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Abstract—In this paper, we introduce a discrete memoryless
State-Dependent Relay Channel with Private Messages (SD-
RCPM) as a generalization of the state-dependent relay channel.
We investigate two main cases: SD-RCPM withnon-causal Chan-
nel State Information (CSI), and SD-RCPM with causal CSI. In
each case, it is assumed thatpartial CSI is available at the source
and relay. For non-causal case, we establish an achievable rate
region using Gel’fand-Pinsker type coding scheme at the nodes
informed of CSI, and Compress-and-Forward (CF) scheme at the
relay. Using Shannon’s strategy and CF scheme, an achievable
rate region for causal case is obtained. As an example, the
Gaussian version of SD-RCPM is considered, and an achievable
rate region for Gaussian SD-RCPM with non-causal perfect CSI
only at the source, is derived. Providing numerical examples, we
illustrate the comparison between achievable rate regionsderived
using CF and Decode-and-Forward (DF) schemes.

I. I NTRODUCTION

The Relay Channel (RC) [1], is a communication system in
which a message is transmitted from the source to the destination
with the help of a relay. The Partially Cooperative Relay Broadcast
Channel (PC-RBC) studied in [2], [3], is a generalization of RC
in which the source node also sends a private message intended
for the relay node. Therefore, in this channel the relay is also a
sink of data. The Relay Channel with Private Messages (RCPM)
studied in [4], is a generalization of RC in which the relay is both
a source and a sink of data. Hence, RCPM can be regarded as a
generalization of PC-RBC wherein the relay is also a source of
data and sends a private message to the destination. The RCPM
model fits networks in which dedicated relays are not available,
and relaying is performed by the nodes that each node is a source
and a sink of data.

In this paper, we assume that RCPM is controlled by random
parameters called channel state and we refer to it as State-
Dependent Relay Channel with Private Messages (SD-RCPM).
Recently, state-dependent channels have attracted considerable
attention. In these channels, the information on the channel state
can be known to the terminals causally or non-causally. For a
comprehensive overview on state-dependent channels see [5], [6].

Among state-dependent multiuser models, some results have
also been obtained for the State-Dependent RC (SD-RC) and
State-Dependent PC-RBC (SD-PCRBC) [7]-[14] for Gaussian
and discrete memoryless cases with causal or non-causal Channel
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State Information (CSI). Since RCPM can be regarded as a gener-
alization of RC and PC-RBC, the SD-RCPM can be regarded as a
generalization of SD-RC and SD-PCRBC.

In this paper, after introducing SD-RCPM, we investigate two
main cases: SD-RCPM with non-causal CSI, and SD-RCPM with
causal CSI. In each case, we investigate SD-RCPM with partial
CSI at the source and the relay. As special cases it includes three
different situations in which perfect CSI is available i) only at the
source, ii) only at the relay, and iii) both at the source and therelay.
Situations i and ii calledasymmetric scenarios refer to the cases in
which CSI is available only at some of the nodes. Situation iii is
called thesymmetric scenario. In fact in the asymmetric cases, it
is assumed that only some of the nodes have the ability or the
permission to know CSI. In [11], [13], unlike most of the previous
works on SD-RC, we have used CF strategy [1] for relaying in
SD-RC, and showed that there exist cases (similar to the classic
RC) for which CF scheme achieves rates higher than those derived
using DF strategy [1] for SD-RC with asymmetric CSI in [8], [9].
Now, in this paper we also focus on CF relaying scheme. In fact
similar to what is shown for classic RC, the CF and DF are both
able to outperform each other under different conditions. InDF
(or Partial DF) scheme, the relay has to decode the whole message
intended for the destination (or a part of it). Therefore, when only
the source is informed of CSI, due to lack of knowledge of CSI at
the relay, the rate loss is caused at the relay as shown in [15]. On
the other hand, when only the relay is informed of CSI, the source
cannot use CSI and cannot conceive what the relay exactly sends,
and as shown in [8], this causes a loss in the coherence gain which
is expected to be achieved by DF relaying. However, DF based
rate can be optimal for certain cases as shown recently in [8],
[15]. On the other hand, in CF strategy independent codebooksare
exploited at the source and relay, and the relay simply compresses
its received signal. Also, CF outperforms DF for relaying the
message intended for the destination, when the link between the
source and relay is worse than the direct link.

