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Abstract—The notion of source polarization is introduced and The basic idea of source polarization is contained in the
investigated. This complements the earlier work on channgdolar-  transformation shown in Fidl 1, wherep" denotes addition

ization. An application to Slepian-Wolf coding is also conislered. _ ionxX
The paper is restricted to the case of binary alphabets. Extesion ”7°d .2' The operatio L X32) = (U1, Uz) performed by the
circuit preserves entropy.e.,

of results to non-binary alphabets is discussed briefly.
Index Terms—Polar codes, source polarization, channel polar- H(Uy, Us|Y1,Y2) = H(X1, Xo|Y1, Y2)
ization, source coding, Slepian-Wolf coding. ’ ’ ’ ’

= 2H(X]Y), 0
[. INTRODUCTION but is polarizing in the sense that
We introduce the notion of “source polarization” which H(U|Y1,Ys) > HX|Y) > H(Us|Y1,Y2,Uy).  (2)

complements “channel polarization” that was studiedlin [1} ) . . )
One immediate application of source polarization is thagtes It 1S €asy to show that equalities hold here if and only if
of polar codes for lossless source coding. Lossless soufééXY) equals 0 or 1. Thus, unless the entropies at the input
coding using polar codes has already been considered 8kne circuit are already perfectly polarized, the entespat
tensively in the pioneering works1[2] and| [3], which reducef’® output will polarize further.

this problem to one of channel polarization using the dyalit

between the two problems. The approach in this paper istdirec X _@Sl_@_ U,

and offers an alternative (primal) viewpoint.

This paper is restricted mostly to binary memoryless
sources. We indicate in the end briefly the possible gener-
alizations to non-binary sources. g

We use the notation of [1]. In particular, we writé" to X3 —P2 Us
denote a vectofus,...,ux) andu; to denote the sub-vector
(wiy...,uj) foranyl < i < j < N.If j <4, u] is the X, Ry U,
null vector. The logarithm is to the base 2 unless otherwise
indicated. We writeX ~ Ber(p) to denote a Bernoulli
random variable (RV) with values 0,1} and Px (1) = p.

The entropyH (X) of such a RV is denoted sometimes as
H(p) = —plogp — (1 — p)log(1l — p). Figure[2 shows the recursive continuation of the construc-
tion to the case where four independent copie$X0fY’) are

Il. POLARIZATION OF BINARY MEMORYLESS SOURCES  processed. The entropy conservation law states that

WITH SIDE INFORMATION
HUYNY" = HXYY?Y) =4H(X]Y).

R
Xo LD Us

Fig. 2. Four-by-four source transformation.

Let (X,Y) ~ Px y be an arbitrary pair of random variables ) )
over X’ x Y with X = {0, 1} and) an arbitrary countable set. Using the chain rule, we may split the output entropy as

Throughout this section, we regaf,Y’) as a memoryless 4 _
source, withX as the part to be compressed aridin the HU*Y*) =Y HU[Y*, U™
role of “side-information” aboutX. We consider a sequence i=1

{(X;,Y;)}72, of independent drawings frofX, Y') and write  Note that the variable§* are assigned to the output terminals
(XY, Y™) to denote the firstV elements of this sequence, forof the circuit in Fig.[2 in a shuffled order. This is motivated
any integerN > 1. by the observation that, with this ordering, the pdif;, Us)

is obtained from two i.i.d. RVs, namelys,, S2), by the same
two-by-two construction as in Fif] 1. A similar remark agpgli
to the relationship betweelUs,U,) and (R;, Rz). These
observations lead to the the following inequalities, whick
Xo U, special cases of those il (2).

