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Abstract—The problem of graphical model selection is to
estimate the graph structure of an unknown Markov random
field based on observed samples from the graphical model. For
Gaussian Markov random fields, this problem is closely related
to the problem of estimating the inverse covariance matrix
of the underlying Gaussian distribution. This paper focuses
on the information-theoretic limitations of Gaussian graphical
model selection and inverse covariance estimation in the high-
dimensional setting, in which the graph size p and maximum
node degree d are allowed to grow as a function of the sample
size n. Our first result establishes a set of necessary conditions
on n(p, d) for any recovery method to consistently estimate
the underlying graph. Our second result provides necessary
conditions for any decoder to produce an estimate bΘ of the
true inverse covariance matrix Θ satisfying ‖bΘ − Θ‖ < δ in
the elementwise �∞-norm (which implies analogous results in
the Frobenius norm as well). Combined with previously known
sufficient conditions for polynomial-time algorithms, these results
yield sharp characterizations in several regimes of interest.

I. INTRODUCTION

Markov random fields or undirected graphical models are

families of multivariate probability distributions whose factor-

ization and conditional independence properties are character-

ized by the structure of an underlying graph [1]. Graphical

model selection refers to the problem of estimating the graph

structure based on observed samples from a Markov random

field. This problem arises in a wide variety of settings, in-

cluding statistical image analysis, natural language processing,

and computational biology. In many applications, this problem

is of interest under high-dimensional scaling, meaning both

the graph size p and the number of samples n are large.

Classical methods, such as those based directly on the sample

covariance, are known (via random matrix theory [2]) to break

down when p/n does not go to zero. Consequently, in the high-

dimensional regime where p � n, additional structure is re-

quired in order to obtain consistent estimators. Accordingly, a

line of recent work has focused on developing computationally

efficient methods to solve this problem by imposing sparsity

on the underlying graph. In particular, methods based on �1-

regularization (e.g. [3], [4], [5], [6], [7]) have been shown to

yield consistent estimators for Gaussian graphical models, or

the associated inverse covariance matrices.

Complementary in nature to such achievable results are the

information-theoretic limits associated with any procedure for

graphical model selection. Such analysis can serve two pur-

poses. First, it can demonstrate when known polynomial-time

algorithms achieve the information-theoretic bounds. Second,

it can reveal regimes in which there exists a gap between the

performance of current methods and the fundamental limits.

With this motivation, some previous work ([8], [9]) has studied

both necessary and sufficient conditions for graphical model

selection in discrete Markov random fields.

The focus of this paper is on the information-theoretic limits

of Gaussian graphical model selection, in which the observed

random vector has a multivariate Gaussian distribution. For

Gaussian Markov random fields, by the Hammersley-Clifford

theorem [1], the model selection problem is equivalent to

estimating the off-diagonal sparsity pattern of the inverse

covariance matrix. In this paper, we study the ensemble Gd,p

of graphs on p vertices with maximum degree at most d,

and derive two main results. Our first result is to derive

conditions on the sample size n, graph size p, and maximum

node degree d that are necessary for any method to correctly

recover the underlying graph with probability of error going

to zero. Our second result addresses the problem of estimating

the inverse covariance matrix Θ, and establishes necessary

conditions for any method to produce an estimate Θ̂ satisfying

‖Θ̂ − Θ‖ < δ. Our results can be compared against known

sufficient conditions for graph selection and inverse covari-

ance estimation using �1-penalized maximum likelihood [7],

and reveal regimes in which this polynomial-time algorithm

achieves the information-theoretic scaling. One consequence

of our results is conditions under which the scaling on the

sample size n = Ω(d2 log p) is sharp.

This paper is organized as follows. In Section II, we

begin with some background and a precise formulation of

the problem. Section III provides the statements of our main

results and a discussion of their consequences. Section IV de-

scribes a general framework for deriving information-theoretic

lower bounds and discusses several approaches for bound-

ing the mutual information that arises in Fano’s inequality.