Here, for the non-causal situation, we derive an inner bound on
the capacity region (achievable rate region) of SD-RCPM based
on using Gel’fand-Pinsker (GP) type coding [16] at the nodes
informed of CSI, and using CF scheme at the relay. We derive
an achievable rate region for SD-RCPM in the causal case using
Shannon’s strategy [17] and CF scheme. We show that our result
for the causal case can be considered as a special case of non-
causal CSI, and this is in analogy with the relation between the
capacity of the single user channel with causal CSI [17], and its
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non-causal counterpart [16]. We also show that our results sub-
sume the results in [11], [13] which are for SD-RC, and the result
in [4] which is for RCPM (state-independent), as special cases. As
an example, we consider the Gaussian version of SD-RCPM with
additive independent identically distributed (i.i.d) stateprocess,
and obtain achievable rate region for the case where perfect CSI
is available non-causally only at the source. We also illustratethe
trade-off between relayed message rate and private messages rates
for this channel. Since there is no available achievable region for
SD-RCPM which is established based on DF scheme, to compare
DF and CF strategies for this channel, we consider a scenario in
which the relay sends no private message to the destination (i.e.,
SD-RCPM reduces to SD-PCRBC). For this scenario, we make a
comparison between our CF based derived achievable region and
the rate region derived in [14] based on DF.

The rest of paper is organized as follows. Section II, introduces
SD-RCPM channel model and notations. Section III, investigates
SD-RCPM with non-causal CSI. The causal case is considered in
section IV and finally, Section V contains Gaussian examples.

II. PRELIMINARIES AND DEFINITIONS

In this paper, upper case letters (e.g.,X) are used to denote
Random Variables (RVs) while their realizations are denotedby
lower case letters (e.g.,x). Xj

i indicates the sequence of RVs
(Xi, Xi+1, . . . , Xj), and for brevity,Xj is used instead ofXj

1 .
pX(x) denotes the probability mass function (p.m.f) ofX on a set
X , where occasionally subscriptX is omitted.An

ǫ (X,Y ) denotes
the set of strongly jointlyǫ-typical length-n sequences onp(x, y),
which is abbreviated byAn

ǫ if it is clear from the context.
A discrete memoryless SD-RCPM is denoted by(X1 ×

X2, p(y2, y3|x1, x2, s),Y2×Y3), wherep(y2, y3|x1, x2, s) is the
probability transition function.X1 ∈ X1 andX2 ∈ X2 are the
source and relay inputs, respectively.Y2 ∈ Y2 andY3 ∈ Y3 are
respectively the outputs at the relay and destination, ands denotes
the channel state. We assume that the source and relay know an
i.i.d noisy version of states (i.e., partial CSI) drawn byp(s, s1, s2)
wheres ∈ S, s1 ∈ S1 ands2 ∈ S2. The CSI at the source (or the
relay) is perfect ifs1,j (or s2,j) equalssj for 1 ≤ j ≤ n.

A ((2nR12 , 2nR23 , 2nR13), n) code for SD-RCPM consists of
three message setsW12 = {1, . . . , 2nR12} (source to relay
private message),W23 = {1, . . . , 2nR23} (relay to destination
private message), andW13 = {1, . . . , 2nR13} (sent from the
source to the destination with the help of the relay), where inde-
pendent messagesW12, W23 andW13 are uniformly distributed
over respective sets. It also consists of an encoder at the source
and a set of encoding functions at the relay where for non-causal
CSI are defined asφ1 : W12 × W13 × Sn