H(U\[Y?) > H(S1|Y?)
Fig. 1. Basic source transformation. _ H(SQ|}/34) > H(U2|Y4 Ul)

X1 U =X1¢Xs
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H(Us|Y*,U?) > H(R1|Y{, 1) Proposition 2. For (X,Y) a source as above, the following
= H(R,|Ys, So) > H(U4|Y*, U?). inequalities hold

2
There is no general inequality betweéh(Us|Y*, U') and Z(X|Y)" < H(X]Y) )
H(Us|Y*,U?). The conclusion to be drawn is that polarization H(X|Y) < log(1+ Z(X]Y)). (5)

is enhanced further by repeating the basic construction. Either both inequalities are strict or both hold with equwli

IFOF ar!yN N 2?’ " Z_ L, _thz %_en(;rall fo[)m _Of Itlhe SOurcepo, equality to hold, it is necessary and sufficient th¥t
polarization transiormation is defined algebraically as conditioned onY is either deterministic or Beé%).

Gy = (191" By (3)  The proof is given in the appendix.

These inequalities serve the purpose of showing that
H(X|Y) is near 0 or 1 if and only ifZ(X|Y) is near O or
1, respectively. Hence, the parametéfg(U;|Y N, U= 1)}V |
and{Z(U;|YN, U1}, polarize simultaneously.

For coding theorems, it is important to have a rate of
convergence result.

where “®"" denotes theath Kronecker power andy is the
“bit-reversal” permutation (see[1]). It is easy to checlatth
the transforms in Figurdd 1 aftl 2 conformlfd’ = XV G .
The main result on source polarization for binary alphakisets
the following.

Theorem 1. Let (X,Y") be a source as above. For aidy =
27, n > 1, let UN = XNGy. Then, for anys € (0,1), as

N = oo, subset of{1,..., N} such that|Ex|y (N, R)| = [NR] and
Hz €1,N]: HU YN, U 1) e (1 -4, 1]}] Z(Ui|YN, U < Z(U;|ly N, U7 forall i € Ex |y (N, R)

N = HX[Y)  andj ¢ Ex|y(N,R). We refer toEx |y (N, R) as a “high-
entropy” (index) set of rateR and block-lengthV. For the
special case wher&” is absent or unavailable, we write

[{i € [1,N]: HUJYN,U"1) €[0,0)}] Ex(N,R) to denote the high-entropy set &f only. When

N N and R are clear from the context, we simplify the notation

We omit the full proof but sketch the idea, which followéjy writing Eix|y or Ex.
the proof of the channel polarization resultlin [1]. The fa&p Theorem 2. Let (X,Y) be a source as above ani >
is to define a tree random process for tracking the evolutign(X|Y") be fixed. Consider a sequence of high-entropy sets
of the conditional entropy term§ #(U;|[Y",U*"")}. The {Ey(N,R): N =2",n > 1}. For any such sequence, any
analysis is aided by an accompanying supermartingale basigdd 8 < % and asymptotically inV, we have
on the source Bhattacharyya parameters. For the basicesourc

Definition 1. Let (X,Y) be a source as above, and let
R > 0. For N = 2", n > 1, let Ex;y(N,R) denote a

and

—1—H(X|Y).

i— _NB
(X,Y) ~ Pxy, this parameter is defined as S zwyN, Ut =0 (6)
i€E% |y (N,R)
Z2(X[Y) =2 ZPY@)\/PX\Y(O|y)PX‘Y(1|y)' We omit the proof, which is covered by the results[df [4].
Yy

The source Bhattacharyya parameters satisfy the followasg 1. L OSSLESS SOURCE CODING

they undergo the two-by-two polarization transformation. ~ Let (X,Y) be a source as in the previous section and
. (XN, Y™N) denote an output block of lengthi > 1 produced

Proposition 1. Let(X,Y’) be a source as above, ad,Y1)  py this source. Shannon’s lossless source coding theoegesst

and (X3, Y2) two independent drawings frofiX, ). Then,  {nat an encoder can compress™, Y™N) into a codeword of

length roughly N H(X|Y") bits so that a decoder observing

Z(X1® X,|Y?) < 2Z(X|Y) — Z(X|Y)? 9 gnly ] !

