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Abstract—A spatially correlated broadcast setting with M

antennas at the base station andM users (each with a single
antenna) is considered. We assume that the users have perfect
channel information about their links and the base station has
only statistical information about each user’s link. The base
station employs a linear beamforming strategy with one spatial
eigen-mode allocated to each user. The goal of this work is
to understand the structure of the beamforming vectors that
maximize the ergodic sum-rate achieved by treating interference
as noise. In the M = 2 case, we first fix the beamforming
vectors and compute the ergodic sum-rate in closed-form as a
function of the channel statistics. We then show that the optimal
beamforming vectors are the dominant generalized eigenvectors
of the covariance matrices of the two links. It is difficult to
obtain intuition on the structure of the optimal beamformin g
vectors for M > 2 due to the complicated nature of the sum-
rate expression. Nevertheless, in the case of asymptoticM , we
show that the optimal beamforming vectors have to satisfy a set
of fixed-point equations.

I. I NTRODUCTION

The focus of this paper is on a MISO broadcast (downlink)
setting where the base station (BS) hasM antennas withM
users in the cell, each having a single antenna. Under the
assumption of perfect channel state information (CSI) at both
the ends, significant progress has been made over the last
few years on understanding optimal signaling that achieves
the sum-capacity [1]–[5] as well as the capacity region [6]
of the multi-antenna broadcast channel. Though the capacity-
achievingdirty paper coding scheme is well-understood, the
complexity associated with it makes it an impractical choice.
Thus, recent focus has been on a family of linear precoding
schemes [7]–[9] which are within a fixed power-offset of the
dirty paper coding scheme. In particular, a linear beamforming
scheme that allocates one eigen-mode to each user is of
considerable interest in standardization efforts.

More importantly, while reasonably accurate CSI can be
obtained at the users via pilot-based schemes, CSI at the BS re-
quires either channel reciprocity or reverse link feedback, both
of which put an overwhelming burden on the operating cost.
Thus, there has been a significant interest on understanding
the information-theoretic limits of broadcast channels under
practical assumptions on CSI. In the extreme case of no CSI
at the BS, the multiplexing gain possible in the perfect CSI
case (M ) is lost completely as it reduces to one.

The no CSI assumption is pessimistic and in practice, the
channel evolves fairly slowly on a statistical scale and it is
possible to learn the statistics of the individual links at the
BS with minimal cost. In the MISO broadcast setting with
a Rayleigh fading model for each user (zero mean complex
Gaussian fading process), the complete channel statisticsare
specified by the covariance matrix of the vector channel of
the user. In this context, it must be noted that initial works
assume that all the users experience fading that isindependent
and identically distributed (i.i.d.) across the antennas. That is,
the covariance matrix of each user is the identity matrix. This

assumption cannot be justified in practice unless the antennas
at the BS are spaced wide apart and the scattering environment
connecting the BS with the users is rich. While the correlated
case has been studied in the literature [10], [11], the general
version of the problem studied here has not received much
attention.

The focus of this work is on understanding the impact of the
users’ spatial statistics (their covariance matrices) on the sum-
rate performance of the linear beamforming scheme. We first
study the simplest non-trivial case ofM = 2 and compute the
sum-rate achievable with a linear beamforming scheme under
the practical assumption that interference is treated as noise.
For this, we exploit knowledge of the structure of density
function of the weighted norm of isotropically distributed
beamforming vectors [12]. Our sum-rate characterization is
explicit and in terms of the covariance matrices of the two
users and the beamforming vectors.

