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Abstract

While interference alignment schemes have been employed to realize the full multiplex-

ing gain of K-user interference channels, the analyses performed so far have predominantly

focused on the case when global channel knowledge is available at each node of the net-

work. This paper considers the problem where each receiver knows its channels from all

the transmitters and feeds back this information using a limited number of bits to all other

terminals. In particular, channel quantization over the composite Grassmann manifold is

proposed and analyzed. It is shown, for K-user multiple-input, multiple-output (MIMO)

interference channels, that when the transmitters use an interference alignment strategy as

if the quantized channel estimates obtained via this limited feedback are perfect, the full

sum degrees of freedom of the interference channel can be achieved as long as the feedback

bit rate scales sufficiently fast with the signal-to-noise ratio. Moreover, this is only one ex-

treme point of a continuous tradeoff between achievable degrees of freedom region and user

feedback rate scalings which are allowed to be non-identical. It is seen that a slower scaling

of feedback rate for any one user leads to commensurately fewer degrees of freedom for that

user alone.
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Composite Grassmann manifold, finite-rate feedback, interference alignment, interfer-

ence channel, MIMO, quantization.
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I. Introduction

The importance of the role played by interference management in wireless networks has

prompted many researchers to analyze the interference channel from an information-theoretic

perspective. While the capacity region remains unknown, many insightful characterizations

have been developed through outer bounds [1], [2] and approximations [3]. The conventional

wisdom was that if the strength of the interference is comparable to the actual signal, orthog-

onalizing the signaling dimensions between users was best providing 1
K

degrees of freedom

per user in a K-user interference channel. Abandoning this ‘cake-cutting’ approach however,

[4] demonstrated the achievability of the sum degrees of freedom for this channel of K
2

in

this interference regime through what has come to be known as interference alignment (IA).

This surprising result has spurred further research in this area, including in other aspects

of the scheme as in [5] in analyzing limited multipath and variation with number of users

in the system as well as in its applications as in [6] in mitigating inter-cell interference in

a cellular network. In the specific setup of frequency-selective channels, [7] and [8] have

suggested efficient schemes improving upon the original IA scheme in terms of data rates

and multiplexing gains achievable through coding over a finite number of channel realiza-

tions. Finally, while the notion of degrees of freedom is an academic construct, experimental

verification of the benefits accruing from the interference alignment scheme is available from

several papers, such as [9], where a combination of interference alignment and cancellation

is shown to provide a significant throughput increase.

The requirement of perfect channel state information at the transmitters (CSIT) by the

IA scheme in [4] is, of course, practically unrealizable for a time-variant or frequency-selective

system and this issue has recently begun to receive considerable attention ([6], [10], [11]).

In particular, [6] analyzed the impact of imperfect channel knowledge of the sum mutual



information achieved by interference alignment, when applied to the downlink of a cellular

network using Orthogonal Frequency Division Multiplexing Access (OFDMA). On the other

hand, by noting that perfect knowledge of the channel realization is a reasonable assumption

to make for a static channel, [10] analyzed a M ×M Gaussian interference channel with real

or complex static coefficients and employed a result from Diophantine approximation theory

to prove the achievability of MK
2

degrees of freedom.

It has been shown recently - for a frequency-selective single-input single-output (SISO)

setup - by [11] that the full spatial multiplexing gain of K
2

can be obtained even under

conditions of limited feedback as long as the feedback rate exceeds K(L− 1) logP bits per

receiver, where L is the number of taps in the channel between any pair of nodes and P is the

total power available with the transmitting sources. Their scheme involved a Grassmannian

line quantization - as in [12] - of the channel vectors by the channel-aware receivers and

their feedback using a limited number of bits broadcast to all the nodes in the network.

The transmit and receiver beamforming vectors are then calculated at each node by treating

these channel estimates as the actual channel realizations in the original IA procedure. While

such an implementation would not align the interference perfectly, [11] demonstrated that

their scheme keeps the interference power bounded in the relevant-signal dimensions, thereby

achieving the full multiplexing gain. Further, an analogous result is provided by the same

authors in [13] for the MISO network with the number of antennas at each transmitter

being more than or equal to the number of users. Note that in such a scenario, interference

alignment is not needed, as zero forcing combined with beamforming suffices to attain the

maximum sum degrees of freedom.

The sum degrees of freedom for the 2-user multiple-input multiple-output (MIMO) in-

terference channel - with (M1,M2) antennas at the two transmitters and (N1,N2) antennas



at the two receivers - was carried out in [14], where the achievability depended solely on

beamforming and zero-forcing techniques. An extension to the K-user MIMO case with Mt

antennas at each transmitter and Mr antennas at each receiver was provided in [15]. The

sum degrees of freedom was bounded within close lower and upper bounds which coincided

whenever the ratio max{Mt,Mr}
min{Mt,Mr} was an integer. In particular, this means that the spatial

multiplexing gain is precisely known for both the single-input multiple-output (SIMO) and

the multiple-input single-output (MISO) cases. The lower bounds obtained in [15] depend

on IA with perfect channel knowledge at each node.

In this paper, we explore all these multiple antenna cases, for a frequency-selective setup,

under the regime of limited feedback. In the SIMO case with R antennas at each receiver,

we find that as long as each receiver transmits no less than Nf = K(RL−1) logP bits using

quantization based on the compositeGrassmann manifold, the nodes can utilize these channel

estimates within the ambit of the IA scheme of [15] and still achieve the complete spatial mul-

tiplexing gain. The MISO case then follows immediately as a consequence of the reciprocity

of alignment principle enunciated in [16]. Extending the same idea to the K-user MIMO case

with Mt antennas at each transmitter and Mr antennas at each receiver, we find that our

scheme of IA involving limited feedback attains the same degrees of freedom as the original

IA scheme as long as each receiver uses no less than Nf = min{Mt,Mr}2K(RL− 1) logP

bits, where R = ⌊max{Mt,Mr}
min{Mt,Mr} ⌋. In each case, a codebook over the composite Grassmann mani-

fold is employed to jointly quantize the normalized channel directions. We further generalize

these results by proving that if each user transmitted a fraction of the afore-mentioned num-

ber of feedback bits, then the user can still attain a proportionate fraction of the degrees

of freedom promised above. In particular, if user i fed back αi ·Nf (0 < αi ≤ 1) bits, then

user i achieves degrees of freedom equal to α times what that user would achieve with global



perfect CSIT. Interestingly therefore, a slower scaling of feedback rate for any one user leads

to commensurately fewer degrees of freedom for that user alone.

