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Approximately achieving Gaussian relay

network capacity with lattice-based QMF codes
Ayfer Özgür and Suhas Diggavi

Abstract

Recently, it has been shown that a new relaying strategy, quantize-map-and-forward (QMF) scheme approximately

achieves (within an additive constant number of bits) the Gaussian relay network capacity for arbitrary topologies [1].

This was established using Gaussian codebooks for transmission and random mappings at the relays. In this paper,

we show that a similar approximation result can be established by using lattices for transmission and quantization

along with structured lattice-to-lattice mappings at the relays. We establish this result for both full duplex and half

duplex wireless relay networks.

I. I NTRODUCTION

Characterizing the capacity of relay networks has been a long-standing open question in network information

theory. The seminal work of Cover and El-Gamal [6] has established several basic achievability schemes for relay

channels. More recently there has been extension of these techniques to larger networks (see [9] and references

therein). In [1], motivated by a deterministic model of wireless communication, a new relaying strategy, called

quantize-map-forward (QMF) was developed. It was shown that the quantize-map-and-forward scheme achieves

within a constant number of bits from the information-theoretic cutset upper bound. This constant is universal in

the sense that it is independent of the channel gains and the operating SNR, though it could depend on the network

topology (like the number of nodes). Moreover QMF was shown to be robust in that the relays did not need

information about network topology or channel conditions,and it also achieved the compound network capacity

approximately.

In the QMF scheme developed in [1], each relay node first quantizes its received signal at the noise level, then

randomly maps it directly to a Gaussian codeword and transmits it. Following this result, there have been several

papers that build on this approximation strategy (see for example [2], [5], [3], [7] and references therein). A natural

question that we address in this paper is whether lattice codes retain the approximate optimality of the above

scheme. This is motivated in part since lattice codes along with lattice decoding could enable computationally

tractable encoding and decoding methods. For example lattice codes were used to achieve the capacity of Gaussian

channels in [15], and for communication over multiple-access relay networks (with orthogonal broadcast) in [14].

A. Özgür is with Stanford University, e-mail:aozgur@stanford.edu. S. Diggavi is with UCLA, e-mail:suhas@ee.ucla.edu. This work was

presented in ISIT 2010 [4] and has been available on Arxiv since May 2010 at http://arxiv.org/abs/1005.1284.
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The main result of this paper is to show that the QMF scheme using nested lattice codes for transmission and

quantization along with structured lattice-to-lattice maps, still achieves the Gaussian relay network capacity within

a constant. This result1, is summarized in Theorem 2.1. It also enables many other approximation results established

in [1]; all those approximation results can now be achieved through structured lattice codes. These include the result

for multicast networks as well as for compound networks.

The use of structured lattice codes requires the specification of a structured lattice-to-lattice mapping between the

quantization and transmission codebooks at each relay. We design such a map by using the representation of nested

lattices through linear codes lifted appropriately to the real domain. Such a representation of nested lattices was

studied in [18] and also [15]. This enables us to design lattice-to-lattice maps at the relays that are implementable

with polynomial complexity, but still retain approximate optimality. In this paper we make several other technical

contributions to establish the main result:(i) we use a lattice vector quantizer instead of the scalar lattice quantizer

used in [1], and this enables us to get a better approximationconstant.(ii) we develop a “typical decoder” analysis

for lattices that enables us to establish the approximationresult, which might be of independent interest.(iii) we

develop a simple outer bound on the information-theoretic capacity of half-duplex networks, earlier upper bounds

apply under the restriction of fixed schedules and no transmit power optimization across the half-duplex states as

explained below.

Half-duplex radios have the constraint that they cannot transmit and receive signals simultaneously over the

same frequency band. Therefore, each relay needs to developa strategy of when to listen and when to transmit.

Fixed scheduling strategies are those where the listen-talk states of the relays are established prior to the start

of communication (but perhaps depending on global channel/network conditions). However, random scheduling

strategies are those which allow the schedules to change during run-time, so that the transmit and receive states

of the relays can be used to convey additional information. Moreover, the transmit power of the relays can be

optimized across different configurations of the network. Note that in a network ofN relays where each relay

can be in either transmit or receive state, there are2N different possible configurations for the network. We show

that the QMF strategy with fixed schedules and an equal power allocation strategy across the half-duplex states,

can approximately achieve the capacity of half-duplex networks. This establishes the first approximation result for

half-duplex networks. Note that earlier approximation results were based on restricting to fixed scheduling strategies

with equal power allocation [1]. It is easy to observe that the random strategies can increase the capacity by at most

one bit per relay over fixed schedules, orN bits/s/Hz in total. This has been pointed out in [12], [13]. However, to

the best of our knowledge, the capacity gain due to transmit power optimization across the2N states of the network

has not been investigated earlier. We show that this gain canbe at most linear inN .

The paper is organized as follows: In Section II, we state thenetwork model and our main results. In Section III,

we summarize the construction of the nested lattice ensemble. In Section IV, we describe the network operation. In

particular, we specify how we use the nested lattice codes ofSection III for encoding at the source, quantization,

1This result was first presented in [4], is the first structuredcode for approximately achieving the wireless network capacity.
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lattice-to-lattice mapping and transmission at the relay nodes, and decoding at the destination node. In Section V,

we analyze the performance achieved by the scheme. In Section VI, we establish the approximation result for

half-duplex networks. Many of the detailed proofs are givenin the Appendices.

II. M AIN RESULTS

We consider a Gaussian relay network with a setM of N nodes, where a source nodes ∈ M wants to

communicate to a destination noded ∈ M, with the help of relay nodesM\{s, d}. The signal received by node

i ∈ M is given by

yi =
∑

j 6=i

Hijxj + zi (1)

whereHij is theNi ×Mj channel matrix from nodej comprisingMj transmit antennas to nodei comprisingNi

receive antennas. Each element ofHij represents the complex channel gain from a transmitting antenna of nodej

to a receiving antenna of nodei. The noisezi is complex circularly-symmetric Gaussian vectorCN (0, I) and is

i.i.d. for different nodes. The transmitted signalsxj are subject to an average power constraintP . Note that without

loss of generality we have scaled the noise power to1.

The following theorems are the main result of this paper.

Theorem 2.1:Using nested lattice codes for transmission and quantization along with structured mappings at the

relays, we can achieve all rates

R ≤ min
Ω

I(xΩ;yΩc |xΩc)− (2 + log 2)
∑

i∈M\s

Ni

betweens andd, whereΩ is a source-destination cut of the network,xΩ = {xi, i ∈ Ω} andxi, i ∈ M are i.i.d.

CN (0, (P/Mi)I).2

It has been shown in [1] (see Lemma 6.6) that the restriction to i.i.d. Gaussian input distributions is within

2
∑

i∈M Mi bits/s/Hz of the cut-set upper bound. Therefore the rate achieved using lattice codes in the above

theorem is within2
∑

i∈M Mi + (2 + log 2)
∑

i∈M Ni bits/s/Hz to the cutset upper bound of the network (or
∑

i∈M Mi + (2 + log 2)/2
∑

i∈M Ni for real Gaussian networks)3. This is summarized in the following result.

Theorem 2.2:Using nested lattice codes, we can approximately achieve the capacity of Gaussian wireless

networks to within2
∑

i∈M Mi + (2 + log 2)
∑

i∈M Ni bits/s/Hz.

The same lattice coding techniques used to obtain the approximate characterization of Theorem 2.2, can be

used to get the approximate characterization for multiple-source multicast (where there are multiple sources and

destinations, which are interested in all the sources) as well as for compound relay networks. The extensions of

lattice codes to these cases are straightforward applications of the ideas in this paper using the tools developed in

[1], [10], [11]. Another interesting case is that of half-duplex networks considered in [1], where it was established

2The logarithms in the paper are basee.

3These constants can be further tightened by using a sharper analysis and adjusting the quantization levels, but our goalhere is not to get

the tightest bound for the constants.

DRAFT



4

that the QMF scheme approximately achieved the best possible rates, when attention was restricted to the class of

fixed schedules with constant transmit power for the relays.In this paper, we establish the approximation result

for any scheme over half duplex networks. Moreover, we show that a uniform power allocation across the states is

approximately optimal. The following result is proved in Section VI.

Theorem 2.3:Using nested lattice codes and fixed scheduling of transmission states, we can approximately

achieve the capacity of Gaussian relay networks with half-duplex constraint to withinN + 4
∑

i∈M Mi + (2 +

log 2)
∑

i∈M Ni bits/s/Hz.

For simplicity of presentation, in the rest of the paper we concentrate on scalar channels where every node has a

single transmit and receive antenna. Moreover, we focus ourattention tolayered networks, which were defined in

[1]. These are networks, where the number of hops are the samefor every path from the source to the destination

in the network. An example of such a layered network is given in Figure 1. More precisely, the signal received by

nodei in layer l, 0 ≤ l ≤ ld, denotedi ∈ Ml, is given by

yi =
∑

j∈Ml−1

hijxj + zi

wherehij is the real scalar channel coefficient from nodej to nodei and s ∈ M0, d ∈ Mld . The analysis can

be extended to arbitrary (non-layered) networks by following the time-expansion argument of [1] and to multicast

traffic with multiple destination nodes as well as to multiple multicast where multiple source nodes multicast to a

group of destination nodes. The complex case follows by representing each complex number as a two-dimensional

real vector. The extension to multiple antennas is discussed inside the text.

III. PRELIMINARIES: CONSTRUCTION OF THENESTEDLATTICE ENSEMBLE

In this section we review some of the basic properties of lattices that can be found in standard references like

[15], [16], [17]. We summarize these properties to make thispaper more self-contained, as well as to establish the

notation used throughout this paper.

Consider a latticeΛ, or more precisely, a sequence of latticesΛ(n) indexed by the lattice dimensionn, with V
denoting the Voronoi region ofΛ. The second moment per dimension ofΛ is defined as

σ2(Λ) =
1

n

1

|V|

∫

V

‖x‖2dx

where|V| denotes the volume ofV . We also define the normalized second moment ofΛ,

G(Λ) =
σ2(Λ)

|V|2/n . (2)

Throughout the paper, we assume thatΛ (or more precisely, the sequence of latticesΛ(n)) is both Rogers and

Poltyrev-good. The existence of such lattices has been shown in [16]. Formally,Λ satisfies the following properties:

• (Rogers-good) LetRu andRl be the covering and effective radius of the latticeΛ. Λ (more precisely the

sequence of latticesΛ(n)) is called Rogers-good if its covering efficiency approaches 1 as the dimensionn

grows,

ρcov(Λ) =
Ru

Rl
→ 1. (3)
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It is known that a lattice that is good for covering is necessarily good for quantization. A lattice is called good

for quantization if

G(Λ) → G∗
n (4)

whereG∗
n is the normalized second moment of ann-dimensional sphere andG∗

n → 1
2πe when the dimension

n becomes large. (4) follows from (3) and the relation (see [16])

G(Λ) ≤ n+ 2

n
G∗

n (ρcov)
2.

• (Poltyrev-good) LetZ be a Gaussian random vector whose components are i.i.d.N (0, σ2), such thatσ2 ≤
σ2(Λ). The volume to noise ratio of the latticeΛ relative toN (0, σ2) is defined asµ = σ2(Λ)/σ2. Then,Λ

(more precisely the sequence of such latticesΛ(n)) is called Poltyrev-good if

P(Z /∈ V) < e−n[EP (µ)−on(1)]

whereEP (µ) is the Poltyrev exponent given by

EP (µi) =






1
2 [(µi − 1)− logµi] 1 < µi ≤ 2

1
2 log

eµi

4 2 ≤ µi ≤ 4

µi

8 µi ≥ 4.

Let then × n full-rank generator matrix ofΛ be denoted byGΛ, i.e., Λ = GΛZ
n.4 This fixed latticeΛ will

serve as the coarse lattice for all the nested lattice constructions in this paper. The fine latticeΛ1 is constructed

using Loeliger’s type-A construction [18]. Letm,n, p be integers such thatm ≤ n andp is prime. The fine lattice

is constructed using the following steps:

• Draw ann × m matrix G such that each of its entries is i.i.d according to the uniform distribution over

Zp = {0, 1, . . . , p− 1}.