1 → Xn
1 , and

φ2,j : Yj−1
2 ×W23 × Sn

2 → X2 for j = 1, . . . , n, respectively.
For causal CSI these encoders are respectively defined byφ1,j :
W12×W13×Sj

1 → X1 andφ2,j : Yj−1
2 ×W23×Sj

2 → X2, for
j = 1, . . . , n. Two decoding functionsd1 andd2 at the relay and
destination are defined respectively as:d1 : Yn

2 × Sn
2 → W12

and d2 : Yn
3 → W23 × W13. Note that, for decoding at

the relay there is no difference between causal and non-causal
cases since the relay can wait until the end of the block, before
decoding. The average probability of error (P

(n)
e ) is defined as

the one for RCPM in [4]. A rate tuple(R12, R23, R13) is said to
be achievable for SD-RCPM, if there exists a sequence of codes
((2nR12 , 2nR23 , 2nR13), n) with P

(n)
e → 0 asn → ∞.

III. SD-RCPM WITH NON-CAUSAL CSI

In this section, we consider SD-RCPM with partial non-causal
CSI at the source and the relay. In the following, the achievable
rate region of this channel is derived.

Theorem 1: In the discrete memoryless SD-RCPM with non-
causal CSIS1 andS2 respectively at the source and the relay, the
nonnegative rate tuples(R12, R23, R13) denoted asR1, satisfying:

R13 < I(T1; Ŷ2, Y3|K2, Q2)− I(T1;S1) (1)

R12 < I(T2;Y2, S2|K2, Q2)− I(T2;S1) (2)

R13 +R12 < I(T1; Ŷ2, Y3|K2, Q2) + I(T2;Y2, S2|K2, Q2)

− I(T1;S1)− I(T2;S1)− I(T1;T2|S1) (3)

R23 < I(K2;Y3)− I(K2;S2), (4)

subject to the constraint

I(Ŷ2; Y2, S2, T2|K2, Q2, Y3) ≤ I(Q2;Y3|K2)− I(Q2;S2|K2), (5)

are achievable for any joint p.m.f of the form

p(s, s1, s2, k2, q2, t1, t2, x1, x2, ŷ2, y2, y3) =

p(s, s1, s2)p(k2|s2)p(q2|k2, s2)p(x2|q2, k2, s2)p(t1, t2|s1)
× p(x1|t1, t2, s1)p(y2, y3|x1, x2, s)p(ŷ2|y2, q2, k2, s2, t2). (6)

Remark 1: The relay which is the middle terminal, knows CSI
S2. Hence, the relay acting as a decoder of the source-relay link
and based on its knowledge of CSI, tries to cancel the effect ofthe
channel state ony2. Moreover, it can compressS2 (besidesY2)
and sends it to destination to provide it with a partial CSI, when
needed. For example, ifY2 = ∅ the relay can compress onlyS2

and sends it to the destination, and so the destination can use this
partial CSI. To achieve these two goals, in general, we assume that
in (6) ŷ2 is conditioned ons2. Moreover,T2 which is decoded at
the relay is not decoded at the destination (T2 carries source to
relay private message), and hence can be regraded as a channel
state for destination. So,T2 can be treated similar toS2, and we
assume that in (6)̂y2 is also conditioned ont2. Note that, by these
assumptions, the case where the relay only compressesY2 is also
included.

Outline of the Proof: The proof is based on random coding
scheme which combines GP-type coding at the source and relay,
and CF strategy. More precisely, since the source is informed of
CSIS1, the coding scheme which extends Marton’s region to the
state-dependent Broadcast Channel (BC) with non-causal CSI at
Transmitter (CSIT) [18] is used at the source. The relay decoder
usesS2 as part of channel output. Moreover, the relay encoder
uses CF and since it is informed ofS2, it uses GP coding to send
the index of the compressed signal which is superimposed on the
relay-destination private message. The auxiliary RVK2 stands
for private message sent from the relay to destination using GP
coding, andQ2 represents the bin of compressed signal’s index.
Now, consider a block Markov encoding scheme where a sequence
of B − 1 messages (W12,i,W23,i,W13,i) for i = 1, . . . , B − 1 is
transmitted inB blocks, each ofn symbols. AsB → ∞, the rate
tuple(R12, R23, R13)×