X 2lY7) < 22(X|Y) (XIY) the codeword and’™ can recoverX” reliably, provided

and N is sufficiently large. We now describe a method based
Z(X2|Y?, X1 & X,) = Z(X|Y)2 on polarization that achieves this compression bound. én th

absence of any side informatiof?¥, the method given here is
We omit the proof of this result since it is very similar taalgorithmically identical to the source coding method prsgd
the proof of a similar inequality on channel Bhattacharyyia [2] and [3]; however, our viewpoint is different. Instead
parameters given in_[1]. Thus, we have the inequality of reducing the source coding problem to a channel coding
problem by exploiting a duality relationship between th® tw

2 2 1
ZhY7) + Z2(Ua|Y7,U7) < 2Z(X]Y) problems, we use direct arguments based solely on source

which is the basis of the Bhattacharyya supermartingala- cd°larization.

vergence results about the Bhattacharyya supermartinggle X N = 2" for somen > 1. Fix R > H(X[Y) and a

be translated into similar results for the entropy martiegahigh'emr_om_’ setix|y = EXIY(Nv]{?)- v v
through the following pair of inequalities. Encoding:Given a realizationX ™ = =, computeu™ =

NGy and outputug, , as the compressed word. (Note that



th]% engoder does not require knowledge of the realization of VN o— N XN Gy —pn
Y to implement this scheme.)
Decoding:Having receivedur, , and observed the real-
izationYV = "V, the decoder sequentially builds an estimate Fig. 3. Channel coding.
o™ of uV by the rule

u; ifie EX\Y

) ; . to memorylessness$V ™ (yN|2V) = 1Y, W (y;|x;) for an
;=40 ifiekES andL%)(yN,ﬂlfl)Zl y VN (y =) Hz:l (yilwi) y

X[y N e XN, yN e YN,
1 else We turn the triple(UY, X~ Y%) into a joint ensemble
where of random vectors by assigning the probabilitieg XV =

V) = 27N for all 2V € {0,1}". Under this assignment,

— N _ N i—1 _ ni—1
_ P =0l =y U =0 (XN, YN) may be regarded as independent samples from

LY N, @)

Pr(Ui = 1YY =y, Ut = at) a source(X,Y) ~ Q(z)W(y|z) where Q is the uniform
is a likelihood ratio, which can be computed recursivelyngsi distribution on{0,1}. We let I(W) = I(X;Y) denote the
the formulas: symmetric channel capacity and f < I(WW). This implies

[ QimD) (N 22 thatl — R > H(X[Y). Let Ex|y = Ex|y(N,1— R) denote
N (y U ) } . _ ‘ a high-entropy set of ratél — R) for the sourcg X,Y). The
Lg\l,)/Q(y]\’/Q,ugl‘2 ® uﬁz‘Q)L%)/g(y%/gﬂ,u?‘?) +1 following coding scheme achieves reliable communicatibn a

BIO) 2i—2 2i—2 0) 2i—2 rate R over the channelV.
LN/Q(yN/Q’uo Due ) + LN/2(y1]\V[/2+1’u€ ) Encoding:Prepare a binary source vector¥ as follows.
and Pick the patternUg,, at random from the uniform distri-
(20), N 2i-1 bution and make it available to the decoder ahead of the
Ly (y ﬂ{ ) . session. In each round, filJ’quY with uniformly chosen data
= Lﬁé)/z(ym,uii” 69uii*Q)JiL%)/z(y%/g+l,uﬁ“) bits. (Thus,|NR| bits are sent in each round, for a data

transmission rate of roughlR.) EncodeU?" into a channel
codeword by computing ™ = UN G and transmitX ™V over
the channelV.

Decoding:Having receivedr”, use the source decoder of
the previous section to produce an estinﬁggﬂy of the data

whereu?=? andu?~2 denote, respectively, the partswof —2
with odd and even indices, ardg equals 1 or -1 according to
usi—1 being 0 or 1, respectively. Having constructel, the
decoder outputs™ = aNG ' as the estimate ofV. (It is
easy to verify thatG ' = G.)