• Form the linear code

C = {c : c = G ·w,w ∈ Z
m
p }, (5)

where “·” denotes modulo-p multiplication.

• Lift C to Rn to form 5

Λ′
1 = p−1C + Z

n.

where for two setsA ⊂ Rn andB ⊂ Rn, the sum setA+B ⊂ Rn denotesA+B = {a+b : a ∈ A,b ∈ B}.

• Λ1 = GΛ Λ′
1 is the desired fine lattice. Note that sinceZn ⊆ Λ′

1, we haveΛ ⊆ Λ1.

4For any operationf : Rn → Rn and a setA ⊂ Rn, f(A) ⊂ Rn denotesf(A) = {f(a) : a ∈ A}.

5In the sequel, we slightly abuse notation by usingC to denote both the code over the finite field and its projectionto the reals. Hence, the

codewordsc are either considered as vectors inZn
p , in which case they are subject to finite field operations, or they are considered as vectors

in Rn subject to real field operations. It is to be deduced from the context to which of these two cases the notation refers to.
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• Draw v uniformly overp−1Λ ∩ V and translate the latticeΛ1 by v. The nested lattice codebook consists of

all points of the translated fine lattice inside the Voronoi region of the coarse lattice,

Λ∗ = (v + Λ1) mod Λ = (v + Λ1) ∩ V . (6)

In the above equation, we definex mod Λ as the quantization error ofx ∈ Rn with respect to the latticeΛ, i.e.,

x mod Λ = x−QΛ(x), (7)

whereQΛ(x) : R
n → Λ is the nearest-neighbor lattice quantizer defined as,

QΛ(x) = argmin
λ∈Λ

‖x− λ‖.

Note that the quantization and mod operations with respect to a lattice can be defined in different ways. The mod

operation in (7) mapsx ∈ Rn to the Voronoi regionV of the lattice. More generally, it is possible to define a mod

or quantization operation with respect to any fundamental region of the lattice. In particular, when we consider the

integer latticeZn in the sequel, or more generally its multiplespZn wherep is a positive integer, we will assume

that

x mod pZn = x− ⌊x⌋p

where⌊x⌋p denotes component-wise rounding to the nearest smaller integer multiple ofp. In other words, the mod

operation with respect topZn will map the pointx ∈ Rn to the regionp [0, 1)n.

The above construction yields a random ensemble of nested lattice codes that has a number of desired properties

as we discuss next.

First, note that there is a bijection between

Z
n
p ↔ p−1

Z
n
p = p−1

Z
n ∩ [0, 1)n ↔ p−1Λ ∩GΛ [0, 1)n ↔ p−1Λ ∩ V .

The last bijection follows from the fact that bothGΛ [0, 1)n andV are fundamental regions of the latticeΛ, i.e.,

they both tileRn. SinceC ⊆ Zn
p , the above bijection restricted toC yields,

C ↔ p−1C = Λ′
1 ∩ [0, 1)n ↔ Λ1 ∩GΛ [0, 1)n ↔ Λ1 ∩ V ↔ Λ∗. (8)

Note also thatΛ∗ ⊆ p−1Λ ∩ V . The bijections above can be explicitly specified in both directions and we will

make use of this fact in the next section.

Note thatw in (5) runs through all thepm vectors inZm
p . Let us index these vectors asw(i), i = 0, . . . , pm− 1.

Let us index the corresponding codewords inC as C(i) = G · w(i), i = 0, . . . , pm − 1. The pm codewords inC
need not be distinct. By the bijection in (8), each codeword in C corresponds to one fine lattice point inΛ1 ∩ V
and one codeword ofΛ∗. Let us similarly index the points inΛ1 ∩ V asΛ1(i) and the corresponding codewords

of Λ∗ asΛ∗(i), for i = 0, . . . , pm − 1. We have,

Λ1(i) = GΛp
−1C(i) mod Λ Λ∗(i) = (v + Λ1(i)) mod Λ. (9)

Proposition 3.1:The random codebookΛ∗ defined in (9) has the following statistical properties:

DRAFT
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• Let λ ∈ p−1Λ ∩ V ,

P(Λ∗(i) = λ) =
1

|p−1Λ ∩ V| =
1

pn
. (10)

• Let λ1, λ2 ∈ p−1Λ ∩ V , ∀i 6= j,

P(Λ∗(i) = λ1,Λ
∗(j) = λ2) =

1

|p−1Λ ∩ V|2 =
1

p2n
. (11)

In other words, the construction in this section yields an ensemble of nested lattice codes such that each

codeword of the random codebookΛ∗ is uniformly distributed overp−1Λ ∩ V and the codewords ofΛ∗ are

pairwise independent. These two properties suffice to provethe random coding result of this paper.

Proof of Proposition 3.1The first property (10) simply follows from the fact thatv is uniformly distributed on

p−1Λ ∩ V . For the second probability, we have

P(Λ∗(i) = λ1,Λ
∗(j) = λ2)

= P ((v + Λ1(i)) mod Λ = λ1, (v + Λ1(j)) mod Λ = λ2)

= P((v + Λ1(i)) mod Λ = λ1, (v + Λ1(j)) mod Λ− (v + Λ1(i)) mod Λ = λ2 − λ1)

= P(Λ1(i) = (λ1 − v) mod Λ, (Λ1(j)− Λ1(i)) mod Λ = (λ2 − λ1) mod Λ)

= P((Λ1(j)− Λ1(i)) mod Λ = (λ2 − λ1) mod Λ)

× P(Λ1(i) = (λ1 − v) mod Λ | (Λ1(j)− Λ1(i)) mod Λ = (λ2 − λ1) mod Λ). (12)

Note that the first probability in (12) is independent ofv. Let us denoteλ = (λ2 − λ1) mod Λ ∈ p−1Λ ∩ V , we

have

(Λ1(j)− Λ1(i)) mod Λ = λ ⇔ (GΛp
−1C(j) mod Λ−GΛp

−1C(i) mod Λ) mod Λ = λ

⇔ (GΛp
−1C(j)−GΛp

−1C(i)) mod Λ = λ

⇔ (GΛp
−1C(j)−GΛp

−1C(i)) = λ+ x, x ∈ Λ

⇔ (C(j)− C(i)) = pG−1
Λ λ+ pG−1

Λ x, pG−1
Λ x ∈ pZn

⇔ (C(j)− C(i)) mod pZn = pG−1
Λ λ mod pZn (13)

⇔ G · (w(j)−w(i)) = c, (14)

where all equations except the last one are over the reals. The last equation (14) is a restatement of (13) in terms

of finite field operations withc = pG−1
Λ λ mod pZn in (14) treated as a finite-field vector inZn

p . Sincej 6= i, the

vectorw(j)−w(i) has at least one nonzero entry. Since the corresponding column of G is uniformly distributed

overZn
p , we have

P(G · (w(j)−w(i)) = c) = P((Λ1(j)− Λ1(i)) mod Λ = (λ2 − λ1) mod Λ) =
1

pn
.

For the second probability in (12), it is easy to observe thatfor any realization ofG, henceΛ1(i), there is exactly

one choice ofv out of pn possible choices that satisfies the equalityΛ1(i) = (λ1 − v) mod Λ. Combining these

observations yields the conclusion in (11). �
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The above construction yields a random ensemble of nested lattice pairsΛ ⊆ Λ1 with coding rate,

R =
1

n
log |Λ∗|

which can be tuned by choosing the precise magnitudes ofm andp. Note that|Λ∗| = pm if the random matrixG

in (5) is full rank. The probability thatG is not full rank can be upper bounded by

P(rank(G) < m) =
∑

w∈Zm
p ,w 6=0

P(G ·w = 0) = (pm − 1) p−n.

Therefore ifm ≤ βn for β < 1, the above probability decreases to zero at least exponentially asn increases (p may

also grow withn). We assume thatm is chosen to satisfy this condition in all our nested latticecode constructions

in the next section.

IV. L ATTICE BASED QMF SCHEME

The quantize-map-forward (QMF) strategy, introduced in [1] is the following. Each relay first quantizes the

received signal at the noise level, then randomly maps it to aGaussian codeword and transmits it. The destination

then decodes the transmitted message, without requiring the decoding of the quantized values at the relays. This

overall operation ensures that the relays need not know the network topology, or the channel gains of the signals

being received by it6. The specific scheme that [1] focused on was based on a scalar (lattice) quantizer followed by

a mapping to a Gaussian random codebook. However, the use of vector quantizers and Gaussian codebooks leads

to similar approximation results (see [2], [11] and references therein). However, the focus of this paper is to use

lattices in order to implement the QMF scheme and analyze it.

We first replace the (Gaussian) quantizer and the Gaussian transmit codebook at each relay with lattice versions.

This basically leads us to design lattice-to-lattice maps at the relays. Intuitively, this is done by using the linear

code representation of the lattices described in Section III. Once the relay quantizes the received signal, using the

bijection given in (8) we can extract the pointc in the finite field corresponding to the quantized valueŷ. Now,

this point is linearly transformed using a random matrixG over the finite field, and thenGc is viewed as a finite

field representation of the transmit latticeΛ. Therefore it can be “lifted” to the real domain and transmitted. This

intuition is made precise in (22) and Proposition 4.2. Note that this transformation effectively only requires a matrix

multiplication over the finite field and hence haspolynomial complexityin the number of operations required to

implement it7.

As mentioned earlier, description of the lattice-based scheme and its analysis (in Section V) will be done for

layered networks (illustrated in Figure 1). However, the extension of these results to arbitrary (non-layered) networks

is done through the standard technique of time-expansion (see [1], Section VI B). In order to implement the

QMF scheme, we also need to specify the decoder used by the destination. For this, we define a lattice-based

6Of course the final destination, which needs to decode the source message needs to know these channels to be able to unravelthe

transformations to decode.

7This is assuming that the quantization to the lattice point can be done efficiently. This is true for integer lattices.
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Fig. 1. Example of a layered network, where all paths fromS to D are three hops. Additionally this clarifies the notationMl for the lth

layer, whereM1 = {A1, B1} andM1 = {A2, B2}, with ld = 3, implying thatMLd
= {D}.

“typicality” decoder8. Such a decoder finds a “plausible” sequence of received (quantized) sequences that could

have resulted in the received observation. Given this definition, we can bound the probabilities using appropriate

Gaussian approximation and therefore use an analysis inspired by [1]. A more precise definition of the lattice

typicality decoder is given in (26) and the precise analysisis done in Section V.

In the previous section, we have constructed an ensemble of nested lattices where the coarse latticeΛ is fixed and

the fine latticeΛ1 is randomized. It has been shown in [19] that with high probability, a nested lattice(Λ1,Λ) in this

ensemble is such that bothΛ1 andΛ are Rogers and Poltyrev-good. (The fixed latticeΛ is Rogers and Poltyrev-good

by construction.) For quantization and transmission at each relay, we use randomly and independently generated

codebooks by the construction of the earlier section. Even though we use the same construction, the codebooks are

generated with different parameters depending on whether we do transmission or quantization and also depending

on the noise level at each relay. The mapping between the quantization and transmission codebooks at each relay

is specified below.

Source: The source haspsms messages, whereps is prime andms ≤ n. The messages are represented as length-ms

vectors over the finite fieldZps
and mapped to a random nested lattice codebookΛ∗ following the construction in

Section III. In the construction, the coarse latticeΛ is scaled such that its second moment,

σ2(ΛT ) =
n

n+ 2

G(ΛT )

G∗
n

1

(ρcov(ΛT ))2
P, (15)

whereΛT now denotes the scaled version of the latticeΛ to satisfy the power constraint. Note thatσ2(ΛT ) → P as

n increases sinceΛT is Rogers-good. This choice ensures that every codeword ofΛ∗ satisfies the power constraint

P . This result is stated in the Proposition 4.1 below. The information rate of the code is given by

R =
1

n
log ps

ms .

