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Abstract—The concept of Public- key cryptosystem
was innovated by McEliece’s cryptosystem. The pub-
lic key cryptosystem based on rank codes was pre-
sented in 1991 by Gabidulin –Paramonov–Trejtakov
(GPT). The use of rank codes in cryptographic
applications is advantageous since it is practically
impossible to utilize combinatoric decoding. This has
enabled using public keys of a smaller size. Respective
structural attacks against this system were proposed
by Gibson and recently by Overbeck. Overbeck’s
attacks break many versions of the GPT cryptosystem
and are turned out to be either polynomial or expo-
nential depending on parameters of the cryptosystem.
In this paper, we introduce a new approach, called the
Smart approach, which is based on a proper choice of
the distortion matrix X. The Smart approach allows
for withstanding all known attacks even if the column
scrambler matrix P over the base fieldFq.

I. I NTRODUCTION

McEliece [1] has introduced the first code-based
public-key cryptosystem (PKC). The system is
based on Goppa codes in the Hamming metric,
which is connected to the hardness of the general
decoding problem. It is a strong cryptosystem but
the size of a public key is too large (500 000 bits)
for practical implementations to be efficient.

Neiderreiter [2] has introduced a new PKC based
on a family of Generalized Reed-Solomon codes;
its public key size is less than the McEliece cryp-
tosystem, but still large for practical application.

Also, Gabidulin Paramonov and Trietakov have
proposed a new public key cryptosystem, which
is now called the GPT cryptosystem, based on
rank error correcting codes in [3], [4]. The GPT
cryptosystem has two advantages over McEliece’s
Cryptosystem. Firstly, it is more robust against
decoding attacks than McEliece’s Cryptosystem;
secondly, the key size of the GPT is much smaller
and more useful in terms of practical applications
than McEliece’s cryptosystem.

Rank codes are well structured. Subsequently
in a series of works, Gibson [5], [6] developed
attacks that break the GPT system for public keys
of about5 Kbits. The Gibson’s attacks are efficient
for practical values of parametersn ≤ 30, where
n is the length of rank code with the fieldF2N as
an alphabet.

Several proposals of the GPT PKC were
introduced to withstand Gibson’s attacks [7],
[8]. One proposal is to use a rectangular row
scramble matrix instead of a square matrix. The
proposal allows working with subcodes of the
rank codes which have much more complicated
structure. Another proposal exploits a modification
of Maximum Rank Distance (MRD) codes where
the concept of acolumn scramble matrix was
also introduced. A new variant, called reducible
rank codes, is also implemented to modify the
GPT cryptosystem [9], [10]. All these variants
withstand Gibson’s attack.

Recently, R. Overbeck [11], [12], and [13] has
proposed new attacks, which are more effective
than any of Gibson’s attacks. His method is based
on two factors : a) a column scramblerP that is
defined over thebase field, and b) the unsuitable
choice of a distortion matrixX . However, Over-
beck managed to break many instances of the GPT
cryptosystem based on the general and developed
ideas of Gibson.

Kshevetskiy in [19] suggested a secure approach
towards the choice of parameters for avoiding
Overbeck’s attacks based on suitable choice of
the distortion matrix X. Independently, Loidreau
in [20] proposed similar method. Gabidulin [14]
has offered a new approach called the Advanced
approach, which makes the cryptographer define
a proper column scrambler matrix over the ex-
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tension field without violating the standard mode
of the PKC. The Advanced approach allows the
decryption of the authorised party, and prevents an
unauthorized party from breaking the system by
means of any known attacks.The two approaches
withstand Overbeck and Gibson’s attacks.

Recently, we have presented another variant of
the GPT public key cryptosystem [21], based on
a proper choice of column scrambler matrix over
the extension field. This variant, which we call the
Instrumental approach, is secure against all known
attacks.

