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Abstract—A spatially correlated broadcast setting with M assumption cannot be justified in practice unless the aatenn
antennas at the base station and\/ users (each with a single at the BS are spaced wide apart and the scattering enviranmen
antenna is considered. We assume that the users have pefec qnnecting the BS with the users is rich. While the correlate
channel information about their links and the base station tas L .
only statistical information about each user’s link. The base Case_ has been studied in th(_:" literature [10]J [11], the gener
station employs a linear beamforming strategy with one spaal  vVersion of the problem studied here has not received much
eigen-mode allocated to each user. The goal of this work is attention.
to understand the structure of the beamforming vectors that The focus of this work is on understanding the impact of the
maximize the ergodic sum-rate achieved by treating interfeence users’ spatial statistics (their covariance matrices)hensum-

as noise. In the M = 2 case, we first fix the beamforming . . .
vectors and compute the ergodic sum-rate in closed-form as a rate performance of the linear beamforming scheme. We first

function of the channel statistics. We then show that the opnal ~ Study the simplest non-trivial case 8f = 2 and compute the
beamforming vectors are the dominant generalized eigenvemrs sum-rate achievable with a linear beamforming scheme under

of the covariance matrices of the two links. It is difficult to the practical assumption that interference is treated @&eno
obtain intuition on the structure of the optimal beamforming For this, we exploit knowledge of the structure of density

vectors for M > 2 due to the complicated nature of the sum- functi f th ighted f isotropically distributed
rate expression. Nevertheless, in the case of asymptotiz, we 'Unction of the weighted norm of isotropically distribute

show that the optimal beamforming vectors have to satisfy aet beamforming vectors_[12]. Our sum-rate characterizat®n i
of fixed-point equations. explicit and in terms of the covariance matrices of the two
users and the beamforming vectors.
While identifying the structure of the sum-rate optimizing
The focus of this paper is on a MISO broadcast (downlinkjeamforming vectors is a difficult problem, in general, we
setting where the base station (BS) Hesantennas with\/  obtain intuition in the low- and the higBNR extremes. In the
users in the cell, each having a single antenna. Under tb@-SNR extreme, it is not surprising that a strategy where
assumption of perfect channel state information (CSI) @ bahe BS beamforms along the dominant eigen-mode of each
the ends, significant progress has been made over the |&sir's channel is sum-rate optimal. In the higldR extreme,
few years on understanding optimal signaling that achievastrategy where the BS beamforms to a given user along the
the sum-capacityl [1]=[5] as well as the capacity region [@ominant generalized eigenve@af that user’s and the other
of the multi-antenna broadcast channel. Though the capacitiser's covariance matrices is sum-rate optimal. Intdifive
achievingdirty paper coding scheme is well-understood, thespeaking, given that the BS has only statistical infornmatio
complexity associated with it makes it an impractical ckoicof the two links, it generates an “effective” covariance rixat
Thus, recent focus has been on a family of linear precodifgr a particular user by statistically pre-nulling the iriegence
schemes][[7]+[9] which are within a fixed power-offset of thécom the forward channel of the user. The sum-rate optimal
dirty paper coding scheme. In particular, a linear beamiiogm beamforming vectors are the dominant eigen-modes of these
scheme that allocates one eigen-mode to each user isefiéctive covariance matrices. Solutions in terms of the-ge
considerable interest in standardization efforts. eralized eigenvectors are obtained in the perfect CSI @jse |
More importantly, while reasonably accurate CSI can &3], but to the best of our knowledge, this solution in the
obtained at the users via pilot-based schemes, CSI at the-BSstatistical case is a first. While the generalization of teisult
quires either channel reciprocity or reverse link feedbaokh to the M > 2 case is cumbersome, simple approximations
of which put an overwhelming burden on the operating cogbr the ergodic sum-rate in terms of the channel statisties a
Thus, there has been a significant interest on understandinrgvided in the asymptotics of/. Based on these approxi-
the information-theoretic limits of broadcast channelsiem mations, we show that the optimal beamforming vectors are
practical assumptions on CSI. In the extreme case of no Gllutions to a set of fixed-point equations.
at the BS, the multiplexing gain possible in the perfect C$lote; Due to space constraints, the proofs of the main state-
case (1) is lost completely as it reduces to one. ments in this paper are not provided and the logic of the main
The no CSI assumption is pessimistic and in practice, thgguments are sketched out in brief.
channel evolves fairly slowly on a statistical scale andsit i
possible to learn the statistics of the individual links lag t Il. SYSTEM SETUP
BS with minimal cost. In the MISO broadcast setting with \ye consider a broadcast setting willd antennas at the

a Rayleigh fading model for each user (zero mean complgxse station (BS) and/ users, each with a single antenna.