8The definition of the typicality decoder for lattices is inspired by the Gaussian version. This might be independently useful for any lattice

based scheme.
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Let us denote byx(w)
s , w ∈ {1, . . . , enR} the random transmit codewords corresponding to each message w of the

source node. Note that by Proposition 3.1, the messagesw are mapped uniformly and pair-wise independently to

the lattice pointsp−1ΛT ∩ VT .

Proposition 4.1:Each transmitted codewordx(w)
s satisfies the transmit power constraintP .

Proof of Proposition 4.1:Since every transmitted codewordx(w)
s ∈ VT , we have

1

n
‖x(w)

s ‖2 ≤ 1

n
(RT

u )
2,

whereRT
u is the covering radius ofΛT . We now relate the covering radiusRT

u of ΛT to its second momentσ2(ΛT ).

Let G∗
n be the normalized second moment of then-dimensional sphereB(RT

l ) of radiusRT
l . We have the identity

G∗
n |B(RT

l )|2/n =
(RT

l )
2

(n+ 2)

Since|VT | = |B(RT
l )| whenRT

l is the effective radius ofΛT , we have

RT
l =

√
n+ 2

n

G∗
n

G(ΛT )

√
nσ2(ΛT ).

Thus, the covering radiusRT
u of the latticeΛT is given by

RT
u = ρcov(Λ

T )

√
n+ 2

n

G∗
n

G(ΛT )

√
nσ2(ΛT ) (16)

This expression together with our choice in (15), yields

1

n
‖x(w)

s ‖2 ≤ P.

�

Relays: The relay nodei receives the signalyi. As explained earlier, the QMF strategy at the relay is to quantize

the received signal using a lattice quantizer and then mapping it to a lattice transmit codebook. The main task is

to design the appropriate lattice-to-lattice map that we described informally earlier.

Quantize: The signalyi is first quantized by using a nested lattice codebookΛ∗
Q,i which is randomly and

independently generated at each relayi by using the nested lattice construction of Section III using the following

parameters (same for all relays): Let

Ds = max
i

∑

j∈Ml−1

|hij |2 P. (17)

The coarse latticeΛQ is a scaled version of the latticeΛ such that

σ2(ΛQ) = 2η(Ds + 1) (18)

for a constantη > 1 which is more precisely specified in the proof of Lemma 5.1. Recall that we had set the noise

variance to be1. We denote the generator matrix of the scaled coarse latticeΛQ by GΛQ . The parametersmr and

pr are chosen such thatmr = (logn)2 andpr is the prime number such that9

pmr
r = enRr , where Rr =

1

2
log σ2(ΛQ). (19)

9To be more precise, one can takepr to be the largest prime number such thatpr ≤ enRr/mr in which case the rate of the code is
1
n
log pmr

r ≤ Rr. Whenn is large, the difference becomes negligible and is therefore ignored.
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Note that sinceRr is independent ofn, pr = e
nRr

(log n)2 , i.e, pr → ∞ asn → ∞. With the choice in (19) forRr,

the second moment ofΛQ
1 is given by

σ2(ΛQ
1 ) =

G(ΛQ
1 )

G(ΛQ)
, (20)

which follows from (2) by noting that|VQ
1 | = |VQ|/enRr . It is shown in [19] that the construction of Section III

yields nested lattices where the fine lattice is Rogers and Poltyrev-good with high probability ifm ≥ (logn)2. (The

coarse lattice is both Rogers and Poltyrev-good by construction.) Since bothΛQ
1 andΛQ are Rogers-good w.h.p.,

σ2(ΛQ
1 ) → 1 whenn increases. Therefore, we are effectively quantizing at thenoise level.

At each relay, we independently generate a fine latticeΛQ
1 from the above ensemble, denoted byΛQ

1,i, and use

the corresponding nested lattice codebook denoted byΛ∗
Q,i. As before, we can index theenRr codewords ofΛ∗

Q,i as

ŷ
(ki)
i , ki ∈ {1, . . . , enRr} whereki enumerate theprmr vectorsw in Zmr

pr
underlying the construction of the nested

lattice codebook in (5). Note that by Proposition 3.1, for two indiceski 6= k′i, ŷ
(ki)
i and ŷ

(k′
i)

i are independent,

each uniformly distributed over the set of lattice pointsp−1
r ΛQ ∩ VQ. Moreover, for different relaysi 6= j, ŷ(ki)

i

and ŷ(kj)
i are independent.

The quantized signal at relayi is given by

ŷi = QΛQ
1,i
(yi + ui) mod ΛQ

whereui is a random dither known at the destination node and uniformly distributed over the Voronoi regionVQ
1,i

of the fine latticeΛQ
1,i. The dithersui are independent for different nodes. We will either say thatyi is quantized

to ŷi or to ki meaning that̂yi = ŷ
(ki)
i .

Map and Forward: Let us scale the coarse latticeΛ such that its second momentσ2(ΛT ) is given by (15). Let

GΛT denote the generator matrix of the scaled coarse lattice. The quantized signal̂yi at relayi is mapped to the

transmitted signalxi by the following mapping,

xi = GΛT p−1
r

(
Gi pr

(
G−1

ΛQ ŷi mod Z
n
)

mod prZ
n
)
+ vi mod ΛT , (21)

whereGi is ann × n random matrix with its entries uniformly and independentlydistributed in0, 1, . . . , pr − 1

andvi is a random vector uniformly distributed overp−1
r ΛT ∩VT , whereVT is the Voronoi region ofΛT . Gi and

vi are independent for different relay nodes. We denote byx
(ki)
i , ki ∈ {1, . . . , enRr} the corresponding sequence

that the codeword̂y(ki)
i is mapped to in (21).

The mapping in (21) can be simplified to the form,

xi = GΛT Gi G
−1
ΛQ ŷi + vi mod ΛT . (22)

Effectively, it takes the quantization codebookΛ∗
Q,i, expands it by multiplying with a random matrix with large

entries (of the order ofpr) and then folds it to the Voronoi region ofΛT . Since the entries ofGi are potentially very

large, even if two codewords are close inΛ∗
Q,i, they are mapped independently to the codewords of the transmit

codebook. Note that the complexity of the mapping is polynomial in n, while random mapping of the form in [1]

has exponential complexity inn.
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Proposition 4.2:The mapping in (21) or (22) has the following properties:

(i) At each relayi, the transmitted sequencesxi ∈ Λ∗
i , whereΛ∗

i is a random nested lattice codebook.

(ii) Given two quantization codewordŝy(ki)
i , ŷ

(k′
i)

i ∈ Λ∗
Q,i at relayi such thatki 6= k′i, the corresponding transmit

codewordsx(ki)
i andx(k′

i)
i are independent, each uniformly distributed overp−1

r ΛT ∩ VT .

(iii) The mapping induces an independent distribution across the relays. Formally, given a set of quantization

codewords{ŷ(ki)
i , i ∈ M} the corresponding transmit codewords{x̂(ki)

i , i ∈ M} are independently distributed.

Proof of Proposition 4.2:The proposition says that the quantization codebooks at each relay are independently

mapped to a random nested lattice codebook from the ensembleconstructed in the earlier section. The proof is based

on the bijection given in (8): There is one-to-one correspondence between the codebookΛ∗
Q,i and its underlying

finite field codebookCQ,i. The mapping in (21) first takes the codewordŷi ∈ Λ∗
Q,i to its corresponding codeword

in CQ,i. Note that

ŷi ∈ ΛQ
1,i ⇒ G−1

Λ ŷi ∈ p−1
r Z

n

⇒ G−1
Λ ŷi mod Z

n ∈ p−1
r Z

n ∩ [0, 1)n

⇒ pr (G
−1
Λ ŷi mod Z

n) ∈ Z
n
p .

Therefore,c = pr (G
−1
Λ ŷi mod Zn) ∈ CQ,i. This codewordc ∈ CQ,i is then mapped to a random finite-field

codebookCi = {c′ : c′ = Gi · c, c ∈ CQ,i}. We finally form the nested lattice codebookΛ∗
i corresponding toCi

following again the construction of Section III. Note that,for c′ ∈ Ci,

GΛT p−1
r c′ + vi mod ΛT ∈ Λ∗

i ,

whereΛ∗
i = (vi + ΛT

1,i) mod ΛT andΛT
1,i is the fine lattice generated byCi. Therefore, sinceΛ∗

i is obtained by

the construction of Section III from the random linear codeCi, we obtain the result specified in(i). The second

property(ii) follows by similar observations as in Section III: The random matrix Gi maps every nonzero vector

c ∈ CQ,i uniformly at random to another finite field vector inZn
p . Two quantized valueŝy(ki)

i , ŷ
(k′

i)
i ∈ Λ∗

Q,i at relay

i such thatki 6= k′i correspond to two distinct codewords inCQ,i which are randomly mapped into new finite field

codewords by the random linear mapGi. The fact that the lattice pointsx(ki)
i ,x

(k′
i)

i corresponding to these new

finite-field codewords are independently and uniformly distributed overp−1
r ΛT ∩ VT can be shown by following

the arguments in the second part of Proposition 3.1. The third property follows from the independence of theGi’s

andvi’s for different nodesi. �

Destination: Given its received signalyd, together with the knowledge of all codebooks, mappings, dithers and

channel gains, the decoder performs a consistency check to recover the transmitted message. For each relayi and

quantization codeword̂y(ki)
i , it first forms the signals

ỹ
(ki)
i = ŷ

(ki)
i − ui mod ΛQ. (23)

If yi denotes the received signal at nodei ∈ Ml in the lth layer, whereMl refers to the nodes in thelth layer

of the layered network,̂yi its quantized version and thẽyi the resultant signal after the transformation above, we
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have

ỹi = ŷi − ui mod ΛQ

= QΛQ
1,i
(yi + ui)− ui mod ΛQ

(a)
= (yi − (yi + ui) mod ΛQ

1,i︸ ︷︷ ︸
u

′
i

) mod ΛQ

=
∑

j∈Ml−1

hijxj + zi − u′
i mod ΛQ, (24)

where (a) follows by definition in (7) and the quantization error u′
i = (yi + ui) mod ΛQ

1,i is independent ofyi

and is uniform over the Voronoi region ofΛQ
1,i. This follows by the so called Crypto Lemma which is extensively

used in the sequel. We state the lemma below for completeness.

Lemma 4.1 (Crypto Lemma,[15]):Let u be a random variable uniformly distributed over the VoronoiregionV
of a latticeΛ. For any random variablex ∈ V , statistically independent ofu, we have the sumy = x+u mod Λ

is uniformly distributed overV , and is statistically independent ofx.

To conclude thatu′
i = (yi + ui) mod ΛQ

1,i is independent ofyi, note thatu′
i = (yi mod ΛQ

1,i + ui) mod ΛQ
1,i.

By the Crypto Lemma,u′
i is independent ofyi mod ΛQ

1,i. Since it also independent ofQΛQ
1,i
(yi), we conclude

thatu′
i is independent ofyi.

The decoder then forms the set̂W of messageŝw such that

Ŵ = {ŵ : ∃{ki}such that(x(ŵ)
s ,yd, {ỹ(ki)

i ,x
(ki)
i }i∈M) ∈ Ãǫ} (25)

where Ãǫ denotes consistency. We define consistency as follows: For agiven set of indices{ki}i∈M, we say

(x
(ŵ)
s ,yd, {ỹ(ki)

i ,x
(ki)
i }i∈M) ∈ Ãǫ if

‖(ỹ(ki)
i −

∑

j∈Ml−1

hijx
(kj)
j ) mod ΛQ‖2 ≤ nσ2

c , (26)

for all i ∈ Ml, 1 ≤ l ≤ ld where for convenience of notation we have denotedx
(ŵ)
s = x

(kj)
j , j ∈ M0, and

yd = ỹ
(ki)
i , i ∈ Mld . Recall thatMl refers to the nodes in thelth layer of the layered network. We choose

σ2
c = 2(1 + ǫ) (27)

for a constantǫ > 0 that can be taken arbitrarily small. Recall from (1), (18) that the noise variance and the

quantization error were set to1.

The decoder declareŝw to be the transmitted message if it is the unique message inŴ. An error occurs when

the declared messagêw is not the same asw, or when there are multiple messages inŴ .