While identifying the structure of the sum-rate optimizing
beamforming vectors is a difficult problem, in general, we
obtain intuition in the low- and the high-SNR extremes. In the
low-SNR extreme, it is not surprising that a strategy where
the BS beamforms along the dominant eigen-mode of each
user’s channel is sum-rate optimal. In the high-SNR extreme,
a strategy where the BS beamforms to a given user along the
dominant generalized eigenvector1 of that user’s and the other
user’s covariance matrices is sum-rate optimal. Intuitively
speaking, given that the BS has only statistical information
of the two links, it generates an “effective” covariance matrix
for a particular user by statistically pre-nulling the interference
from the forward channel of the user. The sum-rate optimal
beamforming vectors are the dominant eigen-modes of these
effective covariance matrices. Solutions in terms of the gen-
eralized eigenvectors are obtained in the perfect CSI case [9],
[13], but to the best of our knowledge, this solution in the
statistical case is a first. While the generalization of thisresult
to the M > 2 case is cumbersome, simple approximations
for the ergodic sum-rate in terms of the channel statistics are
provided in the asymptotics ofM . Based on these approxi-
mations, we show that the optimal beamforming vectors are
solutions to a set of fixed-point equations.
Note: Due to space constraints, the proofs of the main state-
ments in this paper are not provided and the logic of the main
arguments are sketched out in brief.

II. SYSTEM SETUP

We consider a broadcast setting withM antennas at the
base station (BS) andM users, each with a single antenna.
We denote theM × 1 channel between the BS and useri as

1 A generalized eigenvectorx (with the corresponding generalized eigen-
valueσ) of a pair of matrices(A, B) satisfies the relationshipAx = σBx.
In the special case whereB is invertible, a generalized eigenvector of the pair
(A, B) is an eigenvector ofB−1A. If A andB are also positive definite,
then all the generalized eigenvalues are also positive.
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hi, i = 1, · · · ,M . While different multi-user communication
strategies can be considered, as motivated in the Introduction,
the focus here is on a linear beamforming scheme where the
BS beamforms the information-bearing signalsi meant for
useri with theM ×1 unit-normed vectorwi. We assume that
si is unit energy and the BS divides its power budget ofρ
equally across all the users. The received symbolyi at useri
is written as

yi =

√
ρ

M
· hH

i

(
M∑

i=1

wisi

)
+ ni, i = 1, · · · ,M

whereni denotes theCN (0, 1) complex Gaussian noise added
at the receiver.

We assume a Rayleigh fading (zero mean complex Gaus-
sian) model for the channel and hence, the complete spatial
statistics are described by the second-order moments of{hi}.
With M antennas at the BS and a single antenna at each user,
the channelhi of useri can be generically written as

hi = Σ
1/2
i hiid, i (1)

wherehiid, i is anM × 1 vector with i.i.d.CN (0, 1) entries
andΣi is the covariance matrix corresponding to the useri.
In particular, withΣi = IM for all users, (1) reduces to the
i.i.d. downlink model well-studied in the literature.

The metric of interest in this work is the throughput from the
BS to the users. Under the assumption of Gaussian inputs{si},
the instantaneous information-theoretic2 rate,Ri, achievable
by user i with the linear beamforming scheme and using a
mismatched decoder is given by

Ri = log

(
1 +

ρ
M · |hH

i wi|2
1 + ρ

M ·∑j 6=i |hH
i wj|2

)

= log


1 +

ρ

M

M∑

j=1

|hH
i wj |2




︸ ︷︷ ︸
Ii, 1

− log


1 +

ρ

M

∑

j 6=i

|hH
i wj |2




︸ ︷︷ ︸
Ii, 2

.

In particular, the ergodic sum-rate achievable with the linear
beamforming scheme is given by

R ,

M∑

i=1

E [Ri] .

With the spatial correlation model assumed in (1), we can
write Ii, 1 as

Ii, 1 = log


1 +

ρ

M
· hH

iid, iΣ
1/2
i




M∑

j=1

wjw
H
j


Σ

1/2
i hiid, i




= log
(
1 +

ρ

M
· hH

iid, iViΛiV
H
i hiid, i

)
,

where we have used the following eigen-decomposition in the
second equation:

ViΛiV
H
i = Σ

1/2
i




M∑

j=1

wjw
H
j


Σ

1/2
i

Λi = diag
(
[Λi, 1, · · · , Λi,M ]

)
, Λi, 1 ≥ · · · ≥ Λi,M ≥ 0.

2All rate quantities will be assumed to be in nats/s/Hz in this work.