PerformanceThe performance of the decoder is measurebo‘tS UE&D{' - . )
by the probability of error Analysis: The error probab|I|tyPr(UE§W #+ UEgﬂy) is
- - bounded asO(2—Nﬁ) for any fixed3 < 1 since the source
= N N = c c . . 2 .
Pe =Pr(U™ #U") = Pr(Ups,, # Urg,, ), coding rate i —R > H(X|Y). The complexity of the scheme
which can be upper-bounded by standard (union-bound) teéhibounded a®)(N log V).
nigues as Remark.The above argument reduces the channel coding
. problem for achieving the symmetric capacifyiW’) of a
N i—1
Fe < Z 2(UiYT,U0). @) binary-input channell’ to a source coding problem for a

€ES )y (N,R) source(X,Y) ~ QW where@ is uniform on {0, 1}. This

The following is a simple corollary to Theorem 2 ard (7)reduction exploits the duality of the two problems. This Idua

] . approach provides an alternative proof of the channel gpdin
Theorem 3. For any fixedR > H(X[Y) and § < 3, the yegyits of [1]. It also complements the duality arguments in
probability of error for the above polar source coding maiho[zj and [3], where the source coding problem for a @er

. _NB
is bounded as?. = O(27V"). source was reduced to a channel coding problem for a binary

Complexity:The complexity of encoding and that of decodSymmetric channel with cross-over probability

ing are bothO(N log N). V. SLEPIAN-WOLF CODING
IV. APPLICATION TO CHANNEL CODING DUALITY The above source coding method can be easily extended

The above source coding scheme can be used to dedigrthe Slepian-Wolf setting [5]. SupposgX;,Y;)}s2, are
a capacity-achieving code for any binary-input memorylegsdependent samples from a sourc¥,Y) where both X
channel. Let such a channel be defined by the transitiandY are binary RVs. In the Slepian-Wolf scenario, there are
probabilitiesW (y|z), x € X = {0,1} andy € ). Consider two encoders and one decoder. Fix a block-lenyth= 2",
the block coding scheme shown in Hig. 3, where signals flow> 1, and ratesk, and R, for the two encoders. Encoder 1
from right to left. Here,N = 2", n > 1, is the code block observesX” only and maps it to an integey, < [1,2V =],
length; UN denotes the message vectdf¥ = UNGy the encoder 2 observe¥™ only and maps it to an integer
channel input vector, ant the channel output vector. Duei, € [1,2Vv]. The decoder in the system observes, i,)



and tries to recovefX”,Y") with vanishing probability of arbitrary alphabets. If we introduce some randomness into
error. The well-known Slepian-Wolf theorem states thas ththe construction as if_[7], it is possible to polarize sosrce
is possible provided?, > H(X|Y), R, > H(Y|X), and over arbitrary alphabets, still maintaining th@(N log N)

R,+R,>H(X,)Y). complexity of the construction.

It is straightforward to design a polar coding scheme that
achieves the corner poirtd (X|Y), H(Y)) of the Slepian- ACKNOWLEDGMENT
Wolf rate region. FixR, > H(Y) and R, > H(X|Y). For Helpful discussions with E. Sasoglu and S. B. Korada are
N = 2", n > 1, consider a pair of high-entropy sefs- = gratefully acknowledged. This work was supported in part
Ey(N,R,) andExy = Ex|y (N, R,). by The Scientific and Technological Research Council of

Encoding: Given a realizationX™ = 2%, encoder 1 Turkey (TUBITAK) under contract no. 107E216, and in part
calculatesu”y = zNGy and sendsuEXW to the common by the European Commission FP7 Network of Excellence
decoder. Given a realizatiori” = y”, encoder 2 calculates NEWCOM++ (contract no. 216715).
vN =yNGy and sendsg, .