Gaussian fading process), the complete channel statet&s \ve denote thel/ x 1 channel between the BS and useas

specified by the covariance matrix of the vector channel of

the user. In this context, it must be noted that initial works?® A generalized eigenvectat (with the corresponding generalized eigen-

assume that all the users experience fading thiaﬂiapendent valueo) of a pair of matricgiA, B) satisfies the (elatiorjshiAx =oBx.
d identically distributed (i.i.d h That i In the special case whei® is invertible, a generalized eigenvector of the pair

anal entll y distri _Ut (i.i.d.) acro_sst e.ame_nnas' . ?‘t 'S(A, B) is an eigenvector oB~'A. If A andB are also positive definite,

the covariance matrix of each user is the identity matriXsThthen all the generalized eigenvalues are also positive.

I. INTRODUCTION
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h;,i=1,---, M. While different multi-user communication Similarly, we can writel; » as
strategies can be considered, as motivated in the Intrimaict

the focus here is on a linear beamforming scheme where the I; 2 =log (1 + ﬁ . hfﬂ,ivi Ki \folhnd,i)
BS beamforms the information-bearing signal meant for
user: with the M x 1 unit-normed vectow;. We assume that S N SH 1/2 H 1/2

i . o o VA VP =3 w2
s; Is unit energy and the BS divides its power budgetpof ¢ ¢ ;WJWJ ¢
equally across all the users. The received sympat user: _ _ N _
is written as Al = diag ([Ai, 1, ", Ai7 ]u]) s Ai7 1> > Ai, M > 0.

M
yi = | P -hH Zwisi fng,i=1,-- M Tov_vardg the gogl of compulting _the ergodic rates, we expand
M pt h;4.; into its magnitude and directional componenthas; =

TN 2 i
wheren; denotes th€ (0, 1) complex Gaussian noise added/Pic-ill - Dia, i Note that|[hig ;[|* can be written as

at the receiver. 1 2M
We assume a Rayleigh fading (zero mean complex Gaus- i, i]|* = 3 sz
sian) model for the channel and hence, the complete spatial j=1

statistics are described by the second-order momenth.gi wherez? is a standard (real) chi-squared random variable and
With M antennas at the BS and a single antenna at each user, % q

the channeh; of useri can be generically written as h;q4.; is a unit-normed vector that is isotropically distributed
o on the surface of\/-dimensional complex sphere. Thus, we
h, = Ei/ hiq, 4 (1) can rewritel; ; andI; 5 as
Whereh_i;d_,i is anM x 1 vecto_r with |.|.d.CJ\_/(O, 1) entrlgs L1 = log (1 i P a2 - ﬁﬁ VA ViHivliid.i)
and X; is the covariance matrix corresponding to the user M ' ' ’
In particular, withX; = I,/ for all users, [[L) reduces to the 7, , = log (1 + L2 g )? b VA, \Nleﬁiid,i) _
i.i.d. downlink model well-studied in the literature. M

The metric of interest in this work is the throughput from th&urther, since the magnitude and directional informatibaro
BS to the users. Under the assumption of Gaussian ifpus i.i.d. (isotropically distributed) random vector are ipéadent,
the instantaneous information-theortiate, R;, achievable E[I;1] and E [I; 2] can be written as
by useri with the linear beamforming scheme and using a

mismatched decoder is given by Ell,1|=E [1og (1 + ﬁ g, 4|2 -ﬂﬁiAi ﬁ“dyi)}
L. |hHw;|? 1= { ( L e 2 -BE A D )}
Ri — log 1+ pM | i W |H 5 E[Il-,Q] E 1Og 1+ M ||hlld-,1|| hlld,zAl hlld,l
L+ g7 Zj;r&i |h;w;|

where we have also used the fact that a ﬁ(editary trans-
formation of an isotropically distributed vector on thefage