Similarly, we can writeIi, 2 as

Ii, 2 = log
(
1 +

ρ

M
· hH

iid, i Ṽi Λ̃i Ṽ
H
i hiid, i

)

Ṽi Λ̃i Ṽ
H
i = Σ

1/2
i



∑

j 6=i

wjw
H
j


Σ

1/2
i

Λ̃i = diag
(
[Λ̃i, 1, · · · , Λ̃i, M ]

)
, Λ̃i, 1 ≥ · · · ≥ Λ̃i,M ≥ 0.

Towards the goal of computing the ergodic rates, we expand
hiid, i into its magnitude and directional components ashiid, i =

‖hiid, i‖ · h̃iid, i. Note that‖hiid, i‖2 can be written as

‖hiid, i‖2 =
1

2

2M∑

j=1

z2j

wherez2j is a standard (real) chi-squared random variable and
h̃iid, i is a unit-normed vector that is isotropically distributed
on the surface ofM -dimensional complex sphere. Thus, we
can rewriteIi, 1 andIi, 2 as

Ii, 1 = log
(
1 +

ρ

M
· ‖hiid, i‖2 · h̃H

iid, iViΛiV
H
i h̃iid, i

)

Ii, 2 = log
(
1 +

ρ

M
· ‖hiid, i‖2 · h̃H

iid, i Ṽi Λ̃i Ṽ
H
i h̃iid, i

)
.

Further, since the magnitude and directional information of an
i.i.d. (isotropically distributed) random vector are independent,
E [Ii, 1] andE [Ii, 2] can be written as

E [Ii, 1] = E
[
log
(
1 +

ρ

M
· ‖hiid, i‖2 · h̃H

iid, iΛi h̃iid, i

)]

E [Ii, 2] = E
[
log
(
1 +

ρ

M
· ‖hiid, i‖2 · h̃H

iid, i Λ̃i h̃iid, i

)]

where we have also used the fact that a fixed3 unitary trans-
formation of an isotropically distributed vector on the surface
of the complex sphere does not alter its distribution.

III. E RGODIC SUM-RATE: TWO USERCASE

The focus of this section is on computing the ergodic
information-theoretic rates in closed-form in the specialcase
of two users (M = 2). This closed-form expression will be
a function of the covariance matrices of the two users,Σ1

and Σ2, and the choice of beamforming vectors,w1 and
w2. Once a closed-form expression is obtained, our goal lies
in characterizing the structure of the optimal beamforming
vectors as a function of the channel statistics andSNR.

For simplicity, we assume that

Σ1 = Udiag([λ1 λ2])U
H , Σ2 = Ũdiag([µ1 µ2]) Ũ

H (2)

where U = [u1(Σ1), u2(Σ1)], Ũ = [u1(Σ2), u2(Σ2)],
λ1 ≥ λ2 > 0 and µ1 ≥ µ2 > 0 (that is, bothΣ1 and Σ2

are positive definite). Define the condition numbersκ1 andκ2

as

κ1 ,
λ1

λ2
and κ2 ,

µ1

µ2
. (3)

3Note that the unitary transformation is independent of the channel realiza-
tion when the beamforming vectors are chosen based on long-term statistics
of the channel.



Proposition 1: The ergodic information-theoretic rate
achievable at useri (wherei = 1, 2) with linear beamforming
in the two user case is given by

E [Ri] = E [Ii, 1]− E [Ii, 2]

=
Λi, 1 · e

2

ρΛi, 1 E1

(
2

ρΛi, 1

)
−Λi, 2 · e

2

ρΛi, 2 E1

(
2

ρΛi, 2

)

Λi, 1 −Λi, 2

− exp
(
2/ρΛ̃i, 1

)
E1

(
2/ρΛ̃i, 1

)

whereE1(x) =
∫∞

x
e−t

t dt is the exponential integral. The
corresponding eigenvalues can be written in terms ofΣi and
the beamforming vectors as follows:

Λi, 1 =
Ai +Bi +

√
(Ai −Bi)2 + 4C2

i

2

Λi, 2 =
Ai +Bi −

√
(Ai −Bi)2 + 4C2

i

2

Λ̃i, 1 = Bi

Λ̃i, 2 = 0

whereAi = w
H
i Σiwi, Bi = w

H
j Σiwj andCi = |wH

i Σiwj |
with j 6= i and{i, j} = 1, 2.