This paper is organized into five sections. Section I introduces the topic and delineates

the notational convention followed in this paper. Section II computes the feedback scaling

rate in the case of SIMO and MISO interference channels. Section III explores the MIMO

Mt ×Mr case and shows that interference alignment with limited feedback can attain the

best-known lower bound on the sum degrees of freedom for this network, which coincides with

the actual sum degrees of freedom whenever max{Mt,Mr}
min{Mt,Mr} is an integer. Section IV evaluates

the impact of a reduced feedback rate on the achievable degrees of freedom of the system.

This section also interprets our result in light of some earlier results in this direction and

discusses insights drawn from our analysis. Section V concludes the paper.

Notation: R and C represent the real and complex fields, respectively. If z ∈ C, then zc

represents its complex conjugate. The superscripts H and t represent the hermitian conjugate

and the transpose of a matrix, respectively. Extending the conjugate notation to vectors, we

denote as vc = [vc1,v
c
2, . . . ,v

c
n]

t when v = [v1,v2, . . . ,vn]
t. The square brackets [.] and the letter

l denote the time-slot index, usually varying from 0 to L− 1. The circular brackets (.) and

the letter m denote the frequency-slot index, usually varying from 0 to N − 1. The symbols

◦ and ⊗ represent the Hadamard and Kronecker products of matrices, respectively. We use

the term ‘const’ to denote any constant independent of the power P , whose value might

change from equation to equation. This notational device greatly simplifies the appearance

of many equations and enables us to concentrate on the relevant portions of the calculations.

CN represents the circularly symmetric complex normal distribution. All logarithms in this

paper are taken with respect to base 2.



II. For Single-Input Multiple-Output (SIMO) Systems

A. System Model

There areK single-antenna sources S1,S2, . . . ,SK with a message each for their respective

single-antenna destinations D1,D2, . . . ,DK . In our K-user SIMO interference channel model,

we assume that each transmitter has one antenna and each receiver has R antennas. The

L-tap response between the source Sk and the destination Di is given by hi,k[l] ∈ CR×1, l ∈

{0,1, . . . ,L− 1}. We shall assume that these coefficients are drawn i.i.d from a continuous

distribution such that these values are bounded with probability one and that the channel

remains in the outage setting where the values hi,k[l] do not change during the transmission of

the signal. Let us define the matrix Ti,k ∈ CL×R with the L rows ht
i,k[0],h

t
i,k[1], . . . ,h

t
i,k[L−1]

and denote its R columns as ci,k[1], ci,k[2], . . . , ci,k[R].

Ti,k ,















ht
i,k[0]

ht
i,k[1]
...

ht
i,k[L− 1]















,

(

ci,k[1], ci,k[2], . . . , ci,k[R]
)

.

The use of an OFDM-type cyclic signal model transforms this into N parallel frequency

flat channels, hi,k(r) ∈ CR×1, r ∈ {0,1, . . . ,N − 1}. The input-output relations are described

by a set of R equations,

yi(r) = hc
i,i(r)xi(r) +

∑

k 6=i

hc
i,k(r)xk(r) + zi(r). (1)

Here yi(r), zi(r) ∈ CR×1 are the channel output and the i.i.d. noise on the r-th tone at

the i-th receiver, xi(r) ∈ C is the channel input on the r-th tone at the k-th transmitter and

hi,k(r) ∈ CR×1 is the channel vector from Sk to Di on the same tone. By defining the column

vectors

yi , [yi(0), yi(1), . . . , yi(N − 1)] ∈ C
NR×1,



xi , [xi(0), xi(1), . . . , xi(N − 1)] ∈ C
N×1,

zi , [zi(0), zi(1), . . . , zi(N − 1)] ∼ CN(0, NoI) ∈ C
NR×1,

and the block diagonal matrix

H i,k , diag{hc
i,k(0), h

c
i,k(1), . . . , h

c
i,k(N − 1)} ∈ C

NR×N ,

we get the following equation

yi = H i,ixi +
∑

k 6=i

H i,kxk + zi. (2)

Let us define the matrix Fi,k ∈ CN×R with the N rows ht
i,k(0), h

t
i,k(1), . . . , h

t
i,k(N − 1)

and denote its R columns as h1
i,k, h

2
i,k, . . . , h

R
i,k. Note that hm

i,k is the DFT of ci,k[m] ∀m ∈

{1,2, . . . ,R}.

Fi,k ,















ht
i,k(0)

ht
i,k(1)
...

ht
i,k(N − 1)















,

(

h1
i,k,h

2
i,k, . . . ,h

R
i,k

)

.

The receivers are assumed to have perfect knowledge of their respective channels, i.e.

each destination Di knows Ti,k ∈ C
L×R ∀k ∈ {1,2, . . .K} perfectly. As in the SISO case ana-

lyzed in [11], we assume there exist error-free dedicated broadcast links from the destinations

to every other node in the network. During an initial channel feedback phase, the receiver

broadcasts its channel state information using Nf bits of feedback. This is followed by the

data transmission phase. The maximal rate of communication between Si and Di such that

the probability of error is driven to zero as the block-length goes to infinity is denoted as Ri

with Rsum ,
∑K

i=1Ri. The sum degrees of freedom is defined as dsum , limP→∞
Rsum

logP
, where

P is the total power constraint on the transmitting nodes.



