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Abstract—The notion of source polarization is introduced and
investigated. This complements the earlier work on channelpolar-
ization. An application to Slepian-Wolf coding is also considered.
The paper is restricted to the case of binary alphabets. Extension
of results to non-binary alphabets is discussed briefly.

Index Terms—Polar codes, source polarization, channel polar-
ization, source coding, Slepian-Wolf coding.

I. I NTRODUCTION

We introduce the notion of “source polarization” which
complements “channel polarization” that was studied in [1].
One immediate application of source polarization is the design
of polar codes for lossless source coding. Lossless source
coding using polar codes has already been considered ex-
tensively in the pioneering works [2] and [3], which reduced
this problem to one of channel polarization using the duality
between the two problems. The approach in this paper is direct
and offers an alternative (primal) viewpoint.

This paper is restricted mostly to binary memoryless
sources. We indicate in the end briefly the possible gener-
alizations to non-binary sources.

We use the notation of [1]. In particular, we writeuN to
denote a vector(u1, . . . , uN) anduj

i to denote the sub-vector
(ui, . . . , uj) for any 1 ≤ i ≤ j ≤ N . If j < i, uj

i is the
null vector. The logarithm is to the base 2 unless otherwise
indicated. We writeX ∼ Ber(p) to denote a Bernoulli
random variable (RV) with values in{0, 1} andPX(1) = p.
The entropyH(X) of such a RV is denoted sometimes as
H(p) = −p log p− (1 − p) log(1− p).

II. POLARIZATION OF BINARY MEMORYLESS SOURCES

WITH SIDE INFORMATION

Let (X,Y ) ∼ PX,Y be an arbitrary pair of random variables
overX ×Y with X = {0, 1} andY an arbitrary countable set.
Throughout this section, we regard(X,Y ) as a memoryless
source, withX as the part to be compressed andY in the
role of “side-information” aboutX . We consider a sequence
{(Xi, Yi)}

∞
i=1 of independent drawings from(X,Y ) and write

(XN , Y N ) to denote the firstN elements of this sequence, for
any integerN ≥ 1.
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U1 = X1 ⊕X2

Fig. 1. Basic source transformation.

The basic idea of source polarization is contained in the
transformation shown in Fig. 1, where “⊕” denotes addition
mod-2. The operation(X1, X2) → (U1, U2) performed by the
circuit preserves entropy,i.e.,

H(U1, U2|Y1, Y2) = H(X1, X2|Y1, Y2)

= 2H(X |Y ), (1)

but is polarizing in the sense that

H(U1|Y1, Y2) ≥ H(X |Y ) ≥ H(U2|Y1, Y2, U1). (2)

It is easy to show that equalities hold here if and only if
H(X |Y ) equals 0 or 1. Thus, unless the entropies at the input
of the circuit are already perfectly polarized, the entropies at
the output will polarize further.
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Fig. 2. Four-by-four source transformation.

Figure 2 shows the recursive continuation of the construc-
tion to the case where four independent copies of(X,Y ) are
processed. The entropy conservation law states that

H(U4|Y 4) = H(X4|Y 4) = 4H(X |Y ).

Using the chain rule, we may split the output entropy as

H(U4|Y 4) =

4
∑

i=1

H(Ui|Y
4, U i−1).

Note that the variablesU4 are assigned to the output terminals
of the circuit in Fig. 2 in a shuffled order. This is motivated
by the observation that, with this ordering, the pair(U1, U2)
is obtained from two i.i.d. RVs, namely,(S1, S2), by the same
two-by-two construction as in Fig. 1. A similar remark applies
to the relationship between(U3, U4) and (R1, R2). These
observations lead to the the following inequalities, whichare
special cases of those in (2).

H(U1|Y
4) ≥ H(S1|Y

2
1 )

= H(S2|Y
4
3 ) ≥ H(U2|Y

4, U1),
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H(U3|Y
4, U2) ≥ H(R1|Y

2
1 , S1)

= H(R2|Y
4
3 , S2) ≥ H(U4|Y

4, U3).