In this paper, we introduce a new approach
called the Smart approach, which is based on a
proper choice of the distortion matrixX . The
Smart approach allows for withstanding all known
attacks even if the column scrambler matrixP over
the base fieldFq.

The rest of this paper is structured as follows.
Section 2 gives a short introduction to rank codes.
Section 3 describes the GPT cryptosystems. Sec-
tion 4 discusses the Overbeck’s attacks. Section 5
presents the Smart approach of GPT PKC cryp-
tosystem with two examples. Finally, section 6
concludes the paper with some remarks.

II. RANK CODES

Let us introduce the basic notion of rank codes
[3], [15]. Let Fq be a finite field ofq elements
and letFqN be an extension field of degreeN . Let
x = (x1, x2, . . . , xn) be a vector with coordinates
in FqN .
The Rank norm ofx is defined as the maximal
number ofxi, which are linearly independent over
the base fieldFq and is denotedRk(x | Fq).
Similarly, for a matrixM with entries inFqN , the
columns rank is defined as the maximal number of
columns, which are linearly independent over the
base fieldFq, and is denotedRkcol(M |Fq).
We distinguish two ranks of the matrix:

1) The usual rank of matrixM over FqN –
Rk(M | FqN ).

2) The column rank of a matrixM over the base
field Fq – Rkcol(M | Fq).

The column rank of the matrix M
depends on the field. In particular,
Rkcol(M | Fq) ≥ Rkcol(M |FqN )
The Rank distance betweenx and y is defined
as the rank norm of the differencex− y:
d(x,y) = Rkcol(x− y | Fq).

Any linear (n, k, d) codeC ⊂ F
n
qN

fulfils the
Singleton-style bound [15] for the rank distance:

Nk ≤ Nn− (d− 1)max{N,n}. (1)

A codeC reaching that bound is called a Maxi-
mal Rank Distance (MRD) code.

The theory of optimal MRD (Maximal Rank
Distance) codes is given in [15].

The notationg[i] := gq
i mod n

means thei-th
Frobenius power ofg. It allows to consider both
positive and negative Frobenius powersi.

Forn ≤ N , a generator matrixGk of a (n, k, d)
MRD code is defined by a matrix of the following
form:

Gk =











g1 g2 . . . gn

g
[1]
1 g

[1]
2 . . . g

[1]
n

...
...

. . .
...

g
[k−1]
1 g

[k−1]
2 . . . g

[k−1]
n











(2)

whereg1, g2, . . . , gn are any set of elements of the
extension fieldFqN which are linearly independent
over the base fieldFq.
A code with the generator matrix (2) is referred
to as (n, k, d) code, wheren is code length,k
is the number of information symbols,d is code
distance. For MRD codes,d = n − k + 1. Let
m = (m1,m2, . . . ,mk) be an information vector
of dimensionk. The corresponding code vector is
the n-vector

g(m) = mGk.

If y = g(m) + e and Rk(e) = s ≤ t = d−1
2 ,

then the information vectorm can be recovered
uniquely from y by some decoding algorithm.
There exist fast decoding algorithms for MRD
codes [15], [16]. A decoding procedure requires
elements of the(n−k)×n parity check matrixH
such thatGkH

T = 0. For decoding, the matrixH
should be of the form

H =











h1 h2 . . . hn

h
[1]
1 h

[1]
2 . . . h

[1]
n

...
...

. . .
...

h
[d−2]
1 h

[d−2]
2 . . . h

[d−2]
n











, (3)

where elementsh1, h2, . . . , hn are in the extension
field FqN and are linearly independent over the
base fieldFq.

The optimal code has the following design pa-
rameters: code lengthn ≤ N ; dimensionk =
n− d+ 1, rank code distanced = n− k + 1.