M
- L He 12| - i Hgy |2
=log | 1+ M Z [ w;| log { 1+ M Z [ wj| "of the complex sphere does not alter its distribution.

j=1 J#i
Iia Ii» I11. ERGODIC SUM-RATE: TwO USERCASE
In particular, the ergodic sum-rate achievable with thedin  The focus of this section is on computing the ergodic
beamforming scheme is given by information-theoretic rates in closed-form in the specase
M of two users 4/ = 2). This closed-form expression will be
R A ZE [Ri]. a function of the covariance matrices of the two uséis,
P and 3,, and the choice of beamforming vectons; and

With the spatial correlation model assumed [ (1), we can®: Once a .cllosed—form EXpression 1 Obt‘?"”ed' our goal -I|es
write I. - as In characterizing the structure of the optimal beamforming
i, 1

vectors as a function of the channel statistics ShdR.
p 2 M 2 For simplicity, we assume that
Lii=log |14+ = -hi =, wiwi | 3 hyg . _ .
M ; Y 3 = Udiag([\ o)) U, 85 = Udiag([i 12]) U7 (2)
= log (1 + ﬁ . hfﬂJVZ A; Vthiid.,i) R where U = [u1 (21), 112(21)], fj = [u1(22), UQ(ZQ)],
) ) A > A >0andpu; > pe > 0 (that is, both¥3; and 3o
where we have used the following eigen-decomposition in thge positive definite). Define the condition numbersand k-

second equation: as
M A
A 1 A M1
1/2 1/2 =5 =
VA VI =3/ ZWJ'W;H R TN and. 2 p2’ )
J=1
A; = dia (A- A ) Air > > A > 0.
v gl i 1 ’ Z’M] » Al = =06 M = 3Note that the unitary transformation is independent of thenael realiza-

tion when the beamforming vectors are chosen based on é&ng4tatistics
2All rate quantities will be assumed to be in n&gHz in this work. of the channel.



Proposition 1: The ergodic information-theoretic rateln the lowSNR regime, the system is noise-limited and hence,
achievable at user(wherei = 1, 2) with linear beamforming the linear scaling o [R;] with SNR. It is also straightforward

in the two user case is given by to note that maximizingF' [R;] is contingent on optimizing
E[R]=Eli1] - E[L overw; alone. Thus, the sum-rate is maximized by
1] — 7, T,
2 2 — —
B A;1-e”ri1 By (pAinl) —Aj etz By (pAinz) Wi opt = U1(X1) and wa opr = u1(Z2)
- Aii—A; o whereu; (X;) denotes the dominant eigenvector (an eigenvec-

- ~ tor corresponding to the dominant eigenvalueBhf In other
- eXp (Q/PAM) E (Q/PAM) words, in the lowSNR extreme, each user signals along the
optimal statistical eigen-mode of its channel (and ignptime

00—t . . .

where Ey () = fw S—dt is the exponential integral. The oo yser's channel completely). This conclusion showitl n
corresponding eigenvalues can be written in term&p@nd o entirely surprising. The resulting ergodic sum-rateivery
the beamforming vectors as follows:

as
) ) . _ B.)2 2 0
Ay = A, + B; + \/(1‘; B;)? + 4C; R g ) [/\max(gl) + /\max(gﬂ]
Ai+ B; —\/(A; — B;))2 +4C? High-SNR Extreme: The following expansion of the expo-

Air = 2 nential integral is useful in characterizifigy asp — oo:

Xz 1 = B; 1 2 (—1)kH gk

Kir = 0 Bz = 10%(;)*;W‘”
WhereAi = WZHEZW“ B; = W?EZWJ and C; = |WZH21WJ| z—0 1 1
with j # i and {4, 5} = 1,2. — ol Tr =y