There is no general inequality betweenH(U2|Y
4, U1) and

H(U3|Y
4, U2). The conclusion to be drawn is that polarization

is enhanced further by repeating the basic construction.
For anyN = 2n, n ≥ 1, the general form of the source

polarization transformation is defined algebraically as

GN = [ 1 0
1 1 ]

⊗n
BN (3)

where “⊗n” denotes thenth Kronecker power andBN is the
“bit-reversal” permutation (see [1]). It is easy to check that
the transforms in Figures 1 and 2 conform toUN = XNGN .
The main result on source polarization for binary alphabetsis
the following.

Theorem 1. Let (X,Y ) be a source as above. For anyN =
2n, n ≥ 1, let UN = XNGN . Then, for anyδ ∈ (0, 1), as
N → ∞,
∣

∣

{

i ∈ [1, N ] : H(Ui|Y
N , U i−1) ∈ (1− δ, 1]

}
∣

∣

N
→ H(X |Y )

and
∣

∣

{

i ∈ [1, N ] : H(Ui|Y
N , U i−1) ∈ [0, δ)

}∣

∣

N
→ 1−H(X |Y ).

We omit the full proof but sketch the idea, which follows
the proof of the channel polarization result in [1]. The firststep
is to define a tree random process for tracking the evolution
of the conditional entropy terms{H(Ui|Y

N , U i−1)}. The
analysis is aided by an accompanying supermartingale based
on the source Bhattacharyya parameters. For the basic source
(X,Y ) ∼ PX,Y , this parameter is defined as

Z(X |Y ) = 2
∑

y

PY (y)
√

PX|Y (0|y)PX|Y (1|y).

The source Bhattacharyya parameters satisfy the followingas
they undergo the two-by-two polarization transformation.

Proposition 1. Let (X,Y ) be a source as above, and(X1, Y1)
and (X2, Y2) two independent drawings from(X,Y ). Then,

Z(X1 ⊕X2|Y
2) ≤ 2Z(X |Y )− Z(X |Y )2

and
Z(X2|Y

2, X1 ⊕X2) = Z(X |Y )2.

We omit the proof of this result since it is very similar to
the proof of a similar inequality on channel Bhattacharyya
parameters given in [1]. Thus, we have the inequality

Z(U1|Y
2) + Z(U2|Y

2, U1) ≤ 2Z(X |Y )

which is the basis of the Bhattacharyya supermartingale. Con-
vergence results about the Bhattacharyya supermartingalemay
be translated into similar results for the entropy martingale
through the following pair of inequalities.

Proposition 2. For (X,Y ) a source as above, the following
inequalities hold

Z(X |Y )2 ≤ H(X |Y ) (4)

H(X |Y ) ≤ log(1 + Z(X |Y )). (5)

Either both inequalities are strict or both hold with equality.
For equality to hold, it is necessary and sufficient thatX
conditioned onY is either deterministic or Ber(12 ).

The proof is given in the appendix.
These inequalities serve the purpose of showing that

H(X |Y ) is near 0 or 1 if and only ifZ(X |Y ) is near 0 or
1, respectively. Hence, the parameters{H(Ui|Y

N , U i−1)}Ni=1

and{Z(Ui|Y
N , U i−1)}Ni=1 polarize simultaneously.

For coding theorems, it is important to have a rate of
convergence result.

Definition 1. Let (X,Y ) be a source as above, and let
R > 0. For N = 2n, n ≥ 1, let EX|Y (N,R) denote a
subset of{1, . . . , N} such that|EX|Y (N,R)| = ⌈NR⌉ and
Z(Ui|Y

N , U i−1) ≤ Z(Uj|Y
N , U j−1) for all i ∈ EX|Y (N,R)

and j /∈ EX|Y (N,R). We refer toEX|Y (N,R) as a “high-
entropy” (index) set of rateR and block-lengthN . For the
special case whereY is absent or unavailable, we write
EX(N,R) to denote the high-entropy set ofX only. When
N andR are clear from the context, we simplify the notation
by writing EX|Y or EX .

Theorem 2. Let (X,Y ) be a source as above andR >
H(X |Y ) be fixed. Consider a sequence of high-entropy sets
{EX|Y (N,R) : N = 2n, n ≥ 1}. For any such sequence, any
fixedβ < 1

2 , and asymptotically inN , we have
∑

i∈Ec
X|Y

(N,R)

Z(Ui|Y
N , U i−1) = O(2−Nβ

). (6)

We omit the proof, which is covered by the results of [4].