(B−1)
B

approaches(R12, R23, R13).
Random Coding: For any joint p.m.f defined in (6), generate

2n(R13+R′

13
) i.i.d codewordstn1 (w13, k) wherew13 ∈ [1, 2nR13 ]

and k ∈ [1, 2nR
′

13 ]. Generate2n(R12+R′

12
) i.i.d tn2 (w12, l),

w12 ∈ [1, 2nR12 ], l ∈ [1, 2nR
′

12 ]. Generate2n(R23+R′

23
) i.i.d

codewordskn2 (w23,m), w23 ∈ [1, 2nR23 ], m ∈ [1, 2nR
′

23 ].
For eachkn2 (w23,m), generate2n(R2+R′

2
) i.i.d qn2 (t, r|w23,m),



t ∈ [1, 2nR2], r ∈ [1, 2nR
′

2 ]. In codewordstn1 , tn2 , kn2 andqn2 ,
the first index represents the bin, and the second one indexes
the sequence within the particular bin. For eachkn2 (w23,m)

andqn2 (t, r|w23,m), generate2nR̂2 i.i.d ŷn2 (z|t, r, w23,m) each
with probability

∏n
j=1 p(ŷ2j|q2j , k2j). Randomly partition the set

{1, . . . , 2nR̂2} into 2nR2 bins defined asB(t).
Encoding (at the beginning of block i): We assume that the CSI

Sn
1 andSn

2 in each block are non-causally known to the source
and the relay, respectively. Then:

1) Let (w13,i, w12,i) be the new message pair to be
sent from the source in blocki. The source looks for the
smallest k ∈ [1, 2nR

′

13 ] and l ∈ [1, 2nR
′

12 ], such that
(tn1 (w13,i, k), t

n
2 (w12,i, l), s

n
1 (i)) ∈ An

ǫ . Denote thisk andl with
ki andli, respectively. If no such indicesk andl exist, an encoding
error is declared. There exist such indiceski andli with arbitrarily
high probability, ifn is large enough and

R′

13 >I(T1;S1) (7)

R′

12 >I(T2;S1) (8)

R′

13 +R′

12 >I(T1;S1) + I(T2;S1) + I(T1;T2|S1) (9)

Note that (7)-(9) can be showed using techniques similar to that
in [19]-[20] (mutual covering lemma).

Then, the source transmits i.i.dxn
1 (w13,i, w12,i) drawn accord-

ing top(x1|t1, t2, s1).
2) Knowing sn2 (i), the relay searches for the smallestm ∈

[1, 2nR
′

23 ] such that(kn2 (w23,i,m), sn2 (i)) ∈ An
ǫ . Denote thism

asmi. If no such indexm exists, an encoding error is declared.
Based on covering lemma, for sufficiently largen such an index
mi can be found with arbitrarily high probability, if

R′

23 ≥ I(K2;S2). (10)

3) At the relay, assume(ŷn2 (zi−1|ti−1, ri−1, w23,i−1,mi−1),
kn2 (w23,i−1,mi−1), q

n
2 (ti−1, ri−1|w23,i−1,mi−1), y

n
2 (i − 1),

tn2 (w12,i−1, li−1), s
n
2 (i − 1)) ∈ An

ǫ , and zi−1 ∈ B(ti).
Knowing ti, sn2 (i), w23,i and mi, the relay looks for
the smallest r ∈ [1, 2nR

′

2] denoted as ri such that
(qn2 (ti, ri|w23,i,mi), k

n
2 (w23,i,mi), s

n
2 (i)) ∈ An

ǫ . For suffi-
ciently largen there exists such an indexri with arbitrarily high
probability, if

