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Abstract— Convolutional LDPC ensembles, introduced by Fel-
ström and Zigangirov, have excellent thresholds and these thresh-
olds are rapidly increasing functions of the average degree.
Several variations on the basic theme have been proposed to
date, all of which share the good performance characteristics of
convolutional LDPC ensembles.

We describe the fundamental mechanism which explains why
“convolutional-like” or “spatially coupled” codes perform so well.
In essence, the spatial coupling of the individual code structure
has the effect of increasing the belief-propagation threshold of
the new ensemble to its maximum possible value, namely the
maximum-a-posteriori threshold of the underlying ensemble. For
this reason we call this phenomenon “threshold saturation”.

This gives an entirely new way of approaching capacity. One
significant advantage of such a construction is that one can create
capacity-approaching ensembles with an error correcting radius
which is increasing in the blocklength. Our proof makes use
of the area theorem of the belief-propagation EXIT curve and
the connection between the maximum-a-posteriori and belief-
propagation threshold recently pointed out by Méasson, Monta-
nari, Richardson, and Urbanke.

Although we prove the connection between the maximum-
a-posteriori and the belief-propagation threshold only for a
very specific ensemble and only for the binary erasure channel,
empirically a threshold saturation phenomenon occurs for a wide
class of ensembles and channels. More generally, we conjecture
that for a large range of graphical systems a similar saturation
of the “dynamical” threshold occurs once individual components
are coupled sufficiently strongly. This might give rise to improved
algorithms as well as to new techniques for analysis.

I. INTRODUCTION

We consider the design of capacity-approaching codes based
on the connection between the belief-propagation (BP) and
maximum-a-posteriori (MAP) threshold of sparse graph codes.
Recall that the BP threshold is the threshold of the “locally
optimum” BP message-passing algorithm. As such it has low
complexity. The MAP threshold, on the other hand, is the
threshold of the “globally optimum” decoder. No decoder can
do better, but the complexity of the MAP decoder is in general
high. The threshold itself is the unique channel parameter
so that for channels with lower (better) parameter decoding
succeeds with high probability (for large instances) whereas
for channels with higher (worse) parameters decoding fails
with high probability. Surprisingly, for sparse graph codes

there is a connection between these two thresholds, see [1],
[2].1

We discuss a fundamental mechanism which ensures that
these two thresholds coincide (or at least are very close).
We call this phenomenon “threshold saturation via spatial
coupling.” A prime example where this mechanism is at work
are convolutional low-density parity-check (LDPC) ensembles.

It was Tanner who introduced the method of “unwrapping”
a cyclic block code into a convolutional structure [3], [4]. The
first low-density convolutional ensembles were introduced by
Felström and Zigangirov [5]. Convolutional LDPC ensembles
are constructed by coupling several standard (l, r)-regular
LDPC ensembles together in a chain. Perhaps surprisingly,
due to the coupling, and assuming that the chain is finite and
properly terminated, the threshold of the resulting ensemble
is considerably improved. Indeed, if we start with a (3, 6)-
regular ensemble, then on the binary erasure channel (BEC)
the threshold is improved from εBP(l = 3, r = 6) ≈ 0.4294 to
roughly 0.4881 (the capacity for this case is 1

2 ). The latter
number is the MAP threshold εMAP(l, r) of the underlying
(3, 6)-regular ensemble. This opens up an entirely new way
of constructing capacity-approaching ensembles. It is a folk
theorem that for standard constructions improvements in the
BP threshold go hand in hand with increases in the error floor.
More precisely, a large fraction of degree-two variable nodes
is typically needed in order to get large thresholds under BP
decoding. Unfortunately, the higher the fraction of degree-two
variable nodes, the more low-weight codewords (small cycles,
small stopping sets, ...) appear. Under MAP decoding on the
other hand these two quantities are positively correlated. To
be concrete, if we consider the sequence of (l, 2l)-regular
ensembles of rate one-half, by increasing l we increase both
the MAP threshold as well as the typical minimum distance.
It is therefore possible to construct ensembles that have large
MAP thresholds and low error floors.