Proof: Note that a closed-form computation ofE [Ii, 1]
requires the density function of weighted norms of isotropi-
cally distributed unit-normed vectors since

E [Ii, 1] = EX

[∫ Λi, 1

y=Λi, 2

log (1 +Xy)Pi(y)dy

]

whereX denotes the random variableX = ρ
2 ·‖hiid, i‖2 andX

corresponds to a realization ofX. Let Y denote the random
variable

Y , h̃
H
iid, iΛi h̃iid, i =

2∑

j=1

Λi, j

∣∣∣h̃iid, i(j)
∣∣∣
2

.

The Ritz-Rayleigh relationship implies thatΛi, 2 ≤ Y ≤ Λi, 1

and the density function ofY evaluated aty is denoted as
Pi(y). In [12], Pi(y) in the M = 2 case is shown to be
uniform, that is,

Pi(y) =
1

Λi, 1 −Λi, 2
, Λi, 2 ≤ y ≤ Λi, 1.

The statement of the proposition follows from a routine
computation via the integral tables [14].
Note that understanding the structure of the optimal choice
of beamforming vectors,(w1, opt,w2, opt), that maximize the
ergodic sum-rate as a function ofΣ1, Σ2 and ρ is a hard
problem, in general. Therefore, we consider the low- and the
high-SNR extremes to obtain insights.
Low-SNR Extreme: We need the following characterization
of the exponential integral:

1

x+ 2
≤ 1

2
log

(
1 +

2

x

)
≤ E1(x)e

x ≤ log

(
1 +

1

x

)
≤ 1

x

where the extremal inequalities are established by using the
fact that x

x+1 ≤ log(1 + x) ≤ x. Note that the upper and the
lower bounds get tight asx → ∞ (or ρ → 0 in this context).
Using the above bound, we have

E [Ri]
ρ→0→ ρ

2
(Λi, 1 +Λi, 2 −Bi) =

ρ

2
· Ai =

ρ

2
·wH

i Σiwi.

In the low-SNR regime, the system is noise-limited and hence,
the linear scaling ofE [Ri] with SNR. It is also straightforward
to note that maximizingE [Ri] is contingent on optimizing
overwi alone. Thus, the sum-rate is maximized by

w1, opt = u1(Σ1) and w2, opt = u1(Σ2)

whereu1(Σi) denotes the dominant eigenvector (an eigenvec-
tor corresponding to the dominant eigenvalue) ofΣi. In other
words, in the low-SNR extreme, each user signals along the
optimal statistical eigen-mode of its channel (and ignoring the
other user’s channel completely). This conclusion should not
be entirely surprising. The resulting ergodic sum-rate is given
as

R ρ→0→ ρ

2
·
[
λmax(Σ1) + λmax(Σ2)

]
.

High-SNR Extreme: The following expansion of the expo-
nential integral is useful in characterizingR asρ → ∞:

E1(x) = log

(
1

x

)
+

∞∑

k=1

(−1)k+1xk

k · k! − γ

x→0→ log

(
1

x

)
+ x− γ

whereγ ≈ 0.577 is the Euler-Mascheroni constant. Using the
above approximation, we have

E [Ri]
ρ→∞→ Λi, 1 log (Λi, 1)−Λi, 2 log (Λi, 2)

Λi, 1 −Λi, 2
− log (Bi) .

The dominating impact of interference (due to the fixed nature
of the linear beamforming scheme where the beamforming
vectors are not adapted to the channel realizations) and the
consequent boundedness ofE [Ri] as SNR increases should
not be surprising. After some elementary manipulation, we
can writeE [Ri] as

2E [Ri]
ρ→∞→ log

(
AiBi − C2

i

B2
i

)
+

Ai +Bi√
(Ai −Bi)

2
+ 4C2

i

·

log



Ai +Bi +

√
(Ai −Bi)

2
+ 4C2

i

Ai +Bi −
√
(Ai −Bi)

2
+ 4C2

i





We now rewrite the high-SNR ergodic rates in a form that
eases further study.