We can interpret the consistency check as follows: For each layer l = 1, . . . , ld − 1 the decoder picks a

set of potential (quantized) received sequences{ỹ(ki)
i }i∈Ml

and the transmit sequences corresponding to them

{x(ki)
i }i∈Ml

. It checks for each layerl, whether the inputs and outputs are consistent, or jointly “typical”, i.e.,

whether the examined outputs{ỹ(ki)
i }i∈Ml

at the layerl can be explained (to within the noise and quantization
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error) by the transmitted sequences{x(ki)
i }i∈Ml−1

of layer l − 1 for indices{ki}. The relation (24) and the fact

that ΛQ
1,i is Rogers-good ensures that for largen the inputs{x(ki)

i }i∈Ml−1
and those outputs{ỹ(ki)

i }i∈Ml
that

are generated from these inputs are consistent with high probability. Note that the termination conditions for the

consistency check across the layers are known, i.e.,xs is known for the message being tested, andyd is the observed

sequence at the destination. Therefore, effectively the decoder checks whether there exists a plausible set of input

and output sequences at each relay that under the messagew could yield the observationyd. Note that the definition

of consistency in (26) is closely related to weak typicality. Indeed, it is a variant of the weak typicality condition

for Gaussian vectors. Therefore, effectively our decoder is a typicality decoder designed for lattices.

A. Multiple Antennas

A slightly modified version of the above scheme applies to thecase of multiple transmit and receive antennas at

each node. LetMi be the number of transmit andNi be the number of receive antennas at each node.

Source: The source nodes maps its message toMs independent nested lattice codebooksΛ∗
1, . . .Λ

∗
Ms

and transmits

its codeword from its corresponding transmit antenna.

Relays: The relay nodei receivesNi signals denotedyi,1, . . . ,yi,Ni
. It individually quantizes each signal by adding

an independent random dither,

ŷi,a = QΛQ
1,i
(yi,a + ui,a) mod ΛQ, a = 1, . . . , Ni.

The transmitted codeword from theb’th transmit antenna of nodei is given by

xi,b = GΛT

Ni∑

l=1

Gi,b,a G
−1
ΛQ ŷi,a + vi,b mod ΛT . (28)

whereGi,b,a is n×n random matrix independent acrossi, a andb. The mapping is modified from (22) so that at each

relay, the set of quantization codewordsŷ
(ki,1)
i,1 , . . . , ŷ

(ki,Ni
)

i,Ni
is mapped independently toMi random nested lattice

codebooks. For each of theMi random codebooks, two different sets of quantization codewordsŷ(ki,1)
i,1 , . . . , ŷ

(ki,Ni
)

i,Ni

and ŷ
(k′

i,1)

i,1 , . . . , ŷ
(k′

i,Ni
)

i,Ni
are mapped uniformly and independently to the setp−1

r ΛT ∩ VT , if ∃a ∈ 1, . . . , Ni such

that ki,a 6= k′i,a.

Destination: Similarly to the single antenna case, for a given messageŵ and a set of observationsyd,1, . . . ,yd,Nd
,

the destination node checks whether there exist a set of indices{ki,a}i∈M,1≤a≤Ni
such that the inputs and outputs

at each layer are consistent.

The error analysis in the next section is performed for the single antenna case and follows similar lines for the

case of multiple antennas.

V. ERROR ANALYSIS

Due to the nature of the decoder at the destination, described in (25), an error occurs when either the transmitted

messagew is not in Ŵ or when there is a messagew′ 6= w which is in Ŵ . The transmitted messagew from the

source and the resulting observation at the destination will pass the consistency check in (26) with high probability
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because the channel and the quantization noise at relays will be typical, confined inside a ball of radius
√
nσc, with

probability approaching1 as n increases. This is made more precise in (33). An error occurswhen there exists

an incorrect messagew′ that is also consistent with the observation at the destination, i.e., there exists a plausible

sequence of received (quantized) values that can result in the signal seen at the destination ifw′ were transmitted.

Te main focus in the error analysis is on bounding the probability that a particular incorrect messagew′ will pass

the check whenw is transmitted. We first split this error event into2N disjoint subevents indexed byΩ. Consider

the two plausible sequences of received (quantized) valuesthat correspond tow andw′. Ω denotes the event that

these two sequences are different for nodes in the setΩ and same for nodes inΩc. When this is the case, we say

that nodes inΩ can “distinguish” between the correct and the incorrect message while the nodes inΩc can not.

This notion of distinguishability was also used in [1]10. The probability ofΩ can be split into parts: the probability

that the nodes inΩc are confused times the probability that the nodes inΩ are not confused given that the nodes

in Ωc are confused. We upper bound the first probability in Lemma 5.2 and the second probability in Lemma 5.3.

Combining the results of the two lemmas we obtain the conclusion in Theorem 2.2.

Let w be the transmitted message from the source. As described earlier, We will analyze error event:

E def
=
{
w /∈ Ŵ

}
∪
{
w′ ∈ Ŵ for somew′ 6= w

}
, (29)

whereŴ is defined in (25). Ifw is the transmitted message, this probability can be upper bounded as,

P[E ] ≤ enR P[w′ ∈ Ŵ , w′ 6= w] + P[w /∈ Ŵ ]︸ ︷︷ ︸
<ǫ

(30)

whereP[w′ ∈ Ŵ ] is the probability that a particular incorrect messagew′ 6= w passes the consistency check in

(26). This probability can be upper bounded by using the union bound as

P

[
∃{k′i}i∈M s.t. (x(w′)

s ,yd, {ỹ(k′
i)

i ,x
(k′

i)
i }i∈M) ∈ Ãǫ

]
≤

∑

k′
1,...,k

′
N

P

[
(x(w′)

s ,yd, {ỹ(k′
i)

i ,x
(k′

i)
i }i∈M) ∈ Ãǫ

]
,

(31)

where each term in the summation is the probability that the corresponding set of particular quantization indices

k′1, . . . , k
′
N makew′ plausible with the observation at the destination.

The second termP[w /∈ Ŵ ] in (30) is small for largen since for the correct message the consistency check in

(26) simply reduces to checking whether the quantization and the additive noise are typical. Let{k1, . . . , kN} be the

quantization indices produced during transmission ofw. The consistency check in (26) for these actual quantization

codewords is given by

‖(zi − u′
i) mod ΛQ‖2 ≤ nσ2

c , (32)

for all i ∈ M where we used the relation (24). The noisezi is N (0, 1), therefore for largen, P[‖zi‖2 ≤ n(1+ǫ)] →
1. This can observed from Lemma 5.2. On the other hand, the quantization noiseu′

i is uniformly distributed over

10In [1] this was done for Gaussian transmit codebooks and scalar quantizers, whereas in this paper we used lattice vector quantizers and

lattice transmit codebooks.
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the Voronoi region ofΛQ
1,i. Since this lattice is Roger’s good, its covering radiusRu → σ2(ΛQ

1,i) → 1 whenn

is large. ThereforeP[‖u′
i‖2 ≤ n(1 + ǫ)] → 1. This can be verified by combining the results of Lemma 7.1 and

Lemma 7.2. Since‖zi − u′
i‖2 ≤ ‖zi‖2 + ‖u′

i‖2, we conclude thatP[‖(zi − u′
i)‖2 ≤ 2(1 + ǫ)n] → 1. Since there

are finitely many of relays, the union bound gives the same conclusion simultaneously for all relays. Therefore, we

conclude that

P[w /∈ Ŵ] → 1, (33)

for largen. In the above argument, we have ignored themod ΛQ operation in (32) becausezi − u′
i lies in the

Voronoi region ofΛQ with high probability due to our choice forσ2(ΛQ) and the fact that the lattices are Roger’s

good.

In order to compute the upper bound in (31), we will conditionon the event that the correct messagew produced a

sequence of indicesk1, . . . , kN . Since these are generic indices, we can carry out the entirecalculation conditioned

on a particular sequencek1, . . . , kN and then average over it. In this case, the summation over theN indices

k′1, . . . , k
′
N in (31) can be rearranged to yield

∑

Ω

∑

k′
i,i∈Ω

k′
i 6=ki

P

(
(x(w′)

s ,yd, {ỹ(k′
i)

i ,x
(k′

i)
i }i∈M) ∈ Ãǫ s.t. k′i = ki, i ∈ Ωc

)

︸ ︷︷ ︸
P

, (34)

whereΩ ⊂ M is a source-destination cut of the network,i.e.,

Ω ⊂ M such thats ∈ Ω, d ∈ Ωc. (35)

Now, let us examine the probability denoted byP . For a given set of{k′i}i∈M such thatk′i = ki, i ∈ Ωc and

k′i 6= ki, i ∈ Ω, the consistency condition for a nodei ∈ Ml in the lth layer of the network is given by (26) as

‖(ỹ(k′
i)

i −
∑

j∈Ml−1

hijx
(k′

j)

j ) mod ΛQ‖2 ≤ nσ2
c , ∀i ∈ Ml, 1 ≤ l ≤ ld (36)

where for convenience of notation we denoteyd = ỹ
(ki)
i , i ∈ Mld andx

(w′)
s = x

(k′
j)

j , j ∈ M0. The condition in

(36) takes two different forms depending on whetheri ∈ Ω or i ∈ Ωc:

For nodesi ∈ Ωc, ỹ(k′
i)

i = ỹ
(ki)
i and from (24) it is related to the inputs from the previous layer as

ỹ
(ki)
i =

∑

j∈Ml−1

hijx
(kj)
j + zi − u′

i mod ΛQ. (37)

In this case, the condition (36) is equivalent to

Ai = {‖(
∑

j∈Ωl−1

hij(x
(kj)
j − x

(k′
j)

j ) + zi − u′
i) mod ΛQ‖2 ≤ nσ2

c}, (38)

whereΩl−1 = Ω ∩Ml−1 and we denote this event byAi
11. Note that we have have used the fact that for nodes

i ∈ Ωc, sincek′i = ki, we havex(k′
i)

i = x
(ki)
i .

11The condition is slightly different for the destination node d, in particular it does not contain the termu′

i in (38), since we operate directly

on the observationyd and not it’s quantized version. This fact is ignored since itdoes not create any significant difference in the below analysis.

Alternatively, it can be assumed that the destination node first quantizes its received signal and then performs the consistency check.

DRAFT



17

For nodesi ∈ Ω, the condition yields

Bi = {‖(ỹ(k′
i)

i −
∑

j∈Ωc
l−1

hijx
(kj)
j −

∑

j∈Ωl−1

hijx
(k′

j)

j ) mod ΛQ‖2 ≤ nσ2
c}, (39)

whereΩc
l−1 = Ωc ∩Ml−1 and we denote this event byBi).

To summarize, fori ∈ Ωc, Ai is the event that̃y(k′
i)

i is consistent (jointly typical) with transmitted sequences

corresponding to{k′i}, andBi is the corresponding event for nodesi ∈ Ω.

Now, coming back to the calculation ofP in (34), we can write

P = P ({Ai, i ∈ Ωc}, {Bi, i ∈ Ω}) (40)

= P (Ai, i ∈ Ωc) P (Bi, i ∈ Ω | Ai, i ∈ Ωc) .

Note that due to Proposition 4.2, for allj ∈ M, whenk′j 6= kj , the relay mapping induces transmit sequences

x
(kj)
j ,x

(k′
j)

j that are pairwise independent and uniformly distributed over p−1
r ΛT ∩VT .12 Also, due to the dithering

in (23), ỹ(k′
i)

i in (39) is uniformly distributed over the Voronoi regionVQ
1 of the quantization lattice point̂y(k′

i)
i .

We will first bound the probabilityP (Ai, i ∈ Ωc) by conditioning on the event defined in the following lemma,

which is proved in the Appendix.

Lemma 5.1:Let us define the following event,

E1 def
=
{
∃ i ∈ M, ∃ {kj , k′j} s.t.

∑

j

hij(x
(kj)
j − x

(k′
j)

j ) + zi − u′
i /∈ VQ

}
, (41)

then we haveP(E1) → 0 asn → ∞.

WhenE1 is true, we declare this as an error. This adds a vanishing term to the decoding error probability by the

above lemma. Conditioning on the complement ofE1 allows us to get rid of the mod operation w.r.tΛQ in (38).