B. Hamming Bound on the Composite Grassmann Manifold

The complex Grassmann manifold Gn,k, viewed as a set, is the collection of all the k-

dimensional subspaces within a n-dimensional Euclidean space C
n. An alternate viewpoint,

which is often useful, is to view it as an equivalence class of n×n unitary matrices defined

in Gn,k = U(n)/(U(n− k)×U(k)). A point on Gn,k is then given by

[Q] =






Q





Qk 0

0 Qn−k



 :Qk ∈ U(k),Qn−k ∈ U(n− k)







,

where Q ∈ U(n). The study of the Grassmann manifold for wireless communication scenarios

was boosted by the relation found between the manifold and non-coherent communication as

reported in [17]. [12] utilized Grassmannian vector quantization in their analysis of finite-rate

feedback MIMO point-to-point links. This line of thought has been explored in great detail

by many authors, as in [18] and [19]. On the theoretical front, [20] computed the volume

of a geodesic ball in Gn,k and used the same to analyze MIMO systems under beamforming

direction feedback.

Multidimensional Grassmann analysis (i.e. on Gn,k when k 6= 1) cannot be directed in

the current interference alignment scheme for a 3-user system, since if all that the users

know is the subspace spanned by { h1,1

||h1,1|| ,
h1,2

||h1,2|| ,
h1,3

||h1,3||}, they would not be able to align their

vectors so that they are separable at receiver one. A more precise characterization in terms of

the actual channel directions is indispensable here for the accomplishment of the full spatial

multiplexing gain. Such a representation is precisely what is provided by procedures on the

composite Grassmann manifold.

In [21] the composite Grassmann manifold Gm
n,k is formed by taking the direct sum of m



copies of the Grassmann manifold Gn,k, i.e.

Gm
n,k =

⊕

m copies

Gn,k.

On the Grassmann manifold, a commonly used distance metric is the chordal distance dc.

For the particular case of k = 1, it reduces to d2c(v1,v2) , 1−|vH1 v2|2. One can extend this

distance to Gm
n,1 as follows: If P,Q ∈ Gm

n,1, then P = [p1, . . . , pm], and Q = [q1, . . . , qm],

where pi, qi ∈Gn,1 ∀ i ∈ {1,2, . . . ,m}.

d2(P,Q) ,

m
∑

i=1

d2c(pi, qi).

In our analysis, we would need only GK
RL,1; so we particularize the succeeding discussion in

this subsection to this particular manifold.

One can define a ball of radius δ around a point P ∈GK
RL,1 as

BP (δ) = { Q ∈ GK
RL,1 | d(P,Q) ≤ δ }.

Let Vol(A) denote the measure of the set A, with the measure being derived from the above

defined distance metric. SinceGK
RL,1 is an homogenous space, Vol(BP (δ)) = Vol(BQ(δ)) ∀ P,Q ∈

GK
RL,1. Hence, we can denote a ball of radius δ in the composite Grassmann manifold as B(δ)

without any reference to its central point. Based on our distance metric, let us construct

a maximal packing of spheres on the composite Grassmann manifold GK
RL,1 such that the

minimum distance between the centers of any two spheres is more than δ. This is the precise

analogue of the Grassmannian sphere-packing problem considered in [22]. Let us choose this

maximal packing code as our quantization codebook C. The number of codewords possible

in such a maximal packing is given by the well-known Hamming bound, as follows:

|C| ≤ 1

µ(B(δ))
.



Here, |C| represents the number of codewords in our code C, and µ(B(δ)) represents

the normalized volume of a geodesic ball in the composite Grassmann manifold, defined as

µ(B(δ)) = Vol(B(δ))

Vol(GK
RL,1)

. We note that since the distances on the manifold are measured along

geodesics (formed according to the choice of metric), the ball described below is formally

called a geodesic ball in the manifold.

A general result in [23] states that for any valid distance metric, the normalized volume

of the ball is given by the following expansion :

µ(B(δ)) = const. δdimGK
RL,1 .(1 + o(δ2)). (3)

Here, dimGK
RL,1 is the real dimension of the composite Grassmann manifold and is given by

K dimGRL,1 = 2K(RL− 1).

Substituting 2Nf , |C|, and noting that in the regime of increasing high Nf , the o(δ2)

term can be ignored, we write

2Nf ≤ const

δ2K(RL−1)
⇒ δ ≤ const

2
Nf

2K(RL−1)

.

A realization x ∈GK
RL,1 shall be encoded using Nf bits corresponding to the index of the

codeword in C closest to it, i.e. the quantized version of x shall be

q(x) = argmin
xi∈C

[d(x, xi)].

For our code, produced from a maximal packing on the composite Grassmann manifold, the

maximum distortion experienced by a realization is bounded by the minimum distance of

the code as follows:

△max ≤ δ ≤ const

2
Nf

2K(RL−1)

, (4)

where △max , max
x∈GK

RL,1

[d(x, q(x))].



Setting 1

2

Nf
2K(RL−1)

to be equal to 1√
P
, we get

Nf = K (RL− 1) logP bits. (5)

C. Proposed Scheme

The destination node Di, knowing the matrix Ti,k perfectly, forms a RL-length norm-

one vector vi,k ,
vec(Ti,k)

‖vec(Ti,k)‖ . This calculation is performed for all k ∈ {1,2, . . . ,K}, creating

a point on GK
RL,1 denoted by Qi = [vi,1, vi,2, . . . , vi,K ]. This is quantized over our 2Nf -level

codebook C on the composite Grassmann GK
RL,1 and is reconstructed by other nodes as

Q̂i = [v̂i,1, v̂i,2, . . . , v̂i,K ]. The RL-length vector v̂i,k is re-organized - similar to Ti,k - in form

of a L×R matrix,

Q̂i,k ,















ŵt
i,k[0]

ŵt
i,k[1]
...

ŵt
i,k[L− 1]















,

(

d̂i,k[1], d̂i,k[2], . . . , d̂i,k[R]
)

.

The nodes zero-pad the L-length vectors d̂i,k[m], m ∈ {1,2, . . . ,R} to N -length and take

their DFTs to obtain d̃i,k[m]. These are arranged as shown to form a N ×R matrix,

Q̃i,k ,















w̃t
i,k(0)

w̃t
i,k(1)
...

w̃t
i,k(N − 1)















,

(

d̃i,k[1], d̃i,k[2], . . . , d̃i,k[R]
)

.

