize all

representable polymatroids. In this paper, we have constructed an Ingletonian polymatroid that

satisfies all known (Ingleton and Dougherty-Freiling-Zeger) subspace rank inequalities. As a

result, there are inequalities remaining to be discovered.While our approach does not suggest

how to construct these new inequalities, it at least demonstrates some of the difficulties of the

problem.
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