Subsections IV-B and IV-C are devoted to the proofs of the

necessary conditions for graphical model selection and inverse

covariance estimation. Given space constraints, this paper only

provides statements and high-level proof ideas; we refer the

reader to the technical report [10] for details. We conclude in

Section V with a discussion of open directions.
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Figure 1. Illustration of Gaussian Markov random fields. (a)
Given an undirected graph, associate a random variable Xi

with each vertex i in the graph. A GMRF is the collection
of Gaussian distributions over the vector X that respect the
structure of the graph. (b) Sparsity pattern of the inverse
covariance matrix Θ associated with the GMRF in (a).

II. BACKGROUND AND PROBLEM FORMULATION

We begin with some background on Gaussian Markov ran-

dom fields. We then formulate the graphical model selection

problem, which for Gaussian models is directly related to

estimation of the inverse covariance matrix. Our goal is to

derive information-theoretic lower bounds on the number of

samples required for recovery, which apply to any procedure

regardless of its computational complexity.

A. Gaussian Markov random fields

Let X = (X1, . . . , Xp) be a multivariate Gaussian random

vector with zero mean and covariance matrix Σ. Accordingly,

its density is determined completely by the inverse covariance

matrix Θ = Σ−1, and has the form

φ(x; 0, Σ) =
1√

(2π)p det(Θ−1)
exp{−1

2
xT Θx}. (1)

For a given undirected graph G = (V, E) with vertex set

V and edge set E ⊂ V × V , we associate a random

variable Xi with each vertex i ∈ V . The Gaussian Markov

random field associated with the graph G is the family of

Gaussian distributions that respect the Markov properties of

G. In particular, the off-diagonal sparsity pattern of the inverse

covariance matrix Θ is specified by the edge structure of the

graph, such that Θij = 0 if (i, j) �∈ E (see Figure 1).

Given i.i.d. samples from an unknown Markov random field,

the problem of estimating the inverse covariance matrix Θ
corresponds to recovering the graphical model instance, while

the problem of estimating the underlying graph G corresponds

to graphical model selection. We define the maximum degree

of the graph as

d : = max
i∈V

∣∣∣{j ∈ V | (i, j) ∈ E}
∣∣∣, (2)

which is equal to the maximum number of non-zeros per

row of the inverse covariance matrix Θ. Note that we are

not including self-loops at each vertex in the degree count,

corresponding to the diagonal entries Θii. We often write

Θ(G) to emphasize the graph-based structure of Θ.

B. Classes of graphical models

Let Gp,d be a family of undirected graphs on p vertices

with edge sets that have degree at most d. For a given graph

G ∈ Gp,d, let Σ(G) be the covariance matrix of a Gaussian

Markov random field (GMRF) defined by the graph G. By

definition, the inverse covariance matrix Θ(G) must have

non-zeros only in positions corresponding to edges in E. In

addition to graph structure, the difficulty of graphical model

selection also depends on properties of the inverse covariance

matrix entries. We measure the minimum value of each matrix

Θ(G) by the function

λ∗(Θ(G)) : = min
(s,t)∈E

|Θst|√
ΘssΘtt

, (3)

so that it is invariant to rescaling of the data. We study the

class Gp,d(λ) of Gaussian Markov random fields parameterized

by a lower bound λ on the minimum value, defined as the

set of probability distributions φΘ(G) = φ(0, Σ(G)) where

the underlying graph G ∈ Gp,d, the inverse covariance matrix

satisfies Θst = 0 if (s, t) /∈ E, and λ∗(Θ(G)) ≥ λ.

C. Decoders and error metrics

Suppose we are given n i.i.d. vector samples Xn
1 =(

X(1), . . . , X(n)
) ∈ Rn×p from an unknown distribution

φΘ(G) in the class Gp,d(λ). Graphical model selection refers

to the problem of estimating the underlying graph G based

on the observations Xn
1 . A decoder ψ : Rn×p → Gp,d maps

the observations Xn
1 to an estimated graph Ĝ = ψ(Xn

1 ). We

define the error metric between the estimate Ĝ and the true

underlying graph G using the 0-1 loss function I[ψ(Xn
1 ) �= G].