The nodes also form the RN ×N matrix W̃i,k as

W̃i,k , diag{w̃i,k(0), w̃i,k(1), . . . , w̃i,k(N − 1)} ∈ C
RN×N .

Now, we follow the IA scheme as in [15] by treating the above W̃i,k as the actual H i,k



and utilize their interference alignment scheme of finding the direction vectors. Let n ∈ N,

Γ , KR(K − R− 1), and (6)

N , (R + 1)(n+ 1)Γ. (7)

We shall be coding over this N -symbols to achieve the following degrees of freedom :

di ,







R(n+1)Γ i ∈ {1,2, . . . ,R+1};
R(n)Γ i ∈ {R+2, . . . ,K}.

(8)

Now the transmitter and receiver pair i choose di different transmit and receive beamforming

vectors, viz. um
i ∈ CRN×1 and vmi ∈ CN×1, respectively. As long as L scales sufficient fast

with Γ (cf. bandwidth scaling in [5]), one expects to find the vectors um
i and vmi satisfying

the following properties.

|(um
i )

HW̃i,i(v
m
i )| ≥ c > 0,

∀i ∈ {1,2, . . . ,K},m ∈ {1,2, . . . ,di}, (9)

(um
i )

HW̃i,i(v
p
i ) = 0,

∀i ∈ {1,2, . . . ,K} and ∀m 6= p ∈ {1,2, . . . ,di}, (10)

(um
i )

HW̃i,k(v
p
k) = 0,

∀i 6= k ∈ {1,2, . . . ,K}

and ∀m ∈ {1,2, . . . ,di},p ∈ {1,2, . . . ,dk}. (11)



The source Sk formulates dk independent symbols – x1
k, . . . ,x

dk
k ∈ C, which are sent along

the directions v1k, . . . ,v
dk
k ∈ CN×1 as follows :

xk ,

dk
∑

m=1

xm
k v

m
k , (12)

where ||vmk ||= 1 and E(|xm
k |2) = P

K.dk
. Note that in the scheme of [15],

vm1 = · · · = vmR+1,

and vpR+2 = · · · = vpK

for all valid values of m and p. We have implicitly assumed here that the number of users

K is greater than the number of receive antennas R per node in the SIMO system. In the

case of K <R, no interference alignment is necessary as mere zero-forcing would attain the

maximal attainable K degrees of freedom.

D. Achievability Result

Theorem II.1: The interference alignment scheme delineated above for a general K-user

single-input multiple-output (SIMO) interference channel with one antenna at each trans-

mitter and R antennas at each receiver, where each pair of nodes in the network has a L-tap

frequency selective channel between them, achieves the full spatial multiplexing gain of KR
R+1

as long as each destination transmits more than K(RL− 1) logP bits of feedback, where P

represents the total power available with the transmitting nodes of the network.

Proof: We recall that using the Hamming bound on the composite Grassmann manifold

GK
RL,1, one gets

△max ≤
const

2
Nf

2K(RL−1)

. (13)

Setting 1

2

Nf
2K(RL−1)

as 1
P
, one obtained that Nf = K(RL− 1) logP . Our aim is to show that

this scaling of bits is sufficient to bound the interference terms in the rate expression. The



destination Di projects the received signal yi onto the di directions given by um
i ∈ CRN×1,m ∈

{1,2, . . . ,di},

(um
i )

Hyi = (um
i )

HH i,iv
m
i x

m
i +

∑

p 6=m

(um
i )

HH i,iv
p
i x

p
i

+
∑

k 6=i

dk
∑

p=1

(um
i )

HH i,kv
p
kx

p
k + (um

i )
Hzi. (14)

Let us define 1R , [1,1, . . . ,1]t ∈ RR×1,

hi,k , [ht
i,k(0), h

t
i,k(1), . . . , h

t
i,k(N − 1)] ∈ C

RN×1,

and w̃i,k , [w̃t
i,k(0), w̃

t
i,k(1), . . . , w̃

t
i,k(N − 1)] ∈ CRN×1.

Let us define (um
i )

c ◦ (vpk ⊗ 1R) as bm,p
i,k ∈ CRN×1. Then, we can denote (um

i )
HH i,kv

p
k as

h
H

i,kb
m,p
i,k . Using this notation,

(um
i )

Hyi = h
H

i,ib
m,m
i,i xm

i +
∑

p 6=m

h
H

i,ib
m,p
i,i xp

i

+
∑

k 6=i

dk
∑

p=1

h
H

i,kb
m,p
i,k xp

k + (um
i )

Hzi. (15)

We again choose the input symbols xm
i to be i.i.d Gaussian and since the receiver knows

bm,m
i,i and hi,i, it can treat the other interference as noise to obtain a rate of

Ri ≥
1

N

di
∑

m=1

log



1 +
P

Kdi
|hH

i,ib
m,m
i,i |2

Ii,1 + Ii,2 +No



 , with (16)

Ii,1 =
∑

p 6=m

P

Kdi
|hH

i,ib
m,p
i,i |2, and (17)

Ii,2 =
∑

k 6=i

dk
∑

p=1

P

Kdk
|hH

i,kb
m,p
i,k |2. (18)



Ii,1 is the interference (treated as noise) caused by transmitter i involving messages other

than the one being currently decoded by receiver i. Ii,2 is the interference caused by the

transmitters other than transmitter i.

Our three conditions on the vectors um
i and vmi can also be re-written now as

|w̃H
i,ib

m,m
i,i | ≥ c > 0 ∀i,m, (19)

w̃H
i,ib

m,p
i,i = 0 ∀i,m 6= p, (20)

w̃H
i,kb

m,p
i,k = 0 ∀k 6= i, ∀m, p. (21)

We observe that hi,i, w̃i,i and bm,p
i,i are all RN -length vectors; and that

‖w̃i,i‖2 =
N−1
∑

n=0

‖w̃i,i(n)‖2 =
R
∑

m=1

‖d̃i,i[m]‖2

=

R
∑

m=1

‖d̂i,i[m]‖2 = ‖v̂i,i‖2 = 1.