Given Ec
1 , the eventAi, for i ∈ Ωc is equivalent to

A′
i =

{
‖(
∑

j∈Ωl−1

hij(x
(kj)
j − x

(k′
j)

j ) + zi − u′
i)‖2 ≤ nσ2

c

}
. (42)

Therefore, we have

P (Ai, i ∈ Ωc) = P (Ec
1)P (Ai({k′i}), i ∈ Ωc | Ec

1) + P (E1)P (Ai({k′i}), i ∈ Ωc | E1) (43)

≤ P (Ai, i ∈ Ωc , Ec
1) + P (E1) = P (A′

i, i ∈ Ωc , Ec
1) + P (E1)

≤ P (A′
i, i ∈ Ωc) + P (E1)︸ ︷︷ ︸

→0

n→∞
= P (A′

i, i ∈ Ωc)

We upperbound this probability in the following lemma.

12For the source node,x
(kj)

j andx

(k′
j)

j or equivalentlyx(w)
s andx

(w′)
s are uniformly distributed overp−1ΛT ∩ VT wherep is different

thanpr. However, this fact does not create any difference in the following analysis and is therefore ignored.
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Lemma 5.2:

P (A′
i, i ∈ Ωc) = P

(
‖
∑

j∈Ωl−1

hij(x
(kj)
j − x

(k′
j)

j ) + zi − u′
i‖2 ≤ nσ2

c , ∀i ∈ Ωc
)

≤ e−n(I(XΩ;HXΩ+ZΩc )− 1
2 |Ω

c|(1+log(1+ǫ))−on(1)),

whereXi, i ∈ Ω are i.i.d Gaussian random variablesN (0, P ), ZΩc are i.i.d Gaussian random variablesN (0, σ2)

andH is the channel transfer matrix from nodes inΩ to nodes inΩc.

The proof of the lemma involves two main steps. Recall thatx
(kj)
j ,x

(k′
j)

j , j ∈ Ω are elements of a lattice

and therefore are discrete random variables, which are uniformly distributed overp−1
r ΛT ∩ VT and are pairwise

independent. We first show that the probability in the lemma is upper bounded by

enǫ2P
[
‖
∑

j∈Ωl−1

hij(xj − x′
j) + zi − z′i‖2 ≤ nσ2

c , ∀i ∈ Ωc
]

(44)

wherexj ,x
′
j , j ∈ Ω andz′i, i ∈ Ωc are all independent Gaussian random variables such thatxj ,x

′
j ∼ N (0, σ2

xIn),

z′i ∼ N (0, σ2
zIn) andσ2

x → σ2(ΛT ) → P asn → ∞ if ΛT is Rogers-good,σ2
z → σ2(ΛQ

1,i) → 1 asn → ∞ if ΛQ
1,i

is Rogers-good, which is our case here.ǫ2 → 0 whenn increases, again ifΛT andΛQ
1,i are Rogers-good. Given

this translation to Gaussian distributions the problem becomes very similar to the one for Gaussian codebooks in

[1]. The second step is to bound the probability in (44) by following a similar approach to [1]. The proof is given

in the Appendix.

Using Lemma 5.2, Lemma 5.1 in (40), we can upperbound the error probability given in (34) as,

∑

Ω

e−n(I(XΩ;HXΩ+ZΩc )− 1
2 |Ω

c|(1+log(1+ǫ))−on(1))
∑

k′
i,i∈Ω

k′
i 6=ki

P (Bi, i ∈ Ω | Ai, i ∈ Ωc) (45)

The last term in (45) is upper bounded in the following lemma.

Lemma 5.3:We have

∑

k′
i,i∈Ω

k′
i 6=ki

P (Bi, i ∈ Ω | Ai, i ∈ Ωc) ≤ e|Ω|n 1
2 (log(2(1+ǫ))+1+on(1)). (46)

The proof of the lemma is based on two steps. We first argue thatdue to the random construction of the

quantization codebook at each relay,ỹ
(k′

i)
i is uniformly distributed over the Voronoi regionVQ of the quantizer and

is independent across different relay nodesi ∈ Ω. Due to the Crypto Lemma ( Lemma 4.1), this is also true for

the random variables

νi = ỹ
(k′

i)
i −

∑

j∈Ωc
l−1

hijx
(kj)
j −

∑

j∈Ωl−1

hijx
(k′

j)

j mod ΛQ, i ∈ Ω

appearing in the definition of the eventBi because thẽyi’s andxi’s are independent of each other. More precisely,

due to the random mapping between the quantization and transmission codebooks at each relay, the set of random

variables{ỹ(k′
i)

i , i ∈ Ω} are independent from the set of random variables{x(ki)
i , i ∈ Ωc}, {x(k′

i)
i , i ∈ Ω}. Therefore

by the Crypto Lemma [15],νi’s are also independent of thexi’s which allows to remove the conditioning on the
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eventAi, i ∈ Ωc in (46), which only governsxi’s. Finally, each term in the summation in (46) reduces to evaluating

the probabilityP
(
‖ν‖2 ≤ nσ2

c

)
, whereν is a random variable uniformly distributed overVQ. This probability is

upper bounded in the following lemma which is proved in the Appendix.

Lemma 5.4:Let ν be uniformly distributed overVQ. We have,

P

(
‖ν‖2 ≤ nσ2

c

)
≤ e

−n
2

(

log

(

σ2(ΛQ)

σ2
c

)

−1+
σ2
c

σ2(ΛQ)
−on(1)

)

.

Using the results of Lemma 5.2 and Lemma 5.3 in (45), togetherwith the summation over all possible source-

destination cuts in (34), we obtain

P[w′ ∈ Ŵ , w′ 6= w] ≤
∑

Ω

e−n(I(XΩ;HXΩ+ZΩc )−N−on(1)) ≤ 2N e−nminΩ(I(XΩ;HXΩ+ZΩc )−(1+(log 2)/2)N−on(1)).

(47)

Combining this upper bound with (30), demonstrates that ifR < minΩ I(XΩ;HXΩ + ZΩc) − (1 + (log 2)/2)N

thenP[E ] → 0. This proves the main result of this paper which is stated in Theorem 2.1.13

VI. H ALF-DUPLEX RELAY NETWORKS

A common practical constraint in wireless networks is that nodes can not transmit and receive at the same time

on the same frequency band, termed as the half-duplex constraint. In this section, we will extend the constant gap

result of the earlier sections to half-duplex relay networks.

Since each node in a half-duplex network can be in either transmitting or receiving mode, there are2N different

possible states for the overall network. Each state is a partitioning of the nodes into two distinct sets of transmitters

and receivers. A schedule defines the fraction of time the network operates in each of these2N states. We call

a schedule fixed if it is decided ahead of time and revealed to all the nodes in the network. As shown in [1],

the quantize-map-and-forward relaying scheme can be combined with a fixed schedule and applied in half-duplex

networks. Theorem 8.3 of [1] shows that the rate achieved by the quantize-map-and-forward scheme is within a

constant gap to the capacity of the half-duplex network evaluated under fixed schedules and uniform power allocation

across different states. However, since the half-duplex schedule can also be random and not fixed, it is not clear if the

performance of the quantize-map-and-forward scheme is within a constant gap to the actual information-theoretic

capacity of the network. For example, [12] demonstrates that random schedules can yield higher rates than fixed

schedules in wireless networks. Even more importantly, theaverage transmit power constraint allows to optimize the

transmit power of each node across the2N states of the network and not necessarily transmit with the same power

at every state. In this section, we improve the result of [1] by showing that the quantize-map-and-forward scheme

combined with a fixed schedule and uniform power allocationP across all the states of the network achieves the

information-theoretic capacity of the network within3N bits/s/Hz in the single antenna case (or2
∑

i∈s,M, Mi+N

bits/s/Hz in the case of multiple antennas.) For simplicity, we concentrate on the single-antenna case in the sequel.

13The gap in Theorem 2.1 is for the complex case.
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The multiple-antenna case follows similarly. Our results are based on the memoryless model developed in [12] for

half-duplex relay networks.

A. Half-Duplex Channel Model

We follow the model developed in [12]. Due to the half-duplexconstraint each nodei in the network can be in

either transmit or receive mode, denoted bymi = T andmi = L respectively. Whenmi = T , the received signal

of the nodei is equal to zero, i.e.yi = 0. Whenmi = L, the transmitted signal by the nodei is equal to zero, i.e.

xi = 0. These constraints can be incorporated to the channel modelby considering the transmitted signals which

are inputs to the channel to be the vectorsx̄i = (xi,mi) with alphabet

Xi = {(0, L), (C, T )}

whereC is the set of complex numbers. Accordingly, the Gaussian channel model is modified to

yi =





∑
j 6=i Hijxj + zi if mi = L

0 if mi = T,

where as beforeHij ’s are the corresponding channel matrices andzi is the additive Gaussian noise. As before, an

individual average power constraint applies to each transmitting nodei, i.e.,

E[||xi||2] ≤ P, ∀i ∈ M∪ {s},

where as we recall from Section II thatM is the set of all relay nodes, excluding the source and the destination

nodes. We assume that the source node is always transmittingand the destination nodes are always receiving.

B. Cut-set Upper Bound

As noted in [12], the memoryless model allows to use the existing theory on memoryless relay networks. In

particular, applying the cut-set bound [8, Theorem 14.10.1], we can upper bound the communication rate between

the source and the destination in the half duplex network by

Ch.d = max
px̄s,M

(·)

s.t.E[||xi||
2]≤P,∀i

min
Ω

I(x̄Ω; yΩc |x̄Ωc) = max
pmM,xs,M

(·)

s.t.E[||xi||
2]≤P,∀i

min
Ω

I(mΩ, xΩ; yΩc |mΩc , xΩc), (48)

where x̄s,M = {(xi,mi), i ∈ {s,M}}, mM = {mi, i ∈ M}, Ω is a source-destination cut of the network and

x̄Ω = {x̄i, i ∈ Ω}, yΩc = {yi, i ∈ Ωc} and x̄Ωc , mΩ, xΩ, mΩc , xΩc are defined similarly.

C. A Simple Upper Bound on the Cut-set Upper Bound

In this section, we develop an upper bound on the cut-set upper bound in (48) that provides the connection to

the performance of quantize-map-and-forward with fixed schedules and uniform power allocation. First note that

the mutual information in (48) can be separated into two terms,

I(mΩ, xΩ; yΩc |mΩc , xΩc) = I(xΩ; yΩc |mΩ,mΩc , xΩc),+I(mΩ; yΩc |mΩc , xΩc) (49)

≤ I(xΩ; yΩc |mM, xΩc) +N. (50)
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The inequality (50) follows by upper bounding the second mutual information in (49) byN bits/s/Hz since each

of the N random variablesmi, i ∈ M are binary. The first mutual information governs a fixed schedule and the

expression in (48) involves a maximization of this mutual information over all possible schedules. Moreover, we

can allocate different transmit powers for the nodes in different states of this optimal schedule. Below we will show

that an optimal power allocation across the states differs by at most2N bits/s/Hz from the case where all the nodes

transmit with uniform powerP whenever they are transmitting. A priori, one can expect this gap to scale with2N ,

the number of different states of the network.

Let us denote the average transmit power of nodei at statem with Pi(m). Clearly the individual power constraint

translates toE[Pi(m)] ≤ P , where the expectation is over the states. Then, the cutset upper bound can be rewritten

and upper bounded as follows:

Ch.d ≤ max
pmM

(·) pxs,M|mM
(·)

s.t.E[||xi||
2]≤P,∀i

min
Ω

I(xΩ; yΩc |mM, xΩc) + N

= max
pmM

(·)
max

Pi(m),∀i

s.t.E[Pi(m)]≤P

max
pxs,M|mM

(·) s.t.

E[||xi||
2 |mM=m]≤Pi(m),∀i,∀m

min
Ω

I(xΩ; yΩc |mM, xΩc) + N

≤ max
pmM

(·)
min
Ω

max
Pi(m),∀i

s.t.E[Pi(m)]≤P

max
pxs,M|mM

(·) s.t.