Proposition 2: Define dΣi
(w1,w2) between two unit-

normed vectorsw1 and w2 from the Grassmann manifold
G(2, 1) as

dΣi
(w1,w2) ,

√
4 (AiBi − C2

i )

(Ai +Bi)
2 ,

whereAi, Bi andCi are as in the statement of Prop. 1.

• (a) Then,dΣi
(w1,w2) is a generalized “distance” semi-

metric4 betweenw1 andw2 satisfying0 ≤ dΣi
(·, ·) ≤ 1.

• (b) We can recast the ergodic rate in terms of
dΣi

(w1,w2) as

E [Ri] + log(2)
ρ→∞→ g (dΣi

(w1,w2))

2
+ log

(
1 +

Ai

Bi

)

4A semi-metric satisfies all the properties necessary for a distance metric,
except the triangle inequality.



where

g(z) = f(z) + 2 log(z),

f(z) =
1√

1− z2
log

(
1 +

√
1− z2

1−
√
1− z2

)
.

• (c) While f(•) is monotonically decreasing as a function
of its argument,g(•) is increasing with

2 log(2) = lim
z→0

g(z) ≤ g(z) ≤ lim
z→1

g(z) = 2

∞ = lim
z→0

f(z) ≥ f(z) ≥ lim
z→1

f(z) = 2.

We are now prepared to illustrate the structure of the optimal
beamforming vectors.

Theorem 1: The optimal choice of the pair(w1, opt,w2, opt)
that maximizesE [Ri] in the high-SNR regime is

wi, opt = ejν1 u1 (Σi) and wj, opt = ejν2 u2 (Σi) , j 6= i

for some choice ofνi ∈ [0, 2π), i = 1, 2.
Proof: Let χ (Σi) = λmax(Σi)

λmin(Σi)
denote the condition

number ofΣi. We first note that the optimization problem over
the choice of a pair(w1,w2) that results in a corresponding
choice of (Ai, Bi, Ci) can be recast in the form of a two
parameter optimization problem over(Mi, Ni) with Mi =

Ai

Bi
,

Ni =
Ci

Bi
under the constraint that0 ≤ N2

i ≤ Mi ≤ χ (Σi).
This results in the following high-SNR expression:

2E [Ri] + 2 log(2) = g

(
2
√
Mi −N2

i

Mi + 1

)
+ 2 log (1 +Mi) .

It is straightforward to show that the choice in the theorem
maximizes the above equation.
With this choice of beamforming vectors,dΣi

(·, ·) andE [Ri]
can be written as

dΣi
(wi, opt,wj, opt) =

2
√
κi

κi + 1

E [Ri]
ρ→∞→ κi log(κi)

κi − 1
,

whereas lim
ρ→∞

E [Rj ] is dependent on how the eigenvectors

of Σi are related toΣj . It is also to be noted thatE [Ri]
increases (anddΣi

(·, ·) decreases) asκi increases. That is, the
more ill-conditionedΣi is, the larger the high-SNR statistical
beamforming rate asymptote andvice versa. This should be
intuitive as our goal is only to maximizeE [Ri] and the above
choice achieves that goal.

We now consider the sum-rate setting restricted to the case
whereΣ1 andΣ2 have the same set of orthonormal eigenvec-
tors. Instead of using the definitions ofΣ1 andΣ2 as in (2),
for simplicity, we will assume thatU = Ũ = [u1, u2]. We
defineκ1 andκ2 as in (3). Without loss in generality, we can
also assume thatκ1 > 1. Three possibilities arise depending
on the relationship between1, κ1 and κ2: i) κ1 > 1 ≥ κ2,
ii) κ1 > κ2 > 1, and iii) κ2 ≥ κ1 > 1. (Note that first case
subsumes the setting whereµ1 = µ2 = µ andΣ2 = µI.) The
main result is the following theorem.