Since, one can always append vectors to the orthogonal vectors w̃i,i and bm,p
i,i to form a basis

for CRN , it follows that,

∥

∥hi,i

∥

∥

2 ≥
∣

∣(hi,i)
Hw̃i,i

∣

∣

2
+

∣

∣

∣

∣

(hi,i)
H

bm,p
i,i

||bm,p
i,i ||

∣

∣

∣

∣

2

.

We thus get,

P

Kdi
|hH

i,ib
m,p
i,i |2

≤ P

Kdi
. ‖bm,p

i,i ‖2
(

∥

∥hi,i

∥

∥

2−
∣

∣(hi,i)
Hw̃i,i

∣

∣

2
)

≤ P

Kdi
. ‖bm,p

i,i ‖2‖hi,i‖2
(

1−
∣

∣

∣

∣

(hi,i)
H

‖hi,i‖
w̃i,i

∣

∣

∣

∣

2
)

.



Now, note that

(hi,i)
H

‖hi,i‖
w̃i,i =

R
∑

j=1

(hj
i,i)

H

‖hi,i‖
d̃i,i[j]

=
R
∑

m=1

(ci,i[m])H

‖hi,i‖
d̂i,i[m]

= vHi,iv̂i,i.

The last line follows from the observation that,

‖hi,i‖2 =
N−1
∑

n=0

‖hi,i(n)‖2 =
R
∑

m=1

‖hm
i,i‖2

=

R
∑

m=1

‖ci,i[m]‖2 = ‖vec(Ti,k)‖2.

This leads to

P

Kdi
|hH

i,ib
m,p
i,i |2

≤ P

Kdi
. ‖bm,p

i,i ‖2‖hi,i‖2
(

1−
∣

∣

∣

∣

(hi,i)
H

‖hi,i‖
w̃i,i

∣

∣

∣

∣

2
)

=
P

Kdi
. ‖bm,p

i,i ‖2‖hi,i‖2. (1− |vHi,iv̂i,i|2)

=
P

Kdi
. ‖bm,p

i,i ‖2‖hi,i‖2. d2c(vi,i, v̂i,i)

≤ P

Kdi
. ‖bm,p

i,i ‖2‖hi,i‖2.
K
∑

k=1

d2c(vi,k, v̂i,k)

=
P

Kdi
. ‖bm,p

i,i ‖2‖hi,i‖2. d2(Qi, Q̂i)

≤ P. const. △2
max

≤ P.
const

2
Nf

K(RL−1)

= P. const.
1

P

= const.



Hence, Ii,1 is bounded. A similar argument using
√
P√

Kdk
|hH

i,kb
m,p
i,k | shows that Ii,2 is also

bounded independent of power P . Further, as P → ∞ (and the number of feedback bits

Nf →∞), the quantization error becomes vanishingly small by equation (4). This implies

that, as in [11], that

w̃i,i →
hi,i

‖hi,i‖
⇒ |hH

i,ib
m,m
i,i | > 0.

Now, the equation (16) yields the following result:

dsum = lim
P→∞

Rsum

logP

≥
K
∑

i=1

di
∑

m=1

lim
P→∞

log

(

1+
P

Kdi
|hH

i,ib
m,m
i,i |2

Ii,1+Ii,2+No

)

N logP

=

∑K

i=1di
N

=
(R+1)R(n+1)Γ+ (K−R− 1)RnΓ

(R+1)(n+1)Γ

The last step above follows from equations (6), (7) and (8). Taking the supremum over all

values of the auxiliary parameter n, we obtain the desired result that dsum = RK
R+1

, which is

the same as was obtained in the case of perfect channel state information at all the nodes in

[15].

The MISO case follows immediately by application of the reciprocity of alignment scheme

discussed in [16].

III. For Multiple-Input Multiple-Output (MIMO) Systems

The precise degrees of freedom for the general Mt ×Mr K-user interference channel

have not yet been quantified. Gou and Jafar [15] established lower and upper bounds which



coincide when R = ⌊max{Mt,Mr}
min{Mt,Mr} ⌋ is an integer. We denote these as dUB

sum and dLBsum below.

dUB
sum =







K.min{Mt,Mr} K ≤R;
max{Mt,Mr}

R+1
.K K > R.

In the case ofK ≤ R, the dUB
sum is obtained by noting that in the event of facing no interference,

the dsum is upper bounded by K times the degrees of freedom of the single-user MIMO

channel as calculated in [24]. In the case of K > R, a tighter upper bound is obtained by

first reducing the K-user channel to different R+1-user configurations; then by making the

first R of the transmitters and the last R of the receivers cooperate; and finally by invoking

the results presented in [14] on the 2-user case.

The lower bounds are as follows:

dLBsum =







K.min{Mt,Mr} K ≤ R;

R
R+1

.min{Mt,Mr}K K >R.

The case of K ≤R is handled using just beamforming and zero forcing. The case of K >R

is proved using interference alignment with perfect channel knowledge. We show that an

appropriate scaling of the feedback bits suffices to achieve this spatial multiplexing gain.

Theorem III.1: In a general K-user interference channel where each transmitter has Mt

antennas, each receiver hasMr antennas, K >R = ⌊max{Mt,Mr}
min{Mt,Mr} ⌋, and each pair of nodes in the

network has a L-tap frequency selective channel between them, an interference alignment

scheme under limited feedback achieves the same degrees of freedom as the interference

alignment scheme with perfect channel state information as long as the receiver employs more

than min{Mt,Mr}2K(RL− 1) logP bits of feedback, where P is the total power available

with the transmitting nodes of the network.