E[||xi||
2 |mM=m]≤Pi(m),∀i,∀m

I(xΩ; yΩc |mM, xΩc) + N

= max
tm≥0, s.t.
∑

m tm=1

min
Ω

max
Pi(m),∀i

s.t.E[Pi(m)]≤P

max
pxs,M|mM

(·) s.t.

E[||xi||
2 |mM=m]≤Pi(m),∀i,∀m

∑

m

tm I(xΩ; yΩc |mM = m,xΩc) + N, (51)

where we usem to enumerate the2N states of the network and to simplify notationtm = pmM(m). Clearly,

the inner most maximization in the above expression leads toGaussianpxs,M|mM
(·|m) for each statem with

the variance ofxi at statem equal toPi(m). Therefore the inner most maximization reduces to optimizing the

covariance matrix ofxΩ for each statem under the constraint that the diagonal entry of this matrix corresponding

to i ∈ Ω should be smaller thanPi(m).

We will next argue that if we consider independent transmissions from the nodes in the network, corresponding

to an identity covariance matrix, and discard the optimization of the power allocation across the statesm, i.e., take

Pi(m) = P, ∀i, and∀m, the gap to the expression in (51) is upper bounded by2N , which leads to the conclusion

that

Ch.d ≤ max
tm≥0, s.t.

∑

m tm=1
min
Ω

∑

m

tm I(xm
Ω ; ymΩc |xm

Ωc) + 3N, (52)

where{xi, i ∈ {s,M} andmi = T } are independent, each with distributionCN (0, P ). xm
Ω = {xi, i ∈ Ω andmi =

T }, ymΩc = {yi, i ∈ Ω andmi = L} andxm
Ωc = {xi, i ∈ Ωc andmi = T }.

To prove (52), in the sequel we consider a MIMO channel withNR receive andNL transmit antennas,NR×NL

channel matrixH and a total average transmit power constraint ofNLP at the transmitter. Let us assume that there

are a number of states for communicating over this channel, statem occurring with probabilitytm and
∑

m tm = 1,

where each state corresponds to using a subset of the transmit and receive antennas. In other words, each state
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induces a sub-MIMO channel with a channel matrixHm that contains a subset of the rows and the columns of the

original channel matrixH . Let σi,m denote the singular values of the matrixHm, some of which can be zero. We

next prove that

max
Pi(m),

s.t.
∑

m,i tmPi(m)≤NLP

∑

m

tm

K∑

i=1

log(1 + σ2
i,mPi(m))−

∑

m

tm

K∑

i=1

log
(
1 + σ2

i,mP
)
≤ NL

e
+K, (53)

whereK = min(NR, NL). Note that the difference between the two terms above upperbounds the difference

between the first term in (51) and the first term in (52) becausethe mutual information terms in (51) and (52)

correspond to a MIMO channel betweenxΩ andyΩc . In (51), optimal power allocation across the eigenvalues of

the channel matrices induced at different states is allowed, while in (52) we allocate equal power to all eigenvalues

at all states.

We will prove that the upper bound in (53) on the difference ofthe two terms holds for any schedule{tm} and

any power allocation strategy{Pi(m)}. For any{tm} and{Pi(m)}, we have

K∑

i=1

∑

m

tm log

(
1 + σ2

i,mPi(m)

1 + σ2
i,mP

)

(a)

≤
K∑

i=1

∑

m

tm log

(
1 + σ2

i,mPi(m)

max{1, σ2
i,mP}

)
(54)

=

K∑

i=1

∑

m

tm log

(
1

max{1, σ2
i,mP} +

σ2
i,mPi(m)

max{1, σ2
i,mP}

)
, (55)

≤
K∑

i=1

∑

m

tm log

(
1 +

σ2
i,mPi(m)

σ2
i,mP

)
, (56)

where(a) follows by lower bounding the denominator of the first term,1 + σ2
i,mP by max{1, σ2

i,mP}. Now, we

will use Jensen’s inequality to further bound (56), as follows

K∑

i=1

∑

m

tm log

(
1 +

Pi(m)

P

)
≤

K∑

i=1

log

(
1 +

∑

m

tm
Pi(m)

P

)
=

K∑

i=1

log

(
1 +

Pi

P

)

where we definePi =
∑

m tmPi(m). Now, we use the fact that
∑K

i=1 Pi ≤ NLP to see that, due to the waterfilling

solution,

K)∑

i=1

log

(
1 +

Pi

P

)
≤

K∑

i=1

log

(
1 +

NL

K

)
= K log

(
1 +

NL

K

)

= K log

(
NL

K

)
+K log

(
1 +

K

NL

)

(d)

≤ K log

(
NL

K

)

︸ ︷︷ ︸
log

(

NL
K

)K

+K
(c)

≤ NL

e
+K,

where (d) follows becauseK ≤ NL and (c) follows becausemaxK
(
NL

K

)K ≤ eNL/e and we also take natural

logarithms. For simplifying the statement of the result, inTheorem 2.3, we just upper boundNL

e +K ≤ 2NL and
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note that for the MIMO channel induced by any cutΩ the number of transmit antennas are smaller thanN , the

total number of nodes in the network.

D. QMF in Half-Duplex Networks

The main result of the earlier section in (52) shows that i.i.d. Gaussian distribution along withuniform power

allocation and afixed schedule is within an additive constant ofN + 2
∑

iMi of the information-theoretic cutset

upper bound on the capacity of half-duplex networks. It is straightforward to argue that the rate of any fixed

schedule under i.i.d. Gaussian distributions anduniform power allocation can be approximately achieved using a

QMF strategy. This was already demonstrated in Theorem 8.3 of [1] and here we briefly summarize the main idea.

Fix a scheduletm,m = 1, . . . , 2N s.t.
∑

m tm = 1 for the half-duplex network. Divide the total bandwidth of the

network to2N bands of widthtiW , for i = 1, . . . , 2N . Each mode of the network operates over the corresponding

bandtiW and therefore the half-duplex constraint is satisfied, no node transmits and receives simultaneously over

the same frequency band. Different frequency bands can be thought as a MIMO channel with a diagonal channel

transfer matrix. Therefore the lattice QMF strategy developed in Section IV for multiple antenna networks can be

applied to this setup and by Theorem 2.1 will achieve a rate inbits/s

R ≥ min
Ω

∑

m

tmWI(xm
Ω ; ymΩc |xm

Ωc)− 2WN

wherexm
i , i ∈ {s,M},m = 1, . . . , 2N are i.i.d. GaussianCN (0, tmP ) if node i is transmitting in statem and

xm
Ω = {xm

i , i ∈ Ω}. 14 Choosing the fixed schedulestm,m = 1, . . . 2N that maximizes the above rate, we observe

that we can achieve the right-hand side of (52) within5N bits/s/Hz. The result in Theorem 2.3 is a straightforward

generalization of the above arguments to the case when nodescontain multiple transmit and receive antennas.
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VII. A PPENDIX

We first introduce the following two technical lemmas that weuse repeatedly in this appendix.

Lemma 7.1: (Lemma 11 of [15])

(a) Letu ∼ unif (B(R)). Let us denote1nE[‖u‖2] = R2

n+2 := σ2. Let z ∼ N (0, σ2In). Then,

fu(x) ≤ fz(x) e
nǫ2 ,

whereǫ2 = 1
2 log(2πeG

∗
n) +

1
n .

(b) Let u ∼ unif(V) whereV is the Voronoi region of a latticeΛ. Note that 1
nE[‖u‖2] = σ2(Λ). Let z ∼

N (0, σ2In) such that

σ2 =
G∗

n

G(Λ)
(ρcov(Λ))

2σ2(Λ).

Then,

fu(x) ≤ fz(x) e
nǫ2(Λ),

whereǫ2(Λ) = log(ρcov(Λ)) +
1
2 log(2πeG

∗
n) +

1
n .

The significance of the above lemma is that it allows to upper bound the probability distribution of a random

variableu, either uniformly distributed on an n-dimensional sphere or over the Voronoi region of a Rogers-good

lattice, with the probability distribution of a Gaussian vector of identity covariance matrix and of the same variance

with u. Note thatǫ2 in part (a) of the lemma goes to zero with increasing dimension n. Similarly in part (b),

ǫ2(Λ) → 0 andσ2 → σ2(Λ) asn increases ifΛ is Rogers-good.

Lemma 7.2:Let zi, i = 1, . . . , n be independent random variables with distributionN (0, γ2
i ). Then,

P

(
n∑

i=1

z2i ≤ nc

)
≤ e−(

1
2

∑n
i=1 log(1+2γ2

i t)−ntc)
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for any t > 0. Whenγ2
i = γ2, ∀i, such thatγ2 > c, we have

P

(
n∑

i=1

z2i ≤ nc

)
≤ e

−n
2

(

log
(

γ2

c

)

−1+ c

σ2

)

.

Proof of Lemma 7.2:The proof of the lemma follows by a simple application of the exponential Chebyshev’s

inequality. For anyt > 0, we have

P

(
n∑

i=1

z2i ≤ nc

)
= P

(
e−t

∑n
i=1 z2

i ≥ e−ntc
)
≤ E[e−t

∑n
i=1 z2

i ] entc =
n∏

i=1

E[e−t z2
i ] entc

=
n∏

i=1

(
1√

1 + 2γ2
i t

)
entc = e−(

1
2

∑n
i=1 log(1+2γ2

i t)−ntc).

Whenγ2
i = γ2, ∀i, choosingt = ( 1

2c − 1
2γ2 ) yields

P

(
n∑

i=1

z2i ≤ nc

)
≤ e− supt≥0(n

2 log(1+2γ2t)−ntc) ≤ e
−n

2

(

log
(

γ2

c

)

−1+ c

σ2

)

.

�

The proof of Lemma 5.4 follows by a straightforward application of the above two lemmas.

Proof of Lemma 5.4:If ν is uniformly distributed overVQ, by part-(b) of Lemma 7.1 we have

P
(
‖ν‖2 ≤ nσ2

c

)
≤ enǫ2(Λ

Q)
P
(
‖ν′‖2 ≤ nσ2

c

)

whereν′ ∼ N (0, σ2
νIn) with

σ2
ν =

G∗
n

G(ΛQ)
(ρcov(Λ

Q))2 σ2(ΛQ) = (1 + on(1))σ
2(ΛQ).

Applying Lemma 7.2 for the case of equal variances yields theresult

P
(
‖ν′‖2 ≤ nσ2

c

)
≤ e

−n
2

(

log

(

(1+on(1))σ2(ΛQ)

σ2
c

)

−1+
σ2
c

(1+on(1))σ2(ΛQ)

)

,

and therefore

P
(
‖ν‖2 ≤ nσ2

c

)
≤ enǫ2(Λ

Q)e
−n

2

(

log

(

(1+on(1))σ2(ΛQ)

σ2
c

)

−1+
σ2
c

(1+on(1))σ2(ΛQ)

)

= e
−n

2

(

log

(

σ2(ΛQ)

σ2
c

)

−1+
σ2
c

σ2(ΛQ)
−on(1)

)

.

�

To prove Lemmas 5.1 and 5.2, we introduce the following lemmaas an intermediate step:

Lemma 7.3:Let xj ,x
′
j , j = 1, . . . , N1 be independent discrete random variables uniformly distributed over the

pnr lattice pointsp−1
r ΛT ∩ VT . Let zi andu′

i, i = 1, . . . , N2 be independent random variables with distributions

zi ∼ N (0, σ2In) andu′
i ∼ unif(VQ

1,i) whereVQ
1,i denotes the Voronoi region of the latticeΛQ

1,i. Let S1, . . . ,SN2 ⊆
Rn. Then,

P




N1∑

j=1

hij(xj − x′
j) + zi − u′

i ∈ Si, ∀i = 1, . . . , N2





≤
(
(1 + ǫ4(Λ

T ))N2 enǫ1(Λ
T )+nǫ2

)2N1
(
enǫ2(Λ

Q
1,i)
)N2

P




N1∑

j=1

hij(x̃j − x̃′
j) + z̃i ∈ Si, ∀i = 1, . . . , N2
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wherex̃j , x̃
′
j , j = 1, . . . , N1, z̃i, i = 1, . . . , N2 are all independent Gaussian random variables such thatx̃j , x̃

′
j ∼

N (0, σ2
xIn) with

σ2
x = (1 + p−1

r )2(ρcov(Λ
T ))2

G∗
n

G(ΛT )
σ2(ΛT )

and z̃i ∼ N (0, σ2
zIn),

σ2
z = (1 + ǫ5)

2N1

(
1 +

G∗
n

G(ΛQ
1,i)

(ρcov(Λ
Q
1,i))

2σ2(ΛQ
1,i)

)

where all ǫ1(ΛT ), ǫ2, ǫ2(Λ
Q
1,i) ǫ4(Λ

T ), ǫ5 → 0 as n → ∞. Furthermoreσ2
x → σ2(ΛT ) and σ2

z → 1 + σ2(ΛQ
1,i)

since bothΛT andΛQ
1,i are Rogers-good.