Proof: Note that a closed-form computation &f[/;, 1] where~y ~ 0.577 is the Euler-Mascheroni constant. Using the
requires the density function of weighted norms of isotropl

cally distributed unit-normed vectors since above approximation, we have

prpe Ai1log (Aq 1) — Aj 2log (A 2)
Ai1— A2

The dominating impact of interference (due to the fixed retur

whereX denotes the random varial¥e = £ - ||hjq, ;|| andX  of the linear beamforming scheme where the beamforming

corresponds to a realization ®. Let Y denote the random vectors are not adapted to the channel realizations) and the

variable consequent boundedness BfR;] as SNR increases should

not be surprising. After some elementary manipulation, we

can write E'[R;] as

E[I;1]=Ex

A
/ log (1 + Xy) Pi(y)dy]
y=A; 2

2
Y £hfl ;Aihg = ZAM ’fliid,i(j)
=1 A;B; — C? A; + B;
p— 00 1D i 1 1
The Ritz-Rayleigh relationship implies thAt, ; <Y < A; 2E[Ri] "= log ( B2 ) + '
- - 2 ' i V(A — B 4402
and the density function o¥ evaluated aty is denoted as g ¢ i
P:(y). In [12], P;(y) in the M = 2 case is shown to be A, + Bi + \/(Ai —Bi)2+40i2
1 Ai+BZ——\/(AZ-—B1-)2+4Ci2

uniform, that is, log
Pi(y) = A AL A2 <y <A

61,2 We now rewrite the higlSNR ergodic rates in a form that
The statement of the proposition follows from a routineases further study.
computation via the integral tables [14]. [ ] Proposition 2: Define dx, (w1, w2) between two unit-
Note that understanding the structure of the optimal choie@rmed vectorsw; and w» from the Grassmann manifold
of beamforming vectors,wi opt, W2 opt), that maximize the G(2,1) as
ergodic sum-rate as a function &, ¥, and p is a hard
problem, in general. Therefore, we consider the low- and the a [4(AiB; = CF)
high-SNR extremes to obtain insights. B

(Ai + Bi)2 ’
Low-SNR Ext - W d the followi h terizati .
0?\3’12 expo)rierr??ael int:gpai-e € foflowing characteriza IonwhereAi,Bi andC; are as in the statement of Prgp. 1.

) ) e (a) Thends, (w1, w2) is a generalized “distance” semi-

< 11og <1 + 2) < Ei(2)e® <log <1 + l) <= metrié betweenw; andw, satisfying0 < ds, (-,-) < 1.
z+2 7 2 x x z o (b) We can recast the ergodic rate in terms of

where the extremal inequalities are established by usiag th ds, (w1, wz) as

’ 2

ds;, (W1, w2)

fact that—%- < log(1 + x) < z. Note that the upper and the ,
z+1 oo g (ds, (W1, w A;
lower bounds get tight as — oo (or p — 0 in this context). E[R;] +log(2) "= w + log (1 + E)

Using the above bound, we have

p—0 P P P H 4A semi-metric satisfies all the properties necessary forstadée metric,
B[R] ) (Aij1+Ai2— Bj) = bR A; = 3 Wy W except the triangle inequality.



where for some choice of; € [0,27), ¢ = 1,2. The optimal sum-
rate is given as

9(z) = f(2)+2log(z), o) | st
K1 - 10g( K1 0og(KR2 .
1 1 1— 2 p—)oo + "2 lf K1 Z %)
flz) = log +V AN E[Ri]+ E[R] "— { Fg - log(nz) " 10g(,§}) it <
\/1—22 1—\/1—22 ko—1 rk1—1 I K1 K2
« (c) While f(e) is monotonically decreasing as a function ~ Proof: The proof follows by decomposing/; and ws
of its argumentg(e) is increasing with along the obvious orthogonal basis {1, us }:
2log(2) = 1imo 9(2) < g(2) < 1ini g(z) =2 w1 =ou + fuz, wa = yu +0up
z— z—r .
oo = lim f(2) > f(z) > lim f(z) = 2. for some choice of a, 3,7,8} with o = |ae’® (similarly,
z—0 - T2l

for other quantities) satisfyingy|? + |3]> = ||* + |6]* = 1.
B A direct optimization of the higlsNR sum-rate expression
We are now prepared to illustrate the structure of the optimghows thaf6, } enters the optimization only via the teiyry—