R′

2 > I(Q2;S2|K2). (11)

Then the relay transmits i.i.dxn
2 (ti|w23,i) drawn according to

p(x2|q2, k2, s2).
Decoding (at the end of block i): The destination at the end of

block i decodesw13,i−1, w23,i, and the relay decodesw12,i.
1) Knowing ti from the previous block, the

relay seeks a unique pair (ŵ12,i, l̂i) such that
(tn2 (ŵ12,i, l̂i), y

n
2 (i), q

n
2 (ti, ri|w23,i,mi), k

n
2 (w23,i,mi), s

n
2 (i))

∈ An
ǫ . For sufficiently largen, (ŵ12,i, l̂i) = (w12,i, li) with

arbitrarily small probability of error if

R12 +R′

12 < I(T2;Y2, S2|K2, Q2). (12)

Note that we have performed a full decoding of the message
w12 and the indexl, at the relay. So, the full vectortn2 (w12,i, li)
has been decoded.

2) The relay finds a unique indexz such that:
(ŷn2 (z|ti, ri, w23,i,mi), q

n
2 (ti, ri|w23,i,mi), k

n
2 (w23,i,mi), y

n
2 (i),

tn2 (w12,i, li), s
n
2 (i)) ∈ An

ǫ . There exists such an indexz with
arbitrarily high probability, ifn is sufficiently large and

R̂2 > I(Ŷ2;Y2, S2, T2|K2, Q2). (13)

3) At first, the destination finds a unique pair(ŵ23,i, m̂i), such
that (kn2 (ŵ23,i, m̂i), y

n
3 (i)) ∈ An

ǫ . The decoding error can be
made small if

R23 +R′

23 < I(K2;Y3). (14)

4) Then, the destination looks for a unique pair(t̂i, r̂i) such
that (qn2 (t̂i, r̂i|w23,i,mi), k

n
2 (w23,i,mi), y

n
3 (i)) ∈ An

ǫ . The de-
coding error can be made small if

R2 +R′

2 < I(Q2;Y3|K2). (15)

Note that we have performed a full decoding ofkn2 andqn2 at
the destination in steps 3 and 4.

5) Now, knowing ti−1, ri−1, w23,i−1 and mi−1 (from
the previous block), the destination calculates a set of
indices z denoted by the listL(yn3 (i − 1)) such that
(ŷn2 (z|ti−1, ri−1, w23,i−1,mi−1), q

n
2 (ti−1, ri−1|w23,i−1,mi−1),

kn2 (w23,i−1,mi−1), y
n
3 (i − 1)) ∈ An

ǫ . Then the destination
declares that ẑi−1 has been sent in blocki − 1, if
ẑi−1 ∈ B(ti) ∩ L(yn3 (i − 1)). With arbitrarily high probability
ẑi−1 = zi−1, if n is sufficiently large and

R̂2 < R2 + I(Ŷ2;Y3|Q2,K2). (16)

6) Finally, the destination usesyn3 (i − 1) and
ŷn2 (zi−1|ti−1, ri−1, w23,i−1,mi−1), and declares that̂w13,i−1 is
sent, if there is a uniquêw13,i−1 for someki−1 ∈ [1, 2nR

′

13 ] such
that (tn1 (ŵ13,i−1, ki−1), q

n
2 (ti−1, ri−1|w23,i−1,mi−1), y

n
3 (i −

1), kn2 (w23,i−1,mi−1), ŷ
n
2 (zi−1|ti−1, ri−1, w23,i−1,mi−1)) ∈

An
ǫ . Thus,ŵ13,i−1 = w13,i−1 with arbitrarily high probability, if

n is sufficiently large and

R13 +R′

13 < I(T1;Y3, Ŷ2|Q2,K2). (17)