Proof: Due to the reciprocity of alignment idea [16], we can concentrate our attention

on the case of Mt ≤Mr without any loss of generality. From each receiver node, we discard



Mr −RMt antennas. Now, by restricting the cooperation allowed amongst the transmitters

and the receivers, we can treat this K-user Mt ×RMt channel as a SIMO KMt-user 1×

R channel. As long as each user - utilizing composite Grassmann quantization - sends

(KMt).(RL− 1). logP bits of feedback, we know from the preceding section that a spatial

muliplexing gain of KMtR
R+1

can be achieved. This value of KMtR
R+1

matches with the desired inner

bound achieved with perfect channel knowledge in [15]. Combining back the receivers to get

the K-user channel, we conclude that each node needs to transmit at least M2
t K(RL− 1)

bits of feedback.

IV. Remarks and Discussion

A. Impact of smaller feedback scaling rate

Through theorems II.1 and III.1, we have established the achievement of the maximal

sum degrees of freedom (dsum ,
PK

i=1 di
N

), when the feedback by each user scales as some Nf

bits. However, in an interference network, it may not be possible on part of each user to scale

its feedback bits at this uniform rate. Obversely, it would be desirable to have a tradeoff

between the provision of a flexible feedback rate for an individual user and the degrees of

freedom obtained thereby, with the system-level strategy being optimized (as in Sections II

and III) for achieving the Pareto-optimal point maximizing the sum degrees of freedom of

the network. This tradeoff provides additional flexibility to the system designer in terms of

allocation of resources for feedback and obtainable rates is given by the theorem below.

We denote the degrees of freedom achieved by user i as d̃i ,
di
N
, where di , limP→∞

Ri

logP

and Ri is the rate achieved by user i over N blocks.

Theorem IV.1: If the feedback rate employed by receiver i in the interference channel

(both the SIMO/MISO model of Section II and the MIMO model of Section III) scales as



αi.Nf , for some 0 < αi ≤ 1, then user i can achieve αi.d̃i degrees of freedom by using

interference alignment.

Proof: We analyze below for a K-user SIMO 1×R channel; the corresponding MIMO

results follow in a similar manner. Intuitively, the quantization error is proportional to

P 1−αi and this acts as a principal component of the interference faced by user i, leading to

a reduction of (1−αi)d̃i degrees of freedom from user i.

As in equation (22), the rate achieved by user i can be lower bounded as

Ri ≥
1

N

di
∑

m=1

log

(

1+
P

Kdi
|hH

i,ib
m,m
i,i |2

)

− 1

N

di
∑

m=1

log (Ii,1+ Ii,2+No) .

The interference terms can be expressed as

Ii,1+ Ii,2

=
∑

p 6=m

P

Kdi
|hH

i,ib
m,p
i,i |2+

∑

k 6=i

dk
∑

p=1

P

Kdk
|hH

i,kb
m,p
i,k |2

≤
∑

p 6=m

P

Kdi
. ‖bm,p

i,i ‖2‖hi,i‖2. d2c(vi,i, v̂i,i)

+
∑

k 6=i

dk
∑

p=1

P

Kdk
. ‖bm,p

i,k ‖2‖hi,k‖2. d2c(vi,k, v̂i,k).

If we denote b2max ,maxi,k,m,p‖bm,p
i,k ‖2, and h2

max ,maxi,k ‖hi,k‖2, then

Ii,1+ Ii,2

≤ b2max. h
2
max. const. P.

K
∑

k=1

d2c(vi,k, v̂i,k)

= P. const. d2(Qi, Q̂i)

≤ P. const. △2
max,i .



Here, △max,i is the maximum quantization error possible while using the codebook of

receiver i with 2αiNf representations on GK
RL,1. As in equation (4), we can claim that

△max,i ≤ const

2
αiNf

2K(RL−1)

⇒ △2
max,i ≤ const

2
αiK(RL−1) logP

K(RL−1)

=
const

P αi

This leads to,

Ii,1+ Ii,2 ≤ const.P 1−αi

⇒MG(Ri) ≥ 1

N
(di − (1−αi)di) =

αidi
N

= αid̃i,

whereMG(x) denotes the multiplexing gain of the quantity x defined asMG(x) = limP→∞
x

logP
.

In particular, if α1 = α2 = . . . αK = α (say) , then dsum = α
∑K

i=1
di
N
= α. RK

K+1
in

a K-user SIMO 1×R channel. A similar result would also hold for the MIMO Mt ×Mr

channel. Also, note that while the rate achieved by user i would depend upon {αj}Kj=1, the

degrees of freedom depends only on αi as long as the other αj ’s are positive.

For the case of M-user Rayleigh faded broadcast channel with M antennas at the trans-

mitter, [25] had analyzed the specific strategy of zero-forcing (ZF) precoding with random

vector quantization or RVQ-generated quantization codebooks to show that a feedback of

α times the optimal feedback rate leads to α times the maximum sum degrees of freedom.

The above theorem presents a counterpart to that result for the K-user MIMO interference

channel with several differences. We do not restrict the number of users to be equal to the

number of antennas. The fading distribution is more general. No constraint is placed on

the quantization codebook. Even when formulated using pseudo-beamforming vectors bm,p
i,k ,

interference alignment differs widely from the simple ZF precoding schemes with the bm,p
i,k ’s

arising from involved functions of the channel matrices.



B. Shrinkage of ‘radius of uncertainty’

The work in [26] analyzed the operation of a multi-antenna broadcast channel with the

transmitter basing its beamforming vectors on imperfect channel estimates received from the

receivers. Particularizing to the two-user case, they considered a scenario where the norm-

one channel direction to user one is fixed at h1 and the direction vector to user two can be

either h2a or h2b. Irrespective of the transmission strategy adopted at the transmitter, [26]

showed that the square of the chordal distance between h2a and h2b must shrink as O(P−1),

i.e 1− |hH
2ah2b|2 = O(P−1), for the system to achieve the same degrees of freedom as the

perfect CSIT case. The achievability for the same was shown via a simple beamforming

scheme.