III. L OSSLESS SOURCE CODING

Let (X,Y ) be a source as in the previous section and
(XN , Y N ) denote an output block of lengthN ≥ 1 produced
by this source. Shannon’s lossless source coding theorem states
that an encoder can compress(XN , Y N ) into a codeword of
length roughlyNH(X |Y ) bits so that a decoder observing
the codeword andY N can recoverXN reliably, provided
N is sufficiently large. We now describe a method based
on polarization that achieves this compression bound. In the
absence of any side informationY N , the method given here is
algorithmically identical to the source coding method proposed
in [2] and [3]; however, our viewpoint is different. Instead
of reducing the source coding problem to a channel coding
problem by exploiting a duality relationship between the two
problems, we use direct arguments based solely on source
polarization.

Fix N = 2n for somen ≥ 1. Fix R > H(X |Y ) and a
high-entropy setEX|Y = EX|Y (N,R).

Encoding:Given a realizationXN = xN , computeuN =
xNGN and outputuEX|Y

as the compressed word. (Note that



the encoder does not require knowledge of the realization of
Y N to implement this scheme.)

Decoding:Having receiveduEX|Y
and observed the real-

izationY N = yN , the decoder sequentially builds an estimate
ûN of uN by the rule

ûi =











ui if i ∈ EX|Y

0 if i ∈ Ec
X|Y andL(i)

N (yN , ûi−1) ≥ 1

1 else

where

L
(i)
N (yN , ûi−1) =

Pr(Ui = 0|Y N = yN , U i−1 = ûi−1)

Pr(Ui = 1|Y N = yN , U i−1 = ûi−1)

is a likelihood ratio, which can be computed recursively using
the formulas:

LN
(2i−1)(yN , u2i−2)

=
L
(i)
N/2(y

N/2, u2i−2
o ⊕ u2i−2

e )L
(i)
N/2(y

N
N/2+1, u

2i−2
e ) + 1

L
(i)
N/2(y

N/2, u2i−2
o ⊕ u2i−2

e ) + L
(i)
N/2(y

N
N/2+1, u

2i−2
e )

and

L
(2i)
N (yN , u2i−1)

= L
(i)
N/2(y

N/2, u2i−2
o ⊕ u2i−2

e )δiL
(i)
N/2(y

N
N/2+1, u

2i−2
e )

whereu2i−2
o andu2i−2

e denote, respectively, the parts ofu2i−2

with odd and even indices, andδi equals 1 or -1 according to
u2i−1 being 0 or 1, respectively. Having constructedûN , the
decoder outputŝxN = ûNG−1

N as the estimate ofxN . (It is
easy to verify thatG−1

N = GN .)
Performance:The performance of the decoder is measured

by the probability of error

Pe = Pr(ÛN 6= UN ) = Pr(ÛEc
X|Y

6= UEc
X|Y

),

which can be upper-bounded by standard (union-bound) tech-
niques as

Pe ≤
∑

i∈Ec
X|Y

(N,R)

Z(Ui|Y
N , U i−1). (7)

The following is a simple corollary to Theorem 2 and (7).

Theorem 3. For any fixedR > H(X |Y ) and β < 1
2 , the

probability of error for the above polar source coding method
is bounded asPe = O(2−Nβ

).

Complexity:The complexity of encoding and that of decod-
ing are bothO(N logN).

IV. A PPLICATION TO CHANNEL CODING: DUALITY

The above source coding scheme can be used to design
a capacity-achieving code for any binary-input memoryless
channel. Let such a channel be defined by the transition
probabilitiesW (y|x), x ∈ X = {0, 1} and y ∈ Y. Consider
the block coding scheme shown in Fig. 3, where signals flow
from right to left. Here,N = 2n, n ≥ 1, is the code block
length;UN denotes the message vector,XN = UNGN the
channel input vector, andY N the channel output vector. Due

WN GNY N
XN

UN

Fig. 3. Channel coding.

to memorylessness,WN (yN |xN ) =
∏N

i=1 W (yi|xi) for any
xN ∈ XN , yN ∈ YN .