Theorem 2: The sum-rate is maximized by the following
choice of beamforming vectors:

w1, opt = ejν1u1, w2, opt = ejν2u2 if i) or ii) is true,
w1, opt = ejν2u2, w2, opt = ejν1u1 if iii) is true

for some choice ofνi ∈ [0, 2π), i = 1, 2. The optimal sum-
rate is given as

E [R1] + E [R2]
ρ→∞→

{
κ1 · log(κ1)

κ1−1 + log(κ2)
κ2−1 if κ1 ≥ κ2

κ2 · log(κ2)
κ2−1 + log(κ1)

κ1−1 if κ1 < κ2

Proof: The proof follows by decomposingw1 and w2

along the obvious orthogonal basis of{u1,u2}:

w1 = αu1 + βu2, w2 = γu1 + δu2

for some choice of{α, β, γ, δ} with α = |α|ejθα (similarly,
for other quantities) satisfying|α|2 + |β|2 = |γ|2 + |δ|2 = 1.
A direct optimization of the high-SNR sum-rate expression
shows that{θ•} enters the optimization only via the term|βγ−
αδ|, which can be maximized by settingθα+θδ−θβ−θγ = π
(modulo2π). Parameterizing|α| and |γ| as |α| = sin(θ) and
|γ| = sin(φ) for some{θ, φ} ∈ [0, π/2], we can show that
the sum-rate is maximized byθ = π/2 and φ = 0 if i) or
ii) is true and byθ = 0 andφ = π/2 if iii) is true. For this,
we establish an upper bound to the sum-rate and show that
this bound is achieved by the choice as in the statement of the
theorem.

We now consider the general case whereΣ1 andΣ2 do not
have the same set of eigenvectors.

Theorem 3: In the general case, the sum-rate is maximized

w1, opt = ejν1u1

(
Σ

−1
2 Σ1

)
, w2, opt = ejν2u1

(
Σ

−1
1 Σ2

)

for some choice ofνi ∈ [0, 2π), i = 1, 2.
Proof: For this case, we defineΣ and its corresponding

eigen-decomposition as

Σ , Σ
− 1

2

2 Σ1Σ
− 1

2

2 = V diag ([η1 η2]) V
H

whereV = [v1 v2] and η1 ≥ η2. SinceΣ2 is a full rank

matrix and{v1,v2} form a basis, the vectorsΣ
− 1

2

2 v1 and

Σ
− 1

2

2 v2 also form a basis (albeit non-orthogonal, in general).
We can decomposew1 andw2 along these vectors as

w1 =
αΣ

− 1

2

2 v1 + βΣ
− 1

2

2 v2

‖αΣ− 1

2

2 v1 + βΣ
− 1

2

2 v2‖
, w2 =

γΣ
− 1

2

2 v1 + δΣ
− 1

2

2 v2

‖γΣ− 1

2

2 v1 + δΣ
− 1

2

2 v2‖
for some choice of{α, β, γ, δ} with α = |α|ejθα (similarly,
for other quantities) satisfying|α|2 + |β|2 = |γ|2 + |δ|2 = 1.
A suitable coordinate transformation at this stage resultsin
an optimization problem that is related to the special case of
Theorem 2. After this transformation, the proof follows along
the same logic as in Theorem 2.
The reason for the peculiar choice of decomposition in the
above proof (instead of decomposing the beamforming vectors

along {v1,v2}) is that Σ
− 1

2

2 vi, i = 1, 2 turn out to be the
dominant generalized eigenvectors of the pairs(Σ1, Σ2) and
(Σ2, Σ1), respectively. Recall from Footnote 1 the definition
of a generalized eigenvector. For the above claim, note that

Σ
−1
2 Σ1 = Σ

− 1

2

(
V diag ([η1 η2]) V

H
)
Σ

1

2

2 = MDM
−1

Σ
−1
1 Σ2 =

(
Σ

−1
2 Σ1

)−1

= MD
−1

M
−1

whereM = Σ
− 1

2

2 V andD = diag ([η1 η2]). Theorem 2 is
indeed a special case of Theorem 3. For this, note that the
dominant eigenvector ofΣ−1

2 Σ1 is u1 andu2 whenκ1 > κ2

andκ2 < κ1, respectively.