For any decoder ψ, we define the maximal probability of error

over the class Gp,d(λ) as

perr(ψ) : = max
φΘ(G)∈Gp,d(λ)

PΘ(G)

[
ψ(Xn

1 ) �= G
]
, (4)

where the error probability

PΘ(G)

[
ψ(Xn

1 ) �= G
]

= EΘ(G)

[
I[ψ(Xn

1 ) �= G]
]

is taken with respect to the product distribution

PΘ(G)(·) = φ(·; 0, Σ(G))n over n i.i.d. samples.

In contrast to graphical model selection (in which the goal

is to recover the support set of Θ(G)), the goal of inverse

covariance estimation is to estimate the numerical values

of the inverse covariance matrix. More precisely, a decoder

ψ̄ : Rn×p → Gp,d(λ) maps the samples Xn
1 to an estimate

Θ̂ = ψ̄(Xn
1 ). We measure the error between the estimate Θ̂

and the true inverse covariance matrix Θ using the elementwise

�∞-norm ‖Θ̂ − Θ‖∞ : = maxst |Θ̂st − Θst|, and define the

probability of error PΘ(G)

[‖Θ̂ − Θ‖∞ ≥ δ/2
]
. The maximal

probability of error over the model class Gp,d(λ) is then

defined as

perr(ψ̄) : = max
φΘ(G)∈Gp,d(λ)

PΘ(G)

[‖Θ̂−Θ‖∞ ≥ δ/2
]
.(5)

Although the error metrics for graphical model selection

and inverse covariance estimation are closely related, neither
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recovery guarantee is strictly stronger than the other. In

particular, it is possible to recover the true graph (i.e. Ĝ = G)

even when ‖Θ̂−Θ‖∞ ≥ δ/2, since the graph structure is de-

termined only by which entries are zero. Conversely, it is also

possible to recover an estimate satisfying ‖Θ̂ − Θ‖∞ < δ/2
and still fail to recover the true graph, if for instance there is

a non-zero edge weight less than δ/2.
With this set-up, our goal is to derive necessary conditions

on the sample size n(p, d, λ) for any decoder to reliably re-

cover the underlying graph (or estimate the inverse covariance

matrix). We say that recovery is asymptotically reliable over

the graphical model class Gp,d(λ) if perr → 0 as n →∞. Our

analysis is high-dimensional in nature, in which the graph size

p, maximum degree d, and minimum value λ are all allowed to

scale arbitrarily as the number of samples n tends to infinity.

III. MAIN RESULTS AND CONSEQUENCES

In this section, we state our main results on the information-

theoretic limits of Gaussian graphical model selection and

inverse covariance estimation, and then discuss some of their

consequences.

A. Graphical model selection
We begin with a set of necessary conditions for graphical

model selection, applicable to any recovery method regardless

of its computational complexity.

Theorem 1. Consider the class Gp,d(λ) of Gaussian Markov
random fields with λ ∈ [0, 1

2 ]. A necessary condition for
asymptotically reliable graphical model selection over the
class Gp,d(λ) is

n > max

{
log

(
p−d
2

)− 1
4λ2

,
log

(
p
d

)− 1
1
2

(
log(1 + dλ

1−λ )− dλ
1+(d−1)λ

)} .(6)

The proof of Theorem 1 (given in Section IV-B) constructs

restricted ensembles of graphical models and then, viewing

the observation process as a communication channel, applies

Fano’s inequality [11] in order to bound the probability of

error. The bounds in Theorem 1 capture how the sample

size must grow with graph size p and minimum value λ. In

particular, in order for the sum of the edge weights in each

neighborhood of the graph to stay bounded, the minimum

value must scale as λ = Θ( 1
d ). In this regime, the first

bound in Theorem 1 implies that the sample size must scale

as n = Ω(d2 log(p− d)). For any constant λ ∈ [0, 1/2], the

second bound in Theorem 1 scales as n = Ω
( d log(p/d)

log(1+dλ)

)
.

Moreover, it implies that n = Ω(d1−ε log(p
d )) for any ε > 0.