We turn the triple(UN , XN , Y N ) into a joint ensemble
of random vectors by assigning the probabilitiesPr(XN =
xN ) = 2−N for all xN ∈ {0, 1}N . Under this assignment,
(XN , Y N ) may be regarded as independent samples from
a source(X,Y ) ∼ Q(x)W (y|x) where Q is the uniform
distribution on{0, 1}. We let I(W ) = I(X ;Y ) denote the
symmetric channel capacity and fixR < I(W ). This implies
that 1−R > H(X |Y ). Let EX|Y = EX|Y (N, 1−R) denote
a high-entropy set of rate(1−R) for the source(X,Y ). The
following coding scheme achieves reliable communication at
rateR over the channelW .

Encoding:Prepare a binary source vectorUN as follows.
Pick the patternUEX|Y

at random from the uniform distri-
bution and make it available to the decoder ahead of the
session. In each round, fillUEc

X|Y
with uniformly chosen data

bits. (Thus,⌊NR⌋ bits are sent in each round, for a data
transmission rate of roughlyR.) EncodeUN into a channel
codeword by computingXN = UNGN and transmitXN over
the channelW .

Decoding:Having receivedY N , use the source decoder of
the previous section to produce an estimateÛEc

X|Y
of the data

bits UEc
X|Y

.

Analysis: The error probabilityPr(ÛEc
X|Y

6= UEc
X|Y

) is

bounded asO(2−Nβ

) for any fixedβ < 1
2 since the source

coding rate is1−R > H(X |Y ). The complexity of the scheme
is bounded asO(N logN).

Remark.The above argument reduces the channel coding
problem for achieving the symmetric capacityI(W ) of a
binary-input channelW to a source coding problem for a
source(X,Y ) ∼ QW whereQ is uniform on {0, 1}. This
reduction exploits the duality of the two problems. This dual
approach provides an alternative proof of the channel coding
results of [1]. It also complements the duality arguments in
[2] and [3], where the source coding problem for a Ber(p)
source was reduced to a channel coding problem for a binary
symmetric channel with cross-over probabilityp.

V. SLEPIAN-WOLF CODING

The above source coding method can be easily extended
to the Slepian-Wolf setting [5]. Suppose{(Xi, Yi)}

∞
i=1 are

independent samples from a source(X,Y ) where bothX
andY are binary RVs. In the Slepian-Wolf scenario, there are
two encoders and one decoder. Fix a block-lengthN = 2n,
n ≥ 1, and ratesRx andRy for the two encoders. Encoder 1
observesXN only and maps it to an integerix ∈ [1, 2NRx ],
encoder 2 observesY N only and maps it to an integer
iy ∈ [1, 2NRy ]. The decoder in the system observes(ix, iy)



and tries to recover(XN , Y N ) with vanishing probability of
error. The well-known Slepian-Wolf theorem states that this
is possible providedRx ≥ H(X |Y ), Ry ≥ H(Y |X), and
Rx +Ry ≥ H(X,Y ).

It is straightforward to design a polar coding scheme that
achieves the corner point(H(X |Y ), H(Y )) of the Slepian-
Wolf rate region. FixRy > H(Y ) andRx > H(X |Y ). For
N = 2n, n ≥ 1, consider a pair of high-entropy setsEY =
EY (N,Ry) andEX|Y = EX|Y (N,Rx).

Encoding: Given a realizationXN = xN , encoder 1
calculatesuN = xNGN and sendsuEX|Y

to the common
decoder. Given a realizationY N = yN , encoder 2 calculates
vN = yNGN and sendsvEY

.
Decoding:The decoder first applies the decoding algorithm

of Section III to obtain an estimatêyN of yN from vEY
. Next,

the decoder applies the same algorithm to obtain an estimate
of xN using ŷN (as a substitute for the actual realizationyN )
anduEX|Y

.
We omit the analysis of this scheme since it essentially

consists of two single-user source coding schemes of the type
treated in Section III.

It is clear that polar coding can achieve all points of the
Slepian-Wolf region by time-sharing between the corner points
(H(X), H(X |Y )) and (H(X |Y ), H(Y )).

We should remark that polar coding for Slepian-Wolf prob-
lem was first studied in [6], [2], and [3] under the assumptions
thatX,Y ∼ Ber(12 ), andX ⊕ Y ∼ Ber(p).