Decoding:The decoder first applies the decoding algorithm
of Sectior{1Il to obtain an estimatg" of ¥ from vg, . Next, A. Proof of Inequality)

the decoder applies the same algorithm to obtain an estimates;,si we prove thatZ(X)? < H(X) for any X ~ Ber(p)
of 2V usingg™ (as a substitute for the actual realizatiph) yith equality if and only ifp € {0, 1,1} Let F(p) = H(Z)—
andugy,, - Z(X)? = —pl — (1 —p)logy(1 —p) — 4p(1 — d
= —plogy(p p)lo P P p), an
We omit the analysis of this scheme since it essentialgb(mgute B2(p) = ( )loga( ) ( )

consists of two single-user source coding schemes of the typ

VII. APPENDIX

dF 1

treated in SectiohlI. o — [~Inp+In(l—p)—4+8p,
It is clear that polar coding can achieve all points of the dp  In2

Slepian-Wolf region by time-sharing between the cornenoi &2F 1 1 1

(H(X),H(X|Y)) and(H(X|Y),H(Y)). A =2 [—]—D - m} + 3,
We should remark that polar coding for Slepian-Wolf prob-

lem was first studied iri [6][]2], and|[3] under the assumption d3F 1 [1 1

that X, Y ~ Ber(}), andX @& Y ~ Ber(p). dp3 T In2 L?_W]

The above approach to Slepian-Wolf coding reduces the
problem to single-user source coding problems. A direlﬂs. 1 .
appoach would be to have each encoder apply polar transfor?ﬂécuy convex forp & [0,3) and strictly concave fop. <
locally, with encoder 1 computing™ = X~ Gy and encoder (2 1- Thus, dFl/dp - (1) can have at most one SOIIUt'On n
2 computingVY¥ = YNGp. Preliminary analyses showeaCh interval0, 3) and (5, 1]. SmcedE/dp =0atp= 3, the
that such local operations polariz&™ and Y;¥ not only number of zeros ofl F'/dp over [0, 1] is at most three. Thus,
individually but also in a joint sense. A detailed study oflsu F(p) can hf\ve at most three zeros oyerl]. SinceF'(p) =0
schemes is left for future work. for p € {0, 3,1}, there can be no other zeros.

Thus, for any pair of random variablgs{,Y) with X

V1. POLARIZATION OF NON-BINARY MEMORYLESS binary, if we condition onY” = y, we have

SOURCES
Z(X|Y =y)? < HX[Y =y).

pection of the third order derivative shows thidt/dp is

Theorem 4. Let X ~ Px be a memoryless source ov&r= ) L .
{0,1,...,q — 1} for some primey > 2. Forn > 1 and N = Averaging overY’, and by Jensen’s inequality, we obtdih (4).
27, let XV = (Xy,...,Xy) beN independe_ntdrawin_gs frqm B. Proof of Inequality(5)
the sourceX. Let UN = XN Gy whereGy is as defined in e
@) but the matrix operation is now carried outin Gfj(Then, ~ Recall that the Rényi entropy of order (a > 0, a # 1)
the polarization limits in Theorefd 1 remain valid providéat for @ RV X is defined as
i i 1
entropy terms are calculated with respect to bgdegarithms. Ho(X) = — logz Py (2)°

If ¢ is not prime, the theorem may fail. Considef
over {0,1,2,3} with Px(0) = Px(2) = 1. Then, it is and has the following properties] [8].
straightforward to check tha’¥ has the same distribution « H,(X) is strictly decreasing im unlessPy is uniform
as X" for all N. On closer inspection, we realize th&t is onaits support Supp¥) = {z : Px(z) > 0}.
actually a binary source under disguise. More precisglys « H(X) = lima_; Ha(X).
already polarized ovef0, 2}, which is a subfield of7F'(4),
and vectors over this subfield are closed under multipbeati
by Gn.

The preceding example illustrates the difficulties in mak- ~ Hy (X) =log [Z v/ Px ()
ing a general statement regarding source polarization over z

Now supposeX ~ Ber(p) and note that
2
=log(1 + Z(X)).




Thus, we have
H(X) < Hy(X) =log(1 + Z(X)).

It follows that, for any jointly distributed paifX,Y") with
X binary and any sample valué = y

H(X|Y =y) <log(l+ Z(X|Y =vy)).
Averaging overY and by Jensen’s inequality, we obtali (5).
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