Combining (7), (8), (9) with (12), (17), and (10) with (14) yields
(1)-(4). The constraint in (5) follows from combining (11), (13),
(15) and (16). Moreover, note that sinceR13, R12, R23 > 0 and
due to (5), full decoding oftn2 , k

n
2 andqn2 does not cause additional

constraints. This completes the proof.
Remark 2: By settingS = S1 = S2 = ∅ (to make state-

independent channel), and re-definingT1 = U1, T2 = U2,
K2 = V andQ2 = X2 in the regionR1, it yields the achievable
region for RCPM in [4, Theorem 2]. After these substitutions and
simplifications, the only difference is in (5), with its counterpart
in [4, Equation 21], where the reason is as follows: since the
destination does not decodeU2 (T2 is re-defined asU2), in the
random coding procesŝY2 is not generated for eachU2. Therefore,
due to covering lemma [20],̂Y2 should cover bothY2 andU2, and
R̂2 > I(Ŷ2;Y2, U2|V,X2) is obtained. But in [4] the authors did
not notice this point, and to obtain̂R2 they erroneously made con-
ditioning onU2 and so they obtained̂R2 > I(Ŷ2;Y2|U2, V,X2).

Remark 3: By setting(S2, Q2,K2, X2, Ŷ2) = ∅ in regionR1

(i.e., disable relaying),R1 reduces to the achievable rate region
for BC with non-causal CSIT that has been derived in [18].

Remark 4: The regionR1, reduces to the achievable rate for
SD-RC with non-causal perfect CSI only at the source in [11,
Theorem 1] by settingK2 = ∅ (no privateW23 from the relay
to destination andR23 = 0), T2 = ∅ (no privateW12 from the
source to the relay andR12 = 0), S2 = ∅ andS1 = S (only the



source is informed of perfect CSI) and re-definingQ2 = X2 in
R1. Moreover, settingS1 = ∅, S2 = S, T2 = ∅,K2 = ∅, and re-
definingT1 = X1 in R1, results in the achievable rate for SD-RC
with non-causal perfect CSI only at the relay in [11, Theorem 2].

Now, we specialize Theorem 1 to cases where perfect CSI is
available non-causally only at the source, only at the relay, or both
at the source and relay.

Corollary 1: Theorem 1 is specialized to an achievable rate
region for SD-RCPM with non-causal perfect CSI only at the
source, by settingS1 = S, S2 = ∅ (since only the source
is informed of CSI) and re-definingK2 = V , Q2 = X2 in
R1. Furthermore, settingS1 = ∅, S2 = S and re-defining
T1 = U1, T2 = U2 in R1, yields an achievable rate region for
SD-RCPM with non-causal perfect CSI only at the relay. Setting
S1 = S2 = S in R1 yields an achievable rate region for SD-
RCPM with non-causal perfect CSI at both the source and relay.

IV. SD-RCPM WITH CAUSAL CSI

In many practical applications, the state sequence is not known
in advance, and has to be known in a causal manner. In this section,
we consider SD-RCPM with partial causal CSI at the source and
the relay. In the following, the achievable rate region for this
channel is derived.

Theorem 2: In the discrete memoryless SD-RCPM with causal
CSI S1 andS2 respectively at the source and the relay, the non-
negative rate tuples(R12, R23, R13) denoted asR2, satisfying:

R13 <I(T1; Ŷ2, Y3|K2, Q2) (18)

R12 <I(T2;Y2, S2|K2, Q2) (19)

R13 +R12 <I(T1; Ŷ2, Y3|K2, Q2)

+ I(T2;Y2, S2|K2, Q2)− I(T1;T2) (20)

R23 <I(K2;Y3), (21)

subject toI(Ŷ2;Y2, S2, T2|K2, Q2, Y3) ≤ I(Q2;Y3|K2), (22)

are achievable for any joint p.m.f of the form

p(s, s1, s2)p(k2)p(q2|k2)p(x2|q2, k2, s2)p(t1, t2)p(x1|t1, t2, s1)
× p(y2, y3|x1, x2, s)p(ŷ2|y2, q2, k2, s2, t2), (23)

whereX1 = f1(T1, T2, S1), X2 = f2(Q2,K2, S2) andf1(·)
andf2(·) are two arbitrary deterministic functions.