IV. ERGODIC SUM-RATE: GENERAL M CASE

A recent advance [15], [16] allows a computation of the
density function of weighted sum of standard central chi-
squared terms (generalized chi-squared random variables).
Alternate to the approach of Prop. 1, this approach allows
closed-form expressions in the generalM case. For example,
if Λi(j), j = 1, · · · ,M are distinct5, we have

E [Ii, 1] =

M∑

k=1

M∏

j=1, j 6=k

Λi(k)

Λi(k)−Λi(j)
· xk (4)

xk = exp

(
ρ

Λi(k)M

)
E1

(
ρ

Λi(k)M

)
.

For E [Ii, 2], replaceΛi by Λ̃i. It can be checked that this
expression matches with the expression in theM = 2 case.

Nevertheless, it is important to note that the formula above
is in terms of the eigenvalue matrices{Λi, Λ̃i, i = 1, · · · ,M},
which become harder (and impossible forM ≥ 5) to compute
in closed-form as a function of the beamforming vectors and
the covariance matrices asM increases. Approximation to
the generalized chi-squared random variable by a Gamma
distribution with matching first two moments can also be used
to produce sum-rate approximations. However, these approx-
imations are of similar complexity as the above formula. In
contrast, we now provide asymptotic approximations to the
sum-rate directly in terms of the relevant variables.

Proposition 3: For any fixedρ, the ergodic information-
theoretic rate achievable at useri (where i = 1, · · · ,M )
converges asM → ∞ to

E [Ri] → log (1 + SINRi) , Ri,∞

SINRi =
ρ
M ·wH

i Σiwi

1 + ρ
M ·∑M

j=1, j 6=i w
H
j Σiwj

,
Si

Ii
.

Proof: The proof follows along a law of large numbers-
type argument, strengthened to convergence in mean via a
suitable truncation technique.

Proposition 4: Based on the above expression, we have the
following conclusions that mirror the main results of Sec. III.
i) We have the following bound for

∑M
i=1 Ri,∞:

1− ρ

M
· max
i=1,··· ,M

M∑

j=1

w
H
j Σiwj ≤

∑M
i=1 Ri,∞

ρ
M ·∑M

i=1 w
H
i Σiwi

≤ 1.

Thus, the optimal beamforming vectors asρ → 0 are such that
wi, opt = u1(Σi), i = 1, · · · ,M . ii) For anyρ, we have

Ri,∞ ≤ log

(
1 +

ρ
M · λ1(Σi)

1 + ρ
M ·∑M

j=2 λj(Σi)

)

andRi,∞ is maximized bywi, opt = u1(Σi), and
{
wj, opt, j = 1, · · · ,M, j 6= i

}
=
{
uj(Σi), j = 2, · · · ,M

}
.

iii)
∑M

i=1 Ri,∞ is optimized by the set of beamforming

vectors that solve the following fixed-point equations:

Σiwi

Ii · (1 + SINRi)
−
∑

j 6=i

SINRj ·Σjwi

Ij · (1 + SINRj)
= 0, i = 1, · · · ,M.

5More complicated expressions can be obtained in case{Λi(j)} are not
distinct.

V. CONCLUSION

We have studied statistics-based linear beamformer design
for the MISO broadcast channel in this work. Based on a
closed-form computation of the ergodic sum-rate in theM = 2
(two-user) case, we provide intuition on the structure of the
optimal beamforming vectors that maximize the sum-rate in
the low- and the high-SNR extremes. While further intuition
on the smallM case seems difficult, in the asymptotics of
M , we are able to obtain intuition on the structure of the
optimal beamforming vectors. The case of optimal statistical
linear beamforming design has not received much attention in
the literature and our work sets the course for a systematic
and low-complexity limited feedback design in the broadcast
setting, which is of considerable importance in the standard-
ization efforts.
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