The above approach to Slepian-Wolf coding reduces the
problem to single-user source coding problems. A direct
appoach would be to have each encoder apply polar transforms
locally, with encoder 1 computingUN = XNGN and encoder
2 computing V N = Y NGN . Preliminary analyses show
that such local operations polarizeXN

1 and Y N
1 not only

individually but also in a joint sense. A detailed study of such
schemes is left for future work.

VI. POLARIZATION OF NON-BINARY MEMORYLESS

SOURCES

Theorem 4. Let X ∼ PX be a memoryless source overX =
{0, 1, . . . , q − 1} for some primeq ≥ 2. For n ≥ 1 andN =
2n, letXN = (X1, . . . , XN) beN independent drawings from
the sourceX . Let UN = XNGN whereGN is as defined in
(3) but the matrix operation is now carried out in GF(q). Then,
the polarization limits in Theorem 1 remain valid provided the
entropy terms are calculated with respect to base-q logarithms.

If q is not prime, the theorem may fail. ConsiderX
over {0, 1, 2, 3} with PX(0) = PX(2) = 1

2 . Then, it is
straightforward to check thatUN has the same distribution
asXN for all N . On closer inspection, we realize thatX is
actually a binary source under disguise. More precisely,X is
already polarized over{0, 2}, which is a subfield ofGF (4),
and vectors over this subfield are closed under multiplication
by GN .

The preceding example illustrates the difficulties in mak-
ing a general statement regarding source polarization over

arbitrary alphabets. If we introduce some randomness into
the construction as in [7], it is possible to polarize sources
over arbitrary alphabets, still maintaining theO(N logN)
complexity of the construction.

ACKNOWLEDGMENT

Helpful discussions with E. Şaşoğlu and S. B. Korada are
gratefully acknowledged. This work was supported in part
by The Scientific and Technological Research Council of
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VII. A PPENDIX

A. Proof of Inequality(4)

First we prove thatZ(X)2 ≤ H(X) for any X ∼ Ber(p)
with equality if and only ifp ∈ {0, 12 , 1}. LetF (p) = H(Z)−
Z(X)2 = −p log2(p) − (1 − p) log2(1 − p)− 4p(1− p), and
compute

dF

dp
=

1

ln 2
[− ln p+ ln(1− p)]− 4 + 8p,

d2F

dp2
=

1

ln 2

[

−
1

p
−

1

1− p

]

+ 8,

d3F

dp3
=

1

ln 2

[

1

p2
−

1

(1 − p)2

]

.

Inspection of the third order derivative shows thatdF/dp is
strictly convex forp ∈ [0, 12 ) and strictly concave forp ∈
(12 , 1]. Thus, dF/dp = 0 can have at most one solution in
each interval[0, 1

2 ) and(12 , 1]. SincedF/dp = 0 at p = 1
2 , the

number of zeros ofdF/dp over [0, 1] is at most three. Thus,
F (p) can have at most three zeros over[0, 1]. SinceF (p) = 0
for p ∈ {0, 12 , 1}, there can be no other zeros.

Thus, for any pair of random variables(X,Y ) with X
binary, if we condition onY = y, we have

Z(X |Y = y)2 ≤ H(X |Y = y).

Averaging overY , and by Jensen’s inequality, we obtain (4).

B. Proof of Inequality(5)

Recall that the Rényi entropy of orderα (α > 0, α 6= 1)
for a RV X is defined as

Hα(X) =
1

1− α
log

∑

x

PX(x)α

and has the following properties [8].

• Hα(X) is strictly decreasing inα unlessPX is uniform
on its support Supp(X) = {x : PX(x) > 0}.

• H(X) = limα→1 Hα(X).

Now supposeX ∼ Ber(p) and note that

H 1

2

(X) = log

[

∑

x

√

PX(x)

]2

= log(1 + Z(X)).



Thus, we have

H(X) ≤ H 1

2

(X) = log(1 + Z(X)).

It follows that, for any jointly distributed pair(X,Y ) with
X binary and any sample valueY = y

H(X |Y = y) ≤ log(1 + Z(X |Y = y)).

Averaging overY and by Jensen’s inequality, we obtain (5).
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