1There are some trivial instances in which the two thresholds coincide.
This is e.g. the case for so-called “cycle ensembles” or, more generally, for
irregular LDPC ensembles that have a large fraction of degree-two variable
nodes. In these cases the reason for this agreement is that for both decoders
the performance is dominated by small structures in the graph. But for
general ensembles these two thresholds are distinct and, indeed, they can
differ significantly.
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The potential of convolutional LDPC codes has long been
recognized. Our contribution lies therefore not in the intro-
duction of a new coding scheme, but in clarifying the basic
mechanism that make convolutional-like ensembles perform
so well.

There is a considerable literature on convolutional-like
LDPC ensembles. Variations on the constructions as well as
some analysis can be found in Engdahl and Zigangirov [6], En-
gdahl, Lentmaier, and Zigangirov [7], Lentmaier, Truhachev,
and Zigangirov [8], as well as Tanner, D. Sridhara, A.
Sridharan, Fuja, and Costello [9]. In [10], [11], Sridharan,
Lentmaier, Costello and Zigangirov consider density evolution
(DE) for convolutional LDPC ensembles and determine thresh-
olds for the BEC. The equivalent observations for general
channels were reported by Lentmaier, Sridharan, Zigangirov
and Costello in [11], [12]. The preceding two sets of works
are perhaps the most pertinent to our setup. By considering the
resulting thresholds and comparing them to the thresholds of
the underlying ensembles under MAP decoding (see e.g. [13])
it becomes quickly apparent that an interesting physical effect
must be at work. Indeed, in a recent paper [14], Lentmaier and
Fettweis followed this route and independently formulated the
equality of the BP threshold of convolutional LDPC ensembles
and the MAP threshold of the underlying ensemble as a
conjecture. They attribute this numerical observation to G.
Liva.

A representation of convolutional LDPC ensembles in terms
of a protograph was introduced by Mitchell, Pusane, Zigan-
girov and Costello [15]. The corresponding representation
for terminated convolutional LDPC ensembles was introduced
by Lentmaier, Fettweis, Zigangirov and Costello [16]. A
pseudo-codeword analysis of convolutional LDPC codes was
performed by Smarandache, Pusane, Vontobel, and Costello in
[17], [18]. In [19], Papaleo, Iyengar, Siegel, Wolf, and Corazza
consider windowed decoding of convolutional LDPC codes on
the BEC to study the trade-off between the decoding latency
and the code performance.

In the sequel we will assume that the reader is familiar
with basic notions of sparse graph codes and message-passing
decoding, and in particular with the asymptotic analysis of
LDPC ensembles for transmission over the binary erasure
channel as it was accomplished in [20]. We summarized
the most important facts which are needed for our proof in
Section III-A, but this summary is not meant to be a gentle
introduction to the topic. Our notation follows for the most
part the one in [13].

II. CONVOLUTIONAL-LIKE LDPC ENSEMBLES

The principle that underlies the good performance of
convolutional-like LDPC ensembles is very broad and there
are many degrees of freedom in constructing such ensembles.
In the sequel we introduce two basic variants. The (l, r, L)-
ensemble is very close to the ensemble discussed in [16].
Experimentally it has a very good performance. We conjecture
that it is capable of achieving capacity.

We also introduce the ensemble (l, r, L, w). Experimentally
it shows a worse trade-off between rate, threshold, and block-
length. But it is easier to analyze and we will show that it

is capacity achieving. One can think of w as a “smoothing
parameter” and we investigate the behavior of this ensemble
when w tends to infinity.

A. The (l, r, L) Ensemble

To start, consider a protograph of a standard (3, 6)-regular
ensemble (see [21], [22] for the definition of protographs). It
is shown in Figure 1. There are two variable nodes and there is
one check node. Let M denote the number of variable nodes at
each position. For our example, M = 100 means that we have
50 copies of the protograph so that we have 100 variable nodes
at each position. For all future discussions we will consider
the regime where M tends to infinity.

Fig. 1. Protograph of a standard (3, 6)-regular ensemble.