The information-theoretic bounds in Theorem 1 can be

compared with previous work on polynomial-time methods

for consistent graph selection. In particular, Ravikumar et

al. [7] showed that a sufficient condition for �1-regularized

maximum likelihood to consistently estimate the underlying

graph is n = Ω((d2 + λ−2) log p). In the regime in which

λ = Θ( 1
d ), this scaling matches the information-theoretic

bounds in Theorem 1, showing that a polynomial-time method

achieves the optimal rates (up to constant factors).

B. Inverse covariance estimation

We now state some necessary conditions for the closely

related problem of inverse covariance estimation. Recall that

‖A‖∞ : = maxij |Aij | denotes the elementwise �∞-norm ap-

plied to a matrix.

Theorem 2. Consider the class of Gaussian Markov ran-
dom fields Gp,d(λ). If there exists an estimator such that
P[‖Θ̂−Θ‖∞ < δ/2] ≥ 1/2 uniformly over choices from
Gp,d(λ), then we must have

n >
log

(
pd
4

)− 2
4δ2

. (7)

The proof of Theorem 2, given in Section IV-C, is based

on constructing restricted ensembles of graphical models with

minimum separation δ, and then applying Fano’s inequal-

ity [11] to bound the probability of decoding error in distin-

guishing between such models. Theorem 2 captures how the

sample size must grow with the minimum separation between

models δ. A consequence of Theorem 2 is that if the recovery

error decays at rate δ = 1/d, then the sample size must scale

as n > d2
(
log

(
pd
4

)− 2
)
/4. Furthermore, Theorem 2 implies

that the same necessary condition holds for inverse covariance

estimation with other error metrics as well. In particular, let

|||A|||F : = (
∑

ij A2
ij)

1/2 denote the Frobenius norm.

Corollary 1. A necessary condition for asymptotically reliable
inverse covariance estimation, with recovery error at most δ/2

measured in the Frobenius norm, is n >
log

(
pd
4

)
−2

4δ2 .

The necessary condition in Theorem 2 can be compared to

known sufficient conditions for �1-regularized maximum like-

lihood to consistently estimate the inverse covariance matrix.

Ravikumar et al. [7] showed that if the sample size satisfies

n > c d2 log p for some constant c > 0, then with probability

going to one, the �1-regularized maximum likelihood method

produces an estimate Θ̂ satisfying ‖Θ̂−Θ‖∞ = O

(√
log p

n

)
.

Consequently, the performance of the polynomial-time algo-

rithm in [7] matches the scaling of the information-theoretic

bound in Theorem 2.

IV. PROOF SKETCHES

In this section, we describe our general framework for

deriving necessary conditions for consistent graphical model

selection and inverse covariance estimation. Our methods are

information-theoretic in nature, inspired by techniques that

have been used to derive minimax bounds in nonparametric

estimation (e.g., [12], [13]).

A. Fano’s method

Our general approach is to construct restricted ensembles of

graphical models, and then use Fano’s method to lower bound

the probability of error in each restricted ensemble. Consider

a restricted ensemble G̃ consisting of M =
∣∣G̃∣∣ models,

and let model index θ be chosen uniformly at random from
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{1, . . . , M}. Given the observations X̃n
1 ∈ Rn×ν , the decoder

ψ̃ estimates the underlying graph structure with maximal

probability of decoding error defined as

perr(ψ̃) = max
j=1,...,M

P
eΘ( eGj)

[
ψ̃

(
X̃n

1

) �= G̃j

]
. (8)

By Fano’s inequality [11], the maximal probability of error

over G̃ can be lower bounded as

perr(ψ̃) ≥ 1− I
(
θ; X̃n

1

)
+ 1

log M
. (9)

In order to make use of the Fano bound, the key is to

design ensembles of models for which log M is large, while

the mutual information I
(
θ; X̃n

1

)
is relatively small. Since it is

typically difficult to evaluate the mutual information exactly,

we discuss some upper bounds on it.