Proof: Similar to the single user channel, the proof of the
causal case follows the lines of the proof for the non-causal case
in Theorem 1. The only difference is that since in the causal
case(T1, T2) andS1 are independent (see (23)), the encoding
scheme for the non-causal case is reduced to the one that does
not include GP binning, and therefore does not require non-causal
knowledge ofS1. Similar situation happens for(K2, Q2) and
S2. So, the coding scheme is obtained based on using Shannon’s
strategy [17] at the source and the relay which are informed of
CSI to incorporate the state knowledge, using random binning
corresponds to Marton’s simplified region for BC [19] at the
source, and using CF relaying scheme at the relay. The proof is
rather straightforward and is omitted here for brevity.

Remark 5: The expression ofR2 can be interpreted as a special
case ofR1, where(T1, T2) are independent ofS1, and(K2, Q2)
are independent ofS2. This is similar to the relation between
the expression for the capacity of state-dependent single user
channel with causal CSI [17], and its non-causal counterpart [16].
Hence, similar to Remark 4,R2 can be reduced to achievable rates
derived for SD-RC with causal CSI in [13]. Moreover, similar to

Corollary 1,R2 can be specialized to achievable rate regions for
SD-RCPM for the cases where CSI is available causally only at
the source, only at the relay, or both at the source and relay.

V. GAUSSIAN EXAMPLE

In this section, we consider a general full-duplex Gaussian RC
with private messages and with additive independent Gaussian
state and noise, and we refer to it as Gaussian SD-RCPM. The
outputs at the relay and the destination at timej = 1, . . . , n for
Gaussian SD-RCPM are given by:

Y2j = X1j + Z2j + Sj and Y3j = X1j +X2j + Z3j + Sj , (24)

whereX1j andX2j are transmitted signals by the source and the
relay with individual average power constraintsP1 andP2. Z2j

andZ3j are independent zero-mean Gaussian RVs with variances
N2 andN3. The channel stateSj is a zero-mean Gaussian RV
with varianceQ, and is independent ofZ2j andZ3j .

As an example, we consider the case where the source knows
state sequenceSn non-causally and perfectly, while the relay is
not informed of CSI. To provide an achievable rate region forthis
Gaussian case, we use the results obtained in Corollary 1 for this
scenario. For simplicity, we assume that input distributions are
Gaussian, although this assumption may not be optimal. Similar
to [4], we assume that the generated codebook at the source is
mapped into Gaussian RVs asX1 = U1 + U2, andρ denotes the
correlation coefficient betweenU1 andU2. Power constraintP1 at
the source, and parameterρ lead to power constraints forU1 and
U2 (i.e.,Pu2 = γP1, Pu1 + Pu2 + 2ρ

√
Pu1Pu2 = P1). Now,

since the source is informed of CSI, it uses Dirty Paper Coding
(DPC) [21] for transmission of messageW12 (codewordU2) to
relay, and uses another DPC for transmission of messageW13

(codewordU1) to destination. Hence, similar to Costa’s initial
DPC, the auxiliary RVsT1 andT2 are defined asT1 = U1+α1S
andT2 = U2 + α2S, respectively. Moreover, to partially cancel
the state, arbitrary correlations are assumed betweenU1 andS
(via ρu1s), and betweenU2 and S (via ρu2s) which is called
Generalized DPC (GDPC) [9]. Without loss of generalityρu2s
can be set to zero (i.e., using DPC instead) sinceU2 is defined for
transmission ofW12 on the point to point link between the source
and relay. The relay is not informed of CSI, soE(X2S) = 0 and
it does not use DPC. At the relay,θ is the fraction of the relay’s
power which is dedicated to the relay’s private message. There-
fore,X2 = V +X ′