Proof of Lemma 7.3:First, by using Part-(b) of Lemma 7.1, we can upper bound the probability

P




N1∑

j=1

hij(xj − x′
j) + zi − u′

i ∈ Si, ∀i = 1, . . . , N2




by
(
enǫ2(Λ

Q
1,i)
)N2

P




N1∑

j=1

hij(xj − x′
j) + zeq,i ∈ Si, ∀i = 1, . . . , N2



 , (57)

wherezeq,i are i.i.d with distributionN (0, σ2
eqIn),

σ2
eq = 1 +

G∗
n

G(ΛQ
1,i)

(ρcov(Λ
Q
1,i))

2σ2(ΛQ
1,i).

SinceΛQ
1,i is Rogers-good,ǫ2(Λ

Q
1,i) given in the lemma vanishes with increasingn. The probability in (57) can be

expressed as,

P




N1∑

j=1

hij(xj − x′
j) + zeq,i ∈ Si, ∀i = 1, . . . , N2





=
(
p−n
r

)2N1
∑

x1,...,xN1 ,x
′
1,...,x

′
N1

∈ p−1
r ΛT ∩VT

P




N1∑

j=1

hij(xj − x′
j) + zeq,i ∈ Si, ∀i = 1, . . . , N2


 . (58)

The last probability is only overzeq,i’s and note that thexj and x′
j ’s now denote the dummy variables of the

summation. Consider one of the summations above of the form,

p−n
r |VT |

∑

x1∈ p−1
r ΛT∩VT

P




N1∑

j=1

hij(xj − x′
j) + zeq,i ∈ Si, ∀i = 1, . . . , N2


 ,

wherex1 denotes the dummy variable of the summation andx2, . . . ,xN1 ,x
′
1, . . . ,xN1 are fixed vectors. We show

below that this summation is upper bounded by

(1 + ǫ4(Λ
T ))N2

∫

VT+p−1
r VT

dx1 P




N1∑

j=1

hij(xj − x′
j) + z′eq,i ∈ Si, ∀i = 1, . . . , N2


 (59)

wherez′eq,i ∼ N (0, (1 + ǫ5)σ
2
eqIn) and bothǫ4(Λ) andǫ5 → 0 asn → 0. For two setsA ⊂ Rn andB ⊂ Rn, the

sum setA+B ⊂ Rn denotesA+B = {a+ b : a ∈ A,b ∈ B}. Applying this upper bound recursively to all the
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summations in (58) yields

P




N1∑

j=1

hij(xj − x′
j) + zeq,i ∈ Si, ∀i = 1, . . . , N2




≤ (1 + ǫ4(Λ
T ))2N2N1

1

|VT |2N1

∫

VT+p−1
r VT

. . .

∫

VT+p−1
r VT

dx1 . . . dxN1 dx
′
1 . . . dx

′
N1

P




N1∑

j=1

hij(xj − x′
j) + z̃i ∈ Si, ∀i = 1, . . . , N2




≤ (1 + ǫ4(Λ
T ))2N2N1

1

|VT |2N1

∫

B((1+p−1
r )RT

u )
. . .

∫

B((1+p−1
r )RT

u )
dx1 . . . dxN1 dx

′
1 . . . dx

′
N1

P




N1∑

j=1

hij(xj − x′
j) + z̃i ∈ Si, ∀i = 1, . . . , N2


 (60)

wherez̃i ∼ N (0, (1+ǫ5)
2N1σ2

eqIn). R
T
u in the last inequality denotes the covering radius ofVT andB

(
(1 + p−1

r )RT
u

)

denotes ann-dimensional sphere inRn of radius(1 + p−1
r )RT

u . The last inequality follow follows the fact that

VT + p−1
r VT ⊆ B

(
(1 + p−1

r )RT
u

)
which in turn follows from the definition ofRT

u . We can rewrite (60) as

(1 + ǫ4(Λ
T ))2N2N1

(
enǫ1(Λ

T )
)2N1 1

∣∣B
(
(1 + p−1

r )RT
u

)∣∣2N1

∫

B((1+p−1
r )RT

u )
· · ·
∫

B((1+p−1
r )RT

u )

dx1 · · · dxN1 dx
′
1 · · · dx′

N1
P




N1∑

j=1

hij(xj − x′
j) + z̃i ∈ Si, ∀i = 1, . . . , N2


 (61)

where, ∣∣B
(
(1 + p−1

r )RT
u

)∣∣
|VT | =

∣∣B
(
(1 + p−1

r )RT
u

)∣∣
∣∣B
(
RT

l

)∣∣ =

(
(1 + p−1

r )RT
u

RT
l

)n

= enǫ1(Λ
T )

andǫ1(ΛT ) = log(1 + p−1
r ) + log ρcov(Λ

T ). Recall that the effective radiusRT
l of the latticeΛT is defined as the

radius of a sphere having the same volume as the Voronoi region of ΛT . SinceΛT is Rogers-good andpr → ∞
asn → ∞, we haveǫ1(ΛT ) → 0. We can upper bound (61) by applying Part-(a) of Lemma 7.1 which gives

P




N1∑

j=1

hij(xj − x′
j) + zeq,i ∈ Si, ∀i = 1, . . . , N2




≤
(
(1 + ǫ4(Λ

T ))N2 enǫ1(Λ
T )+nǫ2

)2N1

P




N1∑

j=1

hij(x̃j − x̃′
j) + z̃i ∈ Si, ∀i = 1, . . . , N2



 , (62)

wherex̃j , x̃
′
j , j = 1, . . . , N1 are independent∼ N (0, σ2

x In) with

σ2
x =

(
(1 + p−1

r )RT
u

)2

n+ 2
. (63)

Plugging the expression in (16) to (63), yields

σ2
x =

(
(1 + p−1

r )RT
u

)2

n+ 2
= (1 + p−1

r )2(ρcov(Λ
T ))2

G∗
n

G(ΛT )
σ2(ΛT ).

The upper bounds (57) and (62) together yield the result stated in the lemma.
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It remains to prove (59). We will first show that

p−n
r |VT | P




N1∑

j=1

hij(xj − x′
j) + zeq,i ∈ Si, ∀i = 1, . . . , N2




≤ (1 + ǫ4(Λ
T ))N2

∫

p−1
r VT

ds P



hi1s+

N1∑

j=1

hij(xj − x′
j) + z′eq,i ∈ Si, ∀i = 1, . . . , N2



 (64)

wherexj , x′
j ’s are fixed vectors andzeq,i ∼ N (0, σ2

eqIn), z
′
eq,i ∼ N (0, (1+ ǫ5)σ

2
eqIn) and bothǫ4(Λ) andǫ5 → 0

asn → 0.

First, note that forz′eq,i ∼ N (0, δ2In), i = 1, . . . , N2,

P


hi1s +

N1∑

j=1

hij(xj − x′
j) + z′eq,i ∈ Si, ∀i = 1, . . . , N2




=

N2∏

i=1

P


hi1s+

N1∑

j=1

hij(xj − x′
j) + z′eq,i ∈ Si,




=

N2∏

i=1

∫

Si

fz′eq,i


zi − hi1s −

N1∑

j=1

hij(xj − x′
j)


 dzi. (65)

The probability density functionfz′
eq,i

(c) of z′eq,i depends only on‖c‖. By the triangle inequality, for any two

vectorsa andb, we have

‖a+ b‖2 ≤ ‖a‖2 + 2‖a‖‖b‖+ ‖b‖2.

Also for anyt > 0,

‖a‖‖b‖ ≤ ‖a‖2
t

+ t ‖b‖2.

Therefore, for anyt > 0,

‖a+ b‖2 ≤
(
1 +

2

t

)
‖a‖2 + (1 + 2t)‖b‖2.

Using this inequality, we obtain

fz′eq,i (a+ b) ∝ e−
‖a+b‖2

2δ2 ≥ e−(1+
2
t )

‖a‖2

2δ2 e−
(1+2t)‖b‖2

2δ2 ∝ fzeq,i(a) e
− (1+2t)‖b‖2

2δ2

wherezeq,i ∼ N (0, σ2
eqIn) with σ2

eq =
(
1 + 2

t

)−1
δ2. Applying this inequality to (65) withai = zi−

∑N1

j=1 hij(xj−
x′
j) andbi = hi1s yields

P


hi1s+

N1∑

j=1

hij(xj − x′
j) + z′eq,i ∈ Si, ∀i = 1, . . . , N2




≥
N2∏

i=1

∫

Si

e−
(1+2t)‖hi1s‖2

2δ2 fzeq,i



zi −
N1∑

j=1

hij(xj − x′
j)



 dzi,

≥ e−
(1+2t)N2

2δ2
p−1
r RT

u P




N1∑

j=1

hij(xj − x′
j) + zeq,i ∈ Si, ∀i = 1, . . . , N2



 , (66)
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where we make of use of the inequality

‖hi1s‖ = |hi1|‖s‖ ≤ |hi1| p−1
r RT

u . (67)

From (16) forRT
u and the choice forpr in (19), we know thatp−1

r RT
u = O(

√
ne

− nRr
(log n)2 ) → 0 asn → 0. We

chooset such thatt−1 → 0, while t p−1
r RT

u → 0. For example, chooset = n. Integrating both sides of the

inequality (66) with respect tos over the regionp−1
r VT , this yields the desired result in (64) where we denote

1 + ǫ4(Λ
T ) = e

(1+t)

2δ2
p−1
r RT

u and1 + ǫ5 =
(
1 + 2

t

)
.

The conclusion in (59) follows by combining (64) with the following observation,

∑

x1∈ p−1
r ΛT ∩VT

∫

p−1
r VT

ds P


hi1(x1 + s)− hi1x

′
1 +

Ni∑

j=2

hij(xj − x′
j) + zeq,i ∈ Si, ∀i = 1, . . . , N2




≤
∫

VT+p−1
r VT

dx1 P


hi1x1 − hi1x

′
1 +

Ni∑

j=2

hij(xj − x′
j) + zeq,i ∈ Si, ∀i = 1, . . . , N2


 .

This observation simply follows from the fact that the summation and the integration in the first case, together

correspond to integrating the function

P


hi1x1 − hi1x

′
1 +

Ni∑

j=2

hij(xj − x′
j) + zeq,i ∈ Si, ∀i = 1, . . . , N2




over the sum regionp−1
r ΛT ∩ VT + p−1

r VT which lies inside the second regionVT + p−1
r VT . �

Proof of Lemma 5.1:For a giveni ∈ {M, d} and a set of indiceskj , k′j , j = 1, . . .Ni we first consider the

probability

P




Ni∑

j=1

hij(x
(kj)
j − x

(k′
j)

j ) + zi − u′
i /∈ VQ



 , (68)

whereNi denotes the number of nodesj that have non-zero channel coefficients to nodei. x(kj)
j andx

(k′
j)

j are

independent and uniformly distributed over thepnr lattice pointsp−1
r ΛT ∩VT , zi ∼ N (0, σ2), andu′

i ∼ unif(VQ
1,i).

Note that we can immediately apply Lemma 7.3 by identifyingS1 in the lemma as the complement ofVQ, and

switch from the discrete distribution over the lattice pointsp−1
r ΛT∩VT for x(kj)

j andx
(k′

j)

j to a Gaussian distribution.