Next, consider a collection of (2L+ 1) such protographs as
shown in Figure 2. These protographs are non-interacting and

-L 0 L

Fig. 2. A chain of (2L + 1) protographs of the standard (3, 6)-regular
ensembles for L = 9. These protographs do not interact.

so each component behaves just like a standard (3, 6)-regular
component. In particular, the belief-propagation (BP) threshold
of each protograph is just the standard threshold, call it εBP(l =
3, r = 6) (see Lemma 4 for an analytic characterization of this
threshold). Slightly more generally: start with an (l, r = kl)-
regular ensemble where l is odd so that l̂ = (l− 1)/2 ∈ N.

An interesting phenomenon occurs if we couple these com-
ponents. To achieve this coupling, connect each protograph to
l̂2 protographs “to the left” and to l̂ protographs “to the right.”
This is shown in Figure 3 for the two cases (l = 3, r = 6)
and (l = 7, r = 14). In this figure, l̂ extra check nodes are
added on each side to connect the “overhanging” edges at the
boundary.

There are two main effects resulting from this coupling:
(i) Rate Reduction: Recall that the design rate of the un-

derlying standard (l, r = kl)-regular ensemble is 1 −
l
r

= k−1
k . Let us determine the design rate of the

2If we think of this as a convolutional code, then 2l̂ is the syndrome former
memory of the code.
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-L · · · -4 -3 -2 -1 0 1 2 3 4 · · · L

-L · · · -4 -3 -2 -1 0 1 2 3 4 · · · L

Fig. 3. Two coupled chains of protographs with L = 9 and (l = 3, r = 6)
(top) and L = 7 and (l = 7, r = 14) (bottom), respectively.

corresponding (l, r = kl, L) ensemble. By design rate
we mean here the rate that we get if we assume that
every involved check node imposes a linearly independent
constraint.
The variable nodes are indexed from −L to L so that
in total there are (2L + 1)M variable nodes. The check
nodes are indexed from −(L+ l̂) to (L+ l̂), so that in
total there are (2(L+ l̂) + 1)M/k check nodes. We see
that, due to boundary effects, the design rate is reduced
to

R(l, r = kl, L) =
(2L+ 1)− (2(L+ l̂) + 1)/k

2L+ 1

=
k − 1

k
− 2l̂

k(2L+ 1)
,

where the first term on the right represents the design rate
of the underlying standard (l, r = kl)-regular ensemble
and the second term represents the rate loss. As we see,
this rate reduction effect vanishes at a speed 1/L.

(ii) Threshold Increase: The threshold changes dramatically
from εBP(l, r) to something close to εMAP(l, r) (the MAP
threshold of the underlying standard (l, r)-regular en-
semble; see Lemma 4). This phenomenon (which we call
“threshold saturation”) is much less intuitive and it is the
aim of this paper to explain why this happens.

So far we have considered (l, r = kl)-regular ensembles.
Let us now give a general definition of the (l, r, L)-ensemble
which works for all parameters (l, r) so that l is odd.
Rather than starting from a protograph, place variable nodes at
positions [−L,L]. At each position there are M such variable
nodes. Place l

r
M check nodes at each position [−L−l̂, L+l̂].

Connect exactly one of the l edges of each variable node at
position i to a check node at position i− l̂, . . . , i+ l̂.

Note that at each position i ∈ [−L + l̂, L − l̂], there are

exactly M l
r
r = Ml check node sockets3. Exactly M of those

come from variable nodes at each position i − l̂, . . . , i + l̂.
For check nodes at the boundary the number of sockets is
decreased linearly according to their position. The probability
distribution of the ensemble is defined by choosing a random
permutation on the set of all edges for each check node
position.

The next lemma, whose proof can be found in Appendix I,
asserts that the minimum stopping set distance of most codes
in this ensemble is at least a fixed fraction of M . With
respect to the technique used in the proof we follow the
lead of [15], [18] and [17], [22] which consider distance and
pseudo-distance analysis of convolutional LDPC ensembles,
respectively.

Lemma 1 (Stopping Set Distance of (l, r, L)-Ensemble):
Consider the (l, r, L)-ensemble with l = 2l̂ + 1, l̂ ≥ 1, and
r ≥ l. Define

p(