An analogous formulation of our problem would be to note that the rate achieved by

user i, as expressed in equation (16), is

Ri ≥ I(Xi;Yi | {Q̂i}Ki )

≥ 1

N

di
∑

m=1

log



1+
P

Kdi
|hH

i,ib
m,m
i,i |2

Ii,1+ Ii,2+No





≥ 1

N

di
∑

m=1

log

(

1+
P

Kdi
|hH

i,ib
m,m
i,i |2

)

− 1

N

di
∑

m=1

log (Ii,1+ Ii,2+No) . (22)

Defining the multiplexing gain of a quantity x as limP→∞
x

logP
, we note that the multiplexing

gain of the first term equals the same degrees of freedom as available for the user in this

channel in the perfect CSIT case. Further, we can show that the multiplexing gain of the

second term is zero if both Ii,1 and Ii,2 are shown to be constant independent of P . This

condition is satisfied, as seen from our calculations in Section II.D, if △2
max ≤ 1

P
, which leads

to Nf = K (RL− 1) logP bits in equation (5). From Section II.C, we note that △2
max =



maxQ̂i∈C d
2(Qi, Q̂i), where Qi ∈ GK

RL,1 and C is the code of cardinality 2Nf used to quantize

Qi. Equivalently, one can re-write the necessary condition as

d2(Qi, Q̂i) ≤ 1

P

⇒ d2c(vi,k, v̂i,k) ≤ 1

P
∀ k ∈ {1,2, . . . ,K}. (23)

Recall that vi,k is the norm-one estimate of the channel vector; and v̂i,k is its channel

estimate provided by the receiver. As in the sufficiency part of the proof in [26], the v̂i,k were

treated as the actual channel directions in the formulation of the beamforming vectors (um
i

and vpk) by the nodes. In our analysis, the role corresponding to the beamforming vectors of

the broadcast channel are performed by the pseudo-beamforming vectors bm,p
i,k formed by the

Hadamard product of the transmit (vpk) and receive (um
i ) beamforming vectors. Our results

interpreted in this manner act as a counterpart for the case of interference channels to the

sufficiency results in [26] obtained for the broadcast channel. The complicated dependence of

the pseudo-beamforming vectors bm,p
i,k on the fedback channel information precludes finding

a direct counterpart to the necessity part of their proof.

Note that in our case, vi,k is uniformly distributed over a space GRL,1 with uncountably

infinite points, i.e. it lies in a ball of uncertainty around the estimate v̂i,k. Equation (23)

then shows that the shrinkage of its radius of uncertainty as O(P−1) suffices to attain the

same degrees of freedom as the perfect CSIT case.

C. Remarks

• The connection of the pre-log factor in the feedback scaling answer to the dimension of

the manifold over which the quantization happens is intriguing. In schemes involving

beamforming feedback of a single vector of M-length, the dimension of this norm-one

vector is 2(M−1). Correspondingly, we find that (M−1) logP bits of feedback suffices



to obtain ideal-like performance. In the interference alignment scheme explored above

in the SIMO and MISO cases, we obtain exactly 1
2
dimGK

RL,1 as the pre-log factor. Note

that the real dimension of the composite Grassmann manifold GK
RL,1 is 2K(RL− 1).

This line of thought is further explored in Appendix A.

• Since our analysis in Section II.D only required the first-order term in the volume

expansion of a ball in GK
n,1, the expansion obtained in equation (3) was sufficient.

The structure of GK
n,1, however, permits the evaluation of the precise volume of the

ball as follows.

Theorem IV.2: The normalized volume of a ball of radius δ in the composite Grass-

mann manifold GK
n,1 is given by

µ(B(δ)) =
ΓK(n)

Γ(K(n− 1) + 1)
δ2K(n−1).

The proof is provided in Appendix B

• It would be interesting to analyze interference alignment schemes under finite-rate

feedback for time-selective channels. This paper’s approach as also the analysis earlier

by [11] cannot be directly applied to time-selective channels without violating the

non-causality requirement on channel knowledge at the receivers.

V. Conclusion

Multi-user interference channels with single or multiple antennas at each node are ana-

lyzed in a frequency-selective setup, wherein the receivers with knowledge of their respective

channels quantize the channel directions using a code-book on the Composite Grassmann

manifold and broadcast them to all other nodes at a rate that scales sufficiently fast with

the power constraint on the nodes. It is shown that an interference alignment scheme based

on treating these channel estimates as being perfect is sufficient to attain the same sum



degrees of freedom as the interference alignment implementation utilizing perfect channel

state information at all the nodes. We also demonstrate a continuous tradeoff whereby an

individual user can opt for a slower scaling of feedback bits and obtain proportionally lower

degrees of freedom.

Appendices

A. Pre-log Factor in Feedback Scaling Rate

In this appendix, we give an intuitive explanation for why the pre-log factor in the

feedback scaling rate required for emulating perfect CSI performance involves a term corre-

sponding to the dimension of a manifold. The performance measure seems to be immaterial

here, viz. it can be the maximal spatial multiplexing gain, the capacity of a channel or

the probability of error incurred in a scheme. One first isolates that channel parameter the

knowledge of which enables the scheme (using operations at both the transmitter and the

receiver) to attain its ‘ideal’ value. This channel parameter can be, for example,

• a single beamforming vector h ∈ C
L×1, ‖h‖= 1⇒ dimension = L− 1,

• an input covariance matrix Q ∈ Cn×n, Tr Q≤ ρ⇒ dimension = n2,

• a set of directions W ∈GK
RL,1 ⇒ dimension = 2RK(L− 1).

Let us denote this channel parameter as q, and denote its substratum on which it takes

values as the manifold M . If the real dimension of M is given by dimM =N , then we know

that around each point on the manifold, we can establish a local coordinate system with N

variables. For analysis, consider such a system around the optimal value of q denoted as

qopt. If the receiver only has knowledge of q, it can decide to feedback this information to the

transmitter using a finite number, say Nf , of bits. By following the argument we made in

Section II, one can bound the maximum distortion sufferable by a point under quantization



using a 2Nf -level codebook on the manifold as:

△max ≤ const

2
Nf
N

.