beamforming vectors. _ ad|, which can be maximized by settirg + 05 — 05— 0., = 7
Theorem 1. The optimal choice of the pai®w1, opt, W2,0pt)  (modulo 27). Parameterizinga| and |y| as|a| = sin(@) and
that maximizesE [R;] in the highSNR regime is ly| = sin(¢) for some{0, ¢} € [0,7/2], we can show that
Wiopt = €/ 1y () and wj opr = €2 uy (), j £ i the sum-rate is maximized by = 77/_2__:'_;1n_d¢ = 0if i) or
) ' ii) is true and byf = 0 and ¢ = «/2 if iii) is true. For this,
for some choice of; € [0727&)’ i = 1 2. we establish an upper bound to the sum-rate and show that
Proof: Let x (%;) = mx(z ) denote the condition thjs bound is achieved by the choice as in the statement of the
number ofs;. We first note that the optimization problem OVefheorem. u

the choice of a paifw,, w2) that results in a corresponding we now consider the general case whEreand X, do not
choice of (4;, B;,C;) can be recast in the form of a tWOhave the same set of eigenvectors.

parameter optimization problem ov@¥/;, ;) with M; = £¢ Theorem 3: In the general case, the sum-rate is maximized

N; = & under the constraint thét < N? < M; < 3 o _ i _
Bi X (% ) Wi, opt =€ Wy (22 ! 21)7 W2, opt = €772y (21 ! 22)
for some choice of; € [0,27), i =1,2.

This results in the following higl¥N\R expression:
) + 2log (1 + M;). Proof: For this case, we definE and its corresponding

2F [R;] +2log(2) = 2 — N7
i 0g2) =g ——F7
M;+1 eigen-decomposition as

It is straightforward to show that the choice in the theorem s 2 2;% 3, 2;% =V diag ([m 12]) VH

maximizes the above equation. | ) _
With this choice of beamforming vectordy, (-,-) and £ [R;] WhereV = [vi vz] and 7, > 7. Since X, is a full rank
can be written as matrlx and{vy,vo} form a basis, the vectorX, 2 v; and
ds, (w; o) 2\/K; 3, ? vo also form a basis (albeit non-orthogonal, in general).
2 \Wi, opt, Wi, opt ki + 1 We can decompose; andw, along these vectors as
-lo . _1 _1 _1 _1
B[R] rape O , g(?)v _aX, vy + 3%, vy 0 tvi+ 0%, vy

Ki — W1 = — 1 1 ) W2 = 1 _1

a2, 2 vy + 85, 2 vo 725 2v1 + 6%, * v

whereas lim E [R;] is dependent on how the eigenvectors
po ; for some choice ofa, 3,,6} with a = |aje’?~ (similarly
of X, are related toX,. It is also to be noted thaE [R;] gE ) s ) '
increases (ands:, (-, -) decreases) as; increases. That is, the fOr other quantities) satisfyingy| + |6 = [7|° + [9]* = 1.
more ill-conditionedS; is, the larger the higisNR statistical A suitable coordinate transformation at this stage redults

beamforming rate asymptote amite versa. This should be N optimization problem that is related to the special cdse o
intuitive as our goal is only to maximize [R,] and the above |N€OremiR. After this transformation, the proof followsreo
choice achieves that goal. the same logic as in Theordm 2. [ |

We now consider the sum-rate setting restricted to the ca&a€ reason for the peculiar choice of decomposition in the

whereX, and3, have the same set of orthonormal agenve@bove proof (instead of decomposmg the beamforming vector
tors. Instead of using the definitions Bf;, and X, as in [2), along {v1,v.}) is thatX, * v;, i = 1,2 turn out to be the
for simplicity, we will assume thall = U= [uy, up]. We dominant generalized elgenvectors of the péXs, 3-) and
defines; ands, as in [3). Without loss in generality, we can(X2, X1), respectively. Recall from Footndié 1 the definition
also assume that; > 1. Three possibilities arise dependingf & generalized eigenvector. For the above claim, note that