III. T HE GPT CRYPTOSYSTEM

Description of the standard GPT cryptosystem.
The GPT cryptosystem is described as follows:
Plaintext: A Plaintext is any k-vector m =
(m1,m2, . . . ,mk), ms ∈ FqN , s = 1, 2, . . . , k.
In previous works, different representations of the



public key are given. All of them can be reduced
to the following form.
The Public key is a k× (n+ t1) generator matrix

Gpub = S
[

X Gk

]

P. (4)

Let us explain roles of the factors.

• The main matrixGk is given by 2. It is used to
correct rank errors. Errors of rank not greater
than n−k

2 can be corrected.
• A matrix S is a row scrambler. This matrix is

a non singular square matrix of orderk over
FqN .

• A matrix X is a distortion(k×t1) matrix over
FqN with full column rankRkcol(X | Fq) =
t1 and rankRk(X | FqN ) = tX , tX ≤ t1.
The matrix

[

X Gk

]

has full column rank
Rkcol(

[

X Gk

]

| Fq) = n+ t1.
• A matrix P is a squarecolumn scramble

matrix of order(t1 + n) overFq.
• t1 + n may be greater thanN , but n ≤ N .

The Private keysare matricesS, Gk, X, P sep-
arately and (explicitly) a fast decoding algorithm
of an MRD code. Note also, that the matrixX is
not used to decrypt a ciphertext and can be deleted
after calculating the Public key.
Encryption : Let m = (m1,m2, . . . ,mk) be a
plaintext. The corresponding ciphertext is given by

c = mGpub + e = mS
[

X Gk

]

P+ e, (5)

wheree is an artificial vector of errors of rankt2
or less. It is assumed thatt1 + t2 ≤ t = ⌊n−k

2 ⌋

Decryption: The legitimate receiver upon re-
ceiving c calculates

c
′

= (c
′

1, c
′

2, . . . , c
′

t1+n) =

cP−1 = mS
[

X Gk

]

+ eP−1

Then fromc
′

he extracts the subvector

c
′′

= (c
′

t1+1, c
′

t1+2, . . . , c
′

t1+n) = mSGk + e
′′

,

(6)
wheree

′′

is the subvector ofeP−1. Then the legit-
imate receiver applies the fast decoding algorithm
to correct the errore

′′

, extractsmS and recovers
m asm = (mS)S−1.
In this system, the size of the public key is
V = k(t1 + n)N bits, and the information rate
is R = k

t1+n
.

IV. OVERBECK’ S ATTACK

In [11], [12], and [13], new attacks are proposed
on the GPT PKC described in the form of 4. It is

claimed, that similar attacks can be proposed on all
the variants of GPT PKC.

We recall briefly this attack.
We need some notations.
For x ∈ FqN let σ(x) = xq be the Frobenius
automorphism.
For the matrixT = (tij) over FqN , let σ(T) =
(σ(tij)) = (tqij).
For any integers, let σs(T) = σ(σs−1(T)).
It is clear thatσN = σ. Thus the inverse exists
σ−1 = σN−1.
The following simple properties ifσ are useful:

• σ(a+ b) = σ(a) + σ(b).
• σ(ab) = σ(a)σ(b).
• In general, for matricesσ(T) 6= T.
• If P is a matrix over thebasefield Fq, then

σ(P) = P.
Description of Overbeck’s attack: To break a
system, a cryptanalyst constructs from the public
key Gpub = S

[

X Gk

]

P the extendedpublic
key Gext,pub as follows:

Gext,pub =

∥

∥

∥

∥

∥

∥

∥

Gpub

σ(Gpub)
. . .

σu(Gpub)

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

∥

S
[

X Gk

]

P

σ(S)
[

σ(X) σ(Gk)
]

P

. . . . . . . . . . . . . . .

σu(S)
[

σu(X) σu(Gk)
]

P

∥

∥

∥

∥

∥

∥

∥

∥

. (7)

The property thatσ(P) = P, if P is a matrix over
the basefield Fq, is used in (7).