Here, the codebook is the one that solves the packing problem of spheres for a given code

minimum distance for the given manifold M . The bound then follows using the Hamming

upper bound and noting a general formula for ball volumes in a general manifold. We note

that if q varies uniformly on the manifold M , then the distortion-rate function - which is

the minimum distortion over the choice of all the codes - also varies as the inverse of 2
Nf

N ,

as seen in [27] and [20].

The receiver in attempting to convey qopt using Nf bits causes an error, and the trans-

mitter is able to reconstruct the same as some q̂. In the regime of high Nf , we can take

q̂ within the same local coordinate system that covers qopt. Isolating the key part of the

performance measure affected by the inaccuracy in q as f(q), we get an appropriate Taylor

expansion:

f(q̂) ≈ f(qopt) + (∇f)t(△q).

∇f represents the gradient of the function f and △q represents the displacement of q̂ from

qopt. Note that this is a coarse approximation chosen primarily for illustration; to make it

rigorous, one would have to choose a normal coordinate system based at qopt and calculate

distances along radial geodesics emanating from it.

Our intention is often to bound the difference between f(q̂) and f(qopt) by a constant

independent of P ; as we expect to see both f(q̂) and f(qopt) increase monotonically with P .

The variation of the (∇f) with P determines the behavior required of the △q term. If (∇f)



varies as
√
P , then we need △q to vary as 1√

P
. This is ensured by

‖ △q ‖2 ≤ 1

P
⇒ △2

max ≤ 1

P

⇒ const

2
Nf

N

≤ 1

P
⇒ Nf ≈ N

2
logP as P increases.

This provides an intuitive reason for our results on the feedback scaling rate in this paper

as well as other similar results in [11] and [25].

B. Precise Ball Volume in the Composite Grassmann Manifold

We are interested in finding the precise expression for the normalized volume of a ball in

the Composite Grassmann manifold GK
n,1. For the general case of Gn,p, p ∈ {1,2, . . . ,n}, [20]

computed the first two terms in a series expansion for the normalized volume of a ball. The

calculation has been extended in [21] to the case of the Composite Grassmann GK
n,p. In the

special case of Gn,1, the ball volume expression, somewhat surprisingly, reduces to a single

term, as is extracted below from a simple manipulation of the results in [12]. The result of

[20] for the case of general p does not reduce by setting p= 1 to the expression in [12] due to

a mistake in their Corollary 1, wherein they claim the equivalence of the series expansion to

its first term by showing merely that the second term in the expansion vanishes in certain

cases.

The paper [12] considers a spherical cap defined by

Si(γ) = {h ∈ C
t | ‖h‖2 = γ, | < h,Ci > |2 ≥ γ0}.

Here Ci is an unit norm vector. The area of this spherical cap is then calculated as

A(Si(γ)) =
2πt√γ(γ − γ0)

t−1

(t− 1)!
.

By setting γ = 1, t = n, δ =
√
1− γ0, the spherical cap can be seen to be a ball in Gn,1 of

radius δ,

Si(γ) = {h ∈ C
n | ‖h‖2 = 1, d2c(h, Ci) ≤ δ2}.



The volume of the ball of radius δ is then seen to reduce to

Vol(B(δ)) =
2πnδ2(n−1)

(n− 1)!
.

Under the chordal distance metric, [21] provides the volume of the entire Grassmann manifold

Gn,1 as 2πn

(n−1)!
. This gives the normalized volume of the ball in Gn,1 as

µ(B(δ)) = δ2(n−1),

as compared to the expression in [20] which only yields µ(B(δ)) = δ2(n−1)(1+ 0.δ2+ o(δ2)).

To extend the exact result to the Composite Grassmann case, we fix a point P ∈ GK
n,1,

i.e. P , [P1, P2, . . . , PK ], Pi ∈ Gn,1∀i ∈ {1, 2, . . . ,K}. We vary a random variable Q ,

[Q1,Q2, . . . ,QK ] uniformly on GK
n,1, viz. Qi ∼ Unif(Gn,1) ∀i ∈ {1, 2, . . . ,K}. By defining

K random variables Xi , d2c(Pi,Qi), we note that these are independent and identically

distributed with the cumulative distribution function

FXi
(x) = Pr{Xi ≤ x} = µ(B(

√
x)) = xn−1.

Since the random variable Xi measures the square of the cosine of the angle between two

vectors, it is bounded between 0 and 1. We also get the probability density function of Xi

as

fXi
(x) = (n− 1).xn−2.1[0,1],

with 1[0,1] being the standard indicator function for the interval [0,1].

Let us define U ,
∑K

i=1Xi and we claim that the density of U is given by

fU(x) = (n− 1)KxK(n−1)−1 ΓK(n− 1)

Γ(K(n− 1))
1[0,1].

This can be proved through induction. Assume that statement is true for
∑K−1

i=1 Xi, the



density of U can be found through convolution of the densities of XK and
∑K−1

i=1 Xi as

fU(x) =
ΓK−1(n− 1)

Γ((K − 1)(n− 1))

.

∫ x

0

(n− 1)K−1y(K−1)(n−1)−1(n− 1)(x− y)n−2 dy

= (n− 1)KxK(n−1)−1 ΓK−1(n− 1)

Γ((K − 1)(n− 1))

.

∫ 1

0

zK(n−1)−1(1− z)n−2 dz

= (n− 1)KxK(n−1)−1 ΓK(n− 1)

Γ(K(n− 1))
.

The corresponding cumulative density function FU(x) is given for x ∈ [0,1] as

FU(x) = (n− 1)K
ΓK(n− 1)

Γ(K(n− 1))

xK(n−1)

K(n− 1)

=
ΓK(n)

Γ(K(n− 1)+ 1)
xK(n−1).

If we define a ball in GK
n,1 as

B̃(δ) = {Q ∈ GK
n,1 | d(Q,P ) ≤ δ},

then its normalized volume is given by

µ(B̃(δ)) = Pr{U ≤ δ2}= FU (δ
2)

=
ΓK(n)

Γ(K(n− 1)+ 1)
δ2K(n−1).
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