Entropy-based bound: Define the averaged covariance matrix

Σ̄ : =
1
M

M∑
j=1

Σ̃
(
G̃j

)
. (10)

The mutual information is upper bounded by I
(
θ; X̃n

1

) ≤
n
2 F

(G̃)
, where

F
(G̃)

: = log det Σ̄− 1
M

M∑
j=1

log det Σ̃
(
G̃j

)
. (11)

KL-based bound: Let Pj = f
(
X̃n

1

∣∣θ = j
)

= φ
(
0, Σ̃

(
G̃j

))n

for j = 1, . . . , M . An alternative bound on the mutual

information is given by

I
(
θ; X̃n

1

) ≤ Eθ[D(Pθ‖Q)] (12)

for any distribution Q over X̃n
1 . Setting Q = φ(0, Iν×ν)n, the

KL distance can be expressed as

D(Pj‖Q) =
n

2

{
log det Θ̃

(
G̃j

)
+ trace

(
Σ̃

(
G̃j

))− ν
}

. (13)

Note that we are assuming loge throughout this paper.

B. Analysis of graphical model selection

We now briefly outline the proofs of the necessary condi-

tions in Theorem 1 on the sample size n as a function of the

number of vertices p, maximum degree d and minimum value

λ. We obtain two necessary conditions, which can be seen

as end points of an entire family of bounds, by analyzing

ensembles of graphs in which a subset S of up to d nodes

form a clique (i.e. fully connected subset), and the remaining

nodes are all isolated.

1) Restricted ensemble A: We begin by deriving the first

bound in Theorem 1, which captures how the sample size must

grow with the minimum value λ. Consider a family of graphs

on p vertices, in which each edge set E(S, T ) = {(s, t) | s, t ∈
S or s, t ∈ T} defines a clique over a subset S of size 2, and

another clique over a disjoint subset T of size d. For a given

graph G = (V, E(S, T )) and a parameter a ≥ 0, we define

the inverse covariance matrix Θ(G) : = I + a1S1T
S + a1T 1T

T ,

where 1S and 1T are the indicator vectors of sets S and T ,

respectively. The covariance matrix can then be computed as

Σ(G) = I − a

1 + 2a
1S1T

S −
a

1 + da
1T 1T

T . (14)

The resulting class of graphical models is a subset of Gp,d(λ)
if λ∗(Θ(G)) = a

1+a ≥ λ.

Suppose the decoder is given the indices of the d vertices

in T , and the parameter value a. Estimating the underlying

graph structure G now amounts to finding the remaining pair

of nodes in S, out of
(
p−d
2

)
possibilities. More precisely, given

(T, a), the decoder can extract the submatrix of observations

X̃n
1 : = (Xn

1 )T C ∈ Rn×(p−d). When the original observations

are sampled i.i.d. from the distribution X(i) ∼ N(0, Σ), the

modified observations are distributed according to X̃(i) ∼
N(0, ΣT CT C ). Since the modified covariance matrix is of the

form

Σ̃
(
G̃

)
: = ΣT CT C = I − a

1 + 2a
1S1T

S , (15)

the inverse covariance matrix becomes

Θ̃
(
G̃

)
=

(
Σ̃

(
G̃

))−1 = I + a1S1T
S . (16)

Note that the underlying graph associated with Θ̃
(
G̃

)
is G̃ : =

G \ T (i.e. the graph obtained by removing the vertices in set

T and all edges connected to T from graph G). The remaining

sub-problem is to determine, given the observations X̃n
1 , the

single edge graph on (p− d) vertices.

Let G̃ denote the set of graphs on (p − d) vertices with a

single edge, and let G̃(λ) denote the associated class of Gaus-

sian Markov random fields with inverse covariance matrices

defined as in (16). The proof then applies the Fano bound (9)

over this restricted ensemble using the entropy-based bound

on mutual information (11).

2) Restricted ensemble B: We now derive the second lower

bound in Theorem 1 using an ensemble of d-clique graphs

and the entropy-based bound on mutual information (11).

Consider the ensemble of graphs consisting of edge sets

E(S) = {(s, t) | s, t ∈ S} with |S| = d. For a given edge

set E(S) and paramter a ≥ 0, define the inverse covariance

matrix Θ(G) : = I + a1S1T
S , and its associated covariance

matrix

Σ(G) = (Θ(G))−1 = I − a

1 + da
1S1T

S .

The cardinality of this restricted ensemble is
(
p
d

)
. The proof

then follows by applying Fano’s inequality (9) using the

entropy-based bound (11).