Rewrite this matrix as

Gext,pub = Sext

[

Xext Gext

]

P, (8)

where

Sext = Diag
[

S σ(S) . . . σu(S)
]

Xext =









X

σ(X)
...

σu(X)









, Gext =









Gk

σ(Gk)
...

σu(Gk)









.
(9)

Choose
u = n− k − 1. (10)

For ak× t1 matrixX, let X1 be the(k−1)× t1
matrix, obtained fromX by deleting thelast row.
Similarly, letX2 be the(k−1)×t1 matrix, obtained
from X by deleting thefirst row.

Define a linear mappingT : Fk×t1
qN

→ F
(k−1)×t1
qN

by the rule: if X ∈ F
k×t1
qN

, then T (X) = Y =

σ(X1)−X2. Let

Yext =
[

Y σ(Y) σ2(Y) . . . σu−1(Y)
]

⊤ (11)



Using this and other suitable transformations of
rows, one can rewrite for analysis (8) and (9) in
the form

G̃pub,ext = S̃ext

[

Z | Gn−1

Yext | 0

]

P (12)

whereGn−1 is the generator matrix of the(n, n−
1, 2) MRD code.

Let us try to find a solutionu of the system

S̃ext

[

Z | Gn−1

Yext | 0

]

PuT = 0, (13)

whereu is a vector-row over the extension field
FqN of length t1 + n. Represent the vectorPuT

as
PuT =

[

y h
]T

,

where the subvectory has lengtht1 and h has
lengthn. Then the system (13) is equivalent to the
following system:

ZyT +Gn−1h
T = 0, (14)

Yexty
T = 0. (15)

Assume that the next condition is valid:

Rk(Yext|FqN ) = t1. (16)

Then the equation (15) has only the trivial solution
yT = 0. The equation (14) becomes

Gn−1h
T = 0. (17)

It allows to find the first row of the parity check
matrix for the code with the generator matrix (12)
(see,[11], [12], and [13], for details). Hence this
solution breaks a GPT cryptosystem in polynomial
time. The Overbeck’s attack requiresO((n+ t1)

3)
operation overFqN since all the steps of the attack
have at most cubic complexity onn+ t1.

V. SMART APPROACH

To withstand Overbeck’s attack, the cryptogra-
pher should choose the matrixX in such a manner
that

Rk(Yext | FqN ) = t1 − a, (18)

wherea ≥ 2. In this case, the system (15) hasqaN

solutionsyT . Hence the exhaustive search overyT

is needed. The work function has orderO(qaN (n+
t1)

3) and Overback’s attack fails.
One method to provide the condition (18) is

proposed in [19], [20]. Choose the matrixX over
the extension fieldFqN in such a manner that the
following conditions are satisfied:

t1 = Rkcol(X | Fq) > n− k.

rX = Rk(X | FqN ) =
⌊

t1−a

n−k

⌋

≤ k.
(19)

Overbeck’s attack is exponential ona and has the
minimum complexity at leastO

(

qaN (n+ t1)
3
)

.
We propose an alternative Smart approach. The

point is to choose the matrixX in such a man-
ner that the corresponding matrixY = T (X)

has column rankRk(Y | Fq) not greater than
t1 − a, a ≥ 2.

The following result is evident.
Lemma 1: If Rk(Y | Fq) = s, thenRk(Yext |

Fq) = s.
Corollary 1: Rk(Yext | FqN ) ≤ Rk(Yext | Fq) =

s = Rk(Y | Fq).
a) The simple case: Let a matrixX be of the

following form:

X =











m

m[1]

...
m[k−1]











+











0

s1
...

sk−1











. (20)

Herem is a random vector over the extension field
FqN with full column rankt1 and vectorssi, i =
1, . . . , k−1, are random vectors over thebasefield
Fq such that the matrix

[

0 s1 . . . sk−1

]⊤

has rankt1 − a. Then the matrixY = T (X) has
the form

Y =
[

−s1 s1 − s2 . . . sk−1 − sk
]

⊤
. (21)

This matrix is a matrix over thebasefield Fq and
has rankt1 − a too. It follows that

σ(Y) =











σ(−s1)
σ(s1 − s2)

...
σ(sk−1 − sk)











=











−s1
s1 − s2

...
sk−1 − sk











= Y. (22)

Hence

Yext =







Y

σ(Y)
. . .