on the relationship betweeh x; and kq: i) kK1 > 1 > kKo, -1 -1 ( ‘ H) 3 -1
- i 3,°% = X Vd V& |32 =MDM
i) k1 > ko > 1, and iii) ko > k1 > 1. (Note that first case ~2 ' ’ iag ([m m2]) 2

subsumes the setting whetig = uo = p and3s = pl.) The ok Iy, — (2—1 21)’1 —MD M}

main result is the following theorem. 2

Theorem 2: The sum-rate is maximized by the following,,parani — 22—% V andD = diag ([ n2]). Theoren(® is

choice of beamforming vectors: indeed a special case of Theor€in 3. For this, note that the
Wi opt = €101, W opt = €/"2uy if i) or ii) is true, dominanteigenvector 02;1 31 isu; andus whenk, > ko
Wi, opt = €772U2, Wa opt = €1y if iii) is true and ko < k1, respectively.



IV. ERGODIC SUM-RATE: GENERAL M CASE

A recent advance [15]/ [16] allows a computation of the
density function of weighted sum of standard central chi-
squared termsgéneralized chi-squared random variables).

V. CONCLUSION

We have studied statistics-based linear beamformer design

Alternate to the approach of Propl 1, this approach alloi@r the MISO broadc_ast channel in_this work. _Based on a
closed-form expressions in the genehdlcase. For example, closed-form computation of the ergodic sum-rate inifie= 2

if Ai(j),j=1,---,M are distindl, we have

(two-user) case, we provide intuition on the structure @& th
optimal beamforming vectors that maximize the sum-rate in

M M
B[] = Z H Ai(k) 4) the low- and the higlsNR extremes. While further intuition
’ it e AR = A7) on the smallM case seems difficult, in the asymptotics of
’e P M, we are able to obtain intuition on the structure of the
T = exp (Ai(k:)M) 1 (Ai(k)M) optimal beamforming vectors. The case of optimal statstic

linear beamforming design has not received much attention i

For E'[I; 2], replaceA; by A,;. It can be checked that thisthe literature and our work sets the course for a systematic

expression matches with the expression in Mie= 2 case.

and low-complexity limited feedback design in the broaticas

Nevertheless, it is important to note that the formula abogetting, which is of considerable importance in the stagtdar

is in terms of the eigenvalue matricfA;, A;, i =1,--- , M},
which become harder (and impossible far > 5) to compute
in closed-form as a function of the beamforming vectors and
the covariance matrices al/ increases. Approximation to

ization efforts.
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distribution with matching first twvo moments can also be used
to produce sum-rate approximations. However, these approx
imations are of similar complexity as the above formula. Iny
contrast, we now provide asymptotic approximations to the
sum-rate directly in terms of the relevant variables.
Proposit ) . . : 2]
position 3: For any fixedp, the ergodic information-

theoretic rate achievable at usér(wherei = 1,---, M)
converges a8/ — oo to (31
E[R;] — log(1+SINR;)) £ R; "
SINR;, = i Wi Wi s Si
Z 1+ 47 Z?il,j;éi wiEw; l 5]

Proof: The proof follows along a law of large numbers-
type argument, strengthened to convergence in mean via
suitable truncation technique. [ ]

Proposition 4. Based on the above expression, we have th¥]
following conclusions that mirror the main results of 948. |
i) We have the following bound fo} " R, ..

M M
R
max WHEZ'WJ' 21_1 $ 20 <1.
M J M HZ )
j=1 D1 Wi Wy

i=1,---,
Thus, the optimal beamforming vectors@as» 0 are such that [1q
Wi opt = W1(3;), 4 =1,---, M. ii) For anyp, we have
2 () )
M

L+ % ’ Zj:2 /\j(zi)
andR;, ~ is maximized byw; o = u1(3;), and
{Wj.,opta .] = 17 7Mv.] #Z} = {uj(zl)vj = 27 7M}

iy M. R  is optimized by the set of beamforming
vectors that solve the following fixed-point equations:

£<1;- (1 +SINR;)

(8]

<
L.
M

p
=97 [o]

Ri, 00 < log (1 + [11]

[12]

[13]

Xiw;
(1 +SINR)

. [14]

=0,i=1,---,M.
[15]

5More complicated expressions can be obtained in dasg(j)} are not
distinct.
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