C. Analysis for inverse covariance estimation

In this section, we provide the basic intuition underlying

the proof of Theorem 2. We derive a set of necessary condi-

tions for inverse covariance estimation using an ensemble of

graphical models which share the same underlying graph, but

vary by perturbing a single edge weight. These bounds capture

the difficulty of distinguishing between models with inverse

covariance matrices that are δ-close, e.g in the elementwise
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�∞-norm. Note that for any two models Θ(i) and Θ(j) in our

ensemble, since ‖Θ(i) − Θ(j)‖∞ = δ by construction, there

does not exist a matrix Θ̂ satisfying both ‖Θ̂−Θ(i)‖∞ < δ/2
and ‖Θ̂−Θ(j)‖∞ < δ/2. Consequently, we can apply Fano’s

inequality (9) to bound the probability of error in the restricted

ensemble, and the problem is reduced to bounding the mutual

information between the model index and the observations.

1) Alternate KL bound: We begin by stating a variant of

the KL-based bound on mutual information in (13), using KL

distances between all pairs of models in the class, instead of

KL distances between each model and the standard Gaussian

distribution.

Pairwise KL-based bound: We define the symmetrized

Kullback-Leibler divergence,

S(Pi‖Pj) : = D(Pi‖Pj) + D(Pj‖Pi). (17)

By convexity of the KL divergence, we have the following

bound on mutual information

I
(
θ; X̃n

1

) ≤ 1
M2

M∑
i=1

M∑
j=i+1

S(Pi‖Pj). (18)

For Gaussian Markov random fields, a straightforward calcu-

lation shows that the symmetrized KL distance is equal to

S(Pi‖Pj) =
n

2

p∑
	=1

p∑
m=1

(
Θ(i)

	m −Θ(j)
	m

) (
Σ(j)

	m − Σ(i)
	m

)
(19)

2) Restricted ensemble C: We now use these methods to

derive necessary conditions for inverse covariance estimation

(stated in Theorem 2), which capture how the sample size

must grow with the minimum separation between models δ.

Consider a graph on p vertices consisting of 
 p
d+1� cliques,

where each clique is of size (d + 1). Let N = 
 p
d+1�, and

let {S1, . . . , SN} denote the N cliques with |Si| = d + 1. We

define the inverse covariance matrix associated with this graph

as

Θ̄ : = I + a

N∑
i=1

1Si1
T
Si

, (20)

for some parameter a ≥ 0. From this base model, we

generate an ensemble of Gaussian Markov random fields in

which each model perturbs the weight associated with one

edge. Thus the model obtained by perturbing the weight

on edge (s, t) is defined by the inverse covariance matrix

Θ(i) : = Θ̄ + δ(1st1T
st − Ist) for some parameter δ ∈ (0, 1

2 ].
Note that we are using (1st1T

st − Ist) to denote the matrix

with ones in locations (s, t) and (t, s), and zeros elsewhere.

The resulting ensemble of graphical models has cardinality

M = 
 p
d+1�

(
d+1
2

) ≥ pd
4 . The proof then computes the KL-

based bound on mutual information in (19) and applies Fano’s

inequality (9).

V. DISCUSSION

In this paper, we have studied the information-theoretic

limits of Gaussian graphical model selection and inverse

covariance estimation in the high-dimensional setting. Our

analysis yields a set of necessary conditions for consistent

graph selection with any method, which matches the scaling

of known sufficient conditions [7] for �1-regularized maximum

likelihood in regimes in which the minimum value scales as

λ = Θ( 1
d ). The tightness of the bounds in other regimes of

λ is an interesting open question. Furthermore, we derived a

set of necessary conditions for inverse covariance estimation,

which similarly matches the performance of polynomial-time

recovery methods [7]. Our results consider recovery in the

elementwise �∞ and Frobenius norms; the tightness of the

necessary conditions for recovery in other norms is an inter-

esting open question. At a high-level, our analysis is based on

a general framework for deriving information-theoretic bounds

in which we view the observation process as a communication

channel, and may be applicable to other problems as well.
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