σu−1(Y)






=







Y

Y

. . .

Y






. (23)

ThereforeRk(Yext | FqN ) = Rk(Y | FqN ) =
t1 − a, and the condition (18) is satisfied.

As in the previous case, the proposed Smart
approach shows that Overbeck’s attack is expo-
nential ona and has the bit complexity at least
O
(

qaN (n+ t1)
3
)

.
It has been shown that the Smart approach

presented above is secure against all known attacks
including the recent attack presented by Overbeck
in [13].

Example 1: Let n = 8, k = 4, N = 8, t = 5, t1 =
4, q = 2, a = 2
Let the extension fieldF28 be defined by the primitive
polynomial r(x) = 1 + x2 + x3 + x4 + x8, and letα
be a primitive element of the field. Choose the matrix
X as in (20). A vectorm of full column rankt1 = 4 is
defined asm =

[

α3 α5 α6 α2
]

. Choose vectors
s1, s2, s3 ass1 =

[

1 1 0 0
]

, s2 =
[

1 1 1 1
]

,



s3 =
[

0 0 1 1
]

. Then we obtain

X =









α3 α5 α6 α2

α6 α10 α12 α4

α12 α20 α24 α8

α24 α40 α48 α16









+







0 0 0 0
1 1 0 0
1 1 1 1
0 0 1 1






=









α3 α5 α6 α2

α6 + 1 α10 + 1 α12 α4

α12 + 1 α20 + 1 α24 + 1 α8 + 1
α24 α40 α48 + 1 α16 + 1









.

(24)
The corresponding matrixY is as follows:

Y =





1 1 0 0
0 0 1 1
1 1 0 0



 . (25)

It has rankt1−a = 2. The attack is exponential ona and
has the bit complexity at leastO(qaN(n+t1)

3) = O(237

bite operations.
b) The general case: Let X be a ma-

trix consisting ofa Frobenius-type columns and
t1 − a non-Frobenius columns. A columnw is
called Frobenius-type if it has the formw =
(

w w[1] . . . w[k−1]
)⊤

. It is clear thatT (w) =
0. Hence the matrixY = T (X) will have a all
zero columns and column rankt1 − a and by
Corollary 1 the matrixYext has rank not greater
thant1−a. The result is valid also if suitable linear
combinations of non-Frobenius columns are added
to Frobenius-type columns.

Example 2: In conditions of the previous example, let
matrix X be as follows:

X =









α3 + α6 α5 + α2 α6 α2

α6 + α12 α10 + α5 α12 α5

α12 + α12 α20 + α5 α12 α5

α24 + α12 α40 + α2 α12 α2









.

The third column is added to the first Frobenius-type,
and the fourth is added to the second Frobenius-type, so
a = 2. Column rank ofX is t1 = 4. The corresponding
matrix Y = T (X) is of the form:

Y =





0 α4 + α5 0 α4 + α5

α24 + α12 α4 + α5 α24 + α12 α4 + α5

α24 + α12 α10 + α5 α24 + α12 α10 + α5



 .

It has rankt1 − a = 2.
In general, Overbeck’s attack fails whenaN ≥ 60.

VI. CONCLUSION

We have introduced the Smart approach as a technique
of withstanding Overbeck’s attack on the GPT Public key
cryptosystem, which is based on rank codes.

It is shown that proper choice of the distortion matrix
X over the extension fieldFqN allows the decryption
by the authorized party and prevents the unauthorized
party from breaking the system by means of any known
attacks.
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