More precisely the above probability is upper bounded by

(
(1 + ǫ4(Λ

T )) enǫ1(Λ
T )+nǫ2

)2Ni

enǫ2(Λ
Q
1,i) P




Ni∑

j=1

hij(x̃j − x̃′
j) + z̃i /∈ VQ



 ,

wherex̃j , x̃
′
j , j = 1, . . . , Ni are independent∼ N (0, σ2

x In) with

σ2
x = (1 + p−1

r )2(ρcov(Λ
T ))2

G∗
n

G(ΛT )
σ2(ΛT ),

and z̃i ∼ N (0, σ2
zIn),

σ2
z = (1 + ǫ5)

2Ni

(
1 +

G∗
n

G(ΛQ
1,i)

(ρcov(Λ
Q
1,i))

2σ2(ΛQ
1,i)

)

where allǫ1(ΛT ), ǫ2, ǫ2(Λ
Q
1,i) ǫ4(Λ

T ), ǫ5 → 0 asn → ∞.
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Note that
∑Ni

j=1 hij(x̃j − x̃′
j) + z̃i has distributionN (0, σ2

i In), where

σ2
i = 2 + 2

Ni∑

j=1

|hij |2 P + on(1),

which follows from our choices forσ2(ΛQ
1,i) andσ2(ΛT ) in (20) and (15) respectively. Note that bothΛT andΛQ

1,i

are Rogers-good and from (19),pr = e
nRr

(log n)2 and hencep−1
r → 0 asn → 0. SinceΛQ is Poltyrev-good, we have

P




Ni∑

j=1

hij(x̃j − x̃′
j) + z̃i /∈ VQ



 ≤ e−n[EP (µi)−on(1)] (69)

whereEP (µi) is the Poltyrev exponent,

EP (µi) =






1
2 [(µi − 1)− logµi] 1 < µi ≤ 2

1
2 log

eµi

4 2 ≤ µi ≤ 4

µi

8 µi ≥ 4

(70)

andµi = σ2(ΛQ)/σ2
i . By the union bound, for nodei ∈ {M, d},

P


∃ {kj, k′j} s.t.

Ni∑

j=1

hij(x
(kj)
j − x

(k′
j)

j ) + zi − u′
i /∈ VQ




≤
(
(1 + ǫ4(Λ

T )) enǫ1(Λ
T )+nǫ2

)2Ni

enǫ2(Λ
Q
1,i)

(
e2nRr

)Ni
e−n[EP (µi)−on(1)]

since for everyj = 1, . . . , Ni, kj andk′j run over theenRr possible transmit codewords. Finally,

P



∃ i ∈ {M, d}, {kj , k′j} s.t.
∑

j

hij(x
(kj)
j − x

(k′
j)

j ) + zi − u′
i /∈ VQ





≤
(
(1 + ǫ4(Λ

T )) enǫ1(Λ
T )+nǫ2

)2Ni

enǫ2(Λ
Q
1,i) (N + 1) e−n[EP (µ)−2Rr Ns−on(1)] (71)

whereNs = maxi∈{M,d} Ni andµ = σ2(ΛQ)/σ2
s with

σ2
s = 2 + 2Ds + on(1).

Recall from (17) thatDs = maxi∈{M,d}

∑
j |hij |2P . We have chosen in (18) and (19)

Rr =
1

2
log σ2(ΛQ) and σ2(ΛQ) = 2η(1 +Ds)

for someη > 0. ThereforeRr increases logarithmically inη while the Poltyrev exponent is linear inµ ( and hence

in η) in the third regime in (70). By choosing the constantη large enough, we can ensure that the exponent in (71)

is negative and hence the probability decreases to zero whenn increases. �

Proof of Lemma 5.2:Let us denoteNL = |Ω| andNR = |Ωc|. We want to evaluate the probability

P


‖

∑

j∈Ωl−1

hij(x
(kj)
j − x

(k′
j)

j ) + zi − u′
i‖2 ≤ nσ2

c , ∀i ∈ Ωc


 .
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wherex(kj)
j andx

(k′
j)

j , j ∈ Ω are independent and uniformly distributed over thepnr lattice pointsp−1
r ΛT ∩ VT ,

zi ∼ N (0, σ2), andu′
i ∼ unif(VQ

1,i). We can rewrite the above expression in the form

P


‖
∑

j∈Ω

hij(x
(kj)
j − x

(k′
j)

j ) + zi − u′
i‖2 ≤ nσ2

c , ∀i ∈ Ωc


 .

with the understanding thathij is only non zero ifi ∈ Ml and j ∈ Ml−1 for somel = 1, . . . , ld. Note that

we can immediately apply Lemma 7.3 by identifyingSi in the lemma asB(
√
nσ2

c ), and switch from the discrete

distribution over the lattice pointsp−1
r ΛT ∩VT for x(kj)

j andx
(k′

j)

j , j ∈ Ω to a Gaussian distribution. More precisely,

the above probability is upper bounded by

(
(1 + ǫ4(Λ

T ))NR enǫ1(Λ
T )+nǫ2

)2NL
(
enǫ2(Λ

Q
1,i)
)NR

P


‖
∑

j∈Ω

hij(x̃j − x̃′
j) + z̃i‖2 ≤ nσ2

c , ∀i ∈ Ωc


 , (72)

wherex̃j , x̃
′
j , j ∈ Ω are independent∼ N (0, σ2

x In) with

σ2
x = (1 + p−1

r )2(ρcov(Λ
T ))2

G∗
n

G(ΛT )
σ2(ΛT ),

and z̃i, i ∈ Ω are independent∼ N (0, σ2
zIn),

σ2
z = (1 + ǫ5)

2NL

(
1 +

G∗
n

G(ΛQ
1,i)

(ρcov(Λ
Q
1,i))

2σ2(ΛQ
1,i)

)

where allǫ1(ΛT ), ǫ2, ǫ2(Λ
Q
1,i), ǫ4(Λ

T ), ǫ5 → 0 asn → ∞. Furthermoreσ2
x → P andσ2

z → 2 asn → ∞ since all

ΛT , ΛQ andΛQ
1,i are Rogers-good.

The probability in (72) can be upper bounded as follows:

P


‖
∑

j∈Ω

hij(x̃j − x̃′
j) + z̃i‖2 ≤ nσ2

c , ∀i ∈ Ωc




≤ P

(
‖H (X̃ − X̃ ′) + Z̃‖22 ≤ NR nσ2

c

)
(73)

= P

(
‖Σ (X̃ − X̃ ′) + Z̃‖22 ≤ NR nσ2

c

)
(74)

≤ P




min(NR,NL)∑

i=1

‖σi(x̃i − x̃′
i) + z̃i‖2 +

(NR−NL)+∑

i=1

‖z̃i‖2 ≤ NR nσ2
c



 , (75)

whereH is the NR × NL transfer matrix from the nodes inΩ to the nodes inΩc andΣ is a diagonal matrix

containing the singular valuesσi, i = 1, . . . ,min(NR, NL) of H . X̃ and X̃ ′ areNL × n matrices, theirj’th row

containing the vectors̃xj and x̃′
j respectively.Z̃ is NR × n matrix, its i’th row containing the vector̃zi. The

entries of the matrixX̃ − X̃ ′ are i.i.d. with distributionN (0, 2σ2
x) and the entries of the matrix̃Z are i.i.d. with

distributionN (0, σ2
z). Inequality (73) follows from the definition of the Frobenius norm for matrices. (74) is obtained

by replacingH with its singular value decompositionUΣV † and noting that for any matrixA, ‖U †A‖2 = ‖A‖2
whenU is unitary. Moreover, the distribution ofU †Z̃ is the same as̃Z and the distribution ofV †(X̃ − X̃ ′) is the

same as(X̃ − X̃ ′).
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The probability in (75) can be bounded using Lemma 7.2. For any t > 0,

P




min(NR,NL)∑

i=1

‖σi(x̃i − x̃′
i) + z̃i‖2 +

(NR−NL)+∑

i=1

‖z̃i‖2 ≤ NR nσ2
c



 ≤

e
−n

2

(

∑min(NR,NL)

i=1 log(1+2(2σ2
i σ

2
x+σ2

z)t)+
∑(NR−NL)+

i=1 log(1+2σ2
zt)−2tNR σ2

c

)

.

Choosingt = 1/2σ2
c , yields an exponent

−n

2




min(NR,NL)∑

i=1

log

(
1 +

2σ2
i σ

2
x + σ2

z

σ2
c

)
+

(NR−NL)+∑

i=1

log(1 +
σ2
z

σ2
c

)−NR





in the above expression. We have

2σ2
i σ

2
x + σ2

z

σ2
c

→ σ2
i P + 1

(1 + ǫ)
,

σ2
z

σ2
c

→ 1

1 + ǫ
,

asn → ∞. Combining everything together yields,

P



‖
∑

j∈Ωl−1

hij(x
(kj)
j − x

(k′
j)

j ) + zi − u′
i‖2 ≤ nσ2

c , ∀i ∈ Ωc





≤ e
−n

2

(

∑min(NR,NL)

i=1 log(1+σ2
i P)−NR(1+log(1+ǫ))+on(1)

)

.

In the last expression we identify12
∑min(NR,NL)

i=1 log
(
1 + σ2

i P
)

asI(XΩ;HXΩ +ZΩc), whereXΩ is anNL × 1

Gaussian vector with i.i.d entries of varianceP andZΩc is anNR×1 Gaussian vector with i.i.d entries of variance

σ2 andH is the corresponding transfer matrix between nodes inΩ andΩc.

Proof of Lemma 5.3:Note that a priori the random variables̃y(k′
i)

i , i ∈ Ω in (39) for a fixed set of indices

{k′i}i∈Ω are independent and uniformly distributed overVQ. This is because the quantization codebook at each

relay is chosen at random from the ensemble of Section III (note that the construction of the ensemble induces a

uniform mapping between the indicesk′i = 1, . . . , pr
kr and the corresponding lattice points) andỹ

(k′
i)

i is obtained

by dithering ŷ(k′
i)

i over the Voronoi regionVQ
1,i in (23). As a result,̃y(k′

i)
i for i ∈ Ω are independent continuous

random variables uniformly distributed overVQ. Moreover, this is still the case conditioned on the events

Ai = {‖(
∑

j∈Ωl−1

hij(x
(kj)
j − x

(k′
j)

j ) + zi − u′
i) mod ΛQ‖2 ≤ nσ2

c}, i ∈ Ωc

Note that the event in the conditioning governs the set of random variables{x(ki)
i ,x

(k′
i)

i , i ∈ Ω}, {zi,ui, i ∈ Ωc}.

ỹ
(k′

i)
i , i ∈ Ω are independent from these random variables, therefore conditioned onAi, i ∈ Ωc, ỹ(k′

i)
i , i ∈ Ω are

still independent uniformly distributed overVQ. By the Crypto Lemma, the random variables

νi = ỹ
(k′

i)
i −

∑

j∈Ωc
l−1

hijx
(kj)
j −

∑

j∈Ωl−1

hijx
(k′

j)

j mod ΛQ, i ∈ Ωc

are also uniformly distributed overVQ and is independent of

∑

j∈Ωc
l−1

hijx
(kj)
j +

∑

j∈Ωl−1

hijx
(k′

j)

j .
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This is due to the fact that̃y(k′
i)

i is independent of this term. Therefore (46) is upper boundedby

∑

k′
i,i∈Ω

k′
i 6=ki

P (Bi, i ∈ Ω | Ai, i ∈ Ωc) = e|NΩ|nRr

∏

i∈NΩ

P
(
‖νi‖2 ≤ nσ2

c

)

≤ e
1
2n|NΩ| log σ2(ΛQ)e

− 1
2n|NΩ|

(

log

(

σ2(ΛQ)

σ2
c

)

−1+
σ2
c

σ2(ΛQ)
−on(1)

)

≤ e
1
2n|NΩ|n(log 2(1+ǫ)+1+on(1))

where used Lemma 5.4 and the fact thatRr = 1
2 log σ

2(ΛQ) from (19). �
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