2, whereV ∼ N (0, θP2) andX ′

2 ∼ N (0, (1−
θ)P2) are independent. We assumeŶ2 = βY2 + fT2 + Ẑ where
β ∈ [0, 1] andf ∈ [−1, 1], and compression noisêZ ∼ N (0, N̂)
is independent ofS,X1, X2, Z2, Z3. We letf to be negative to
consider the cases where the relay peels-off the part intended for
the relay (i.e.,T2), and then compresses the remaining part to send
to the destination.f = 0 refers to the case where relay only com-
pressesY2 without removing or compressingT2. So, we evaluate
(1)-(5) for this scenario (informed source only) and for a given
(ρ, γ, α1, α2, ρu1s, ρu2s, θ, β, f ). By varying these parameters,
and taking the union of the resulted regions, the achievable rate
region for this scenario is established (its expression is omitted
here due to space). By ignoring private messages in this channel
(i.e., settingγ = 0 andθ = 0), this achievable region reduces to
the achievable rate derived in [11, Theorem 4] for Gaussian SD-
RC with non-causal CSI only at the source.

In Fig. 1, our achievable rate region for Gaussian SD-RCPM
with non-causal CSI at the source, is plotted forP1 = Q = N3 =
10dB, P2 = 15dB, N2 = 0dB, parameterized by the fraction of
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Fig. 1. CF based achievable rate region for general GaussianSD-RCPM
with non-causal CSI only at the source, parametrized byθ.
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Fig. 2. General Gaussian SD-PCRBC with non-causal CSI only at the source,
for “power set 1” and “power set 2”.

the relay’s power dedicated to relay’s private message (θ), and we
can see the trade-off betweenR13 andR12. As illustrated in Fig. 1,
whenθ is increased, the maximum achievableR13 is decreased.
For example,θ = 0 refers to the case where the relay sends
no private message to the destination (W23 = ∅), and Gaussian
SD-RCPM reduces to Gaussian SD-PCRBC. Therefore, for this
case we can compare our CF based achievable region, with the
DF based achievable region derived in [14, Lemma 2] for SD-
PCRBC with informed source only. Moreover, the outer bound on
the capacity region of Gaussian PC-RBC (state-independent) in
[2, Theorem 5] is a trivial outer bound on the capacity regionof
SD-PCRBC. So we illustrate this outer bound, DF and CF based
rate regions in Fig. 2 for two examples of noise configuration:
1) N2 = N3 (N2, N3 = 10dB, P1 = 20dB) which is denoted
as “power set 1” in Fig. 2, 2)N3 > N2 (N3 = 10dB, N2 =
8dB, P1 = 16dB) denoted as “power set 2”. For both “power set
1” and “power set 2”,Q = 10dB, P2 = 25dB. For these power
sets, CF outperforms DF in PC-RBC (state-independent). So, in
the state-dependent version of this channel it can outperformDF
which is shown in Fig. 2. In these examples, ifP2 is also increased,
CF based bound becomes closer to its respective outer bound.
Note that for noise configuration whereN3 < N2, it is clear
that CF outperforms DF, and to prevent having a messy figure this
case is not depicted in Fig. 2. We remark that these power sets are
chosen to have cases that can be presented in one figure. It is also
interesting to note that for all these cases, maximum achievable
R12 (whenR13 = 0) coincides with that of derived for PC-
RBC (state-independent), and this confirms that a complete state
cancellation is performed for sendingU2 on the source-relay link
for R13 = 0.

VI. CONCLUSION

We introduced SD-RCPM as a generalization of SD-RC and
SD-PCRBC. In order to have a unified view, both causal and non-
causal cases were investigated. In each case, an achievable rate
region for SD-RCPM with partial CSI at the source and relay
was derived using CF scheme. We also derived an achievable rate
region for Gaussian version of SD-RCPM with non-causal perfect
CSI only at the source. In ongoing work, we are using DF scheme
for both discrete memoryless and Gaussian version of SD-RCPM
with causal and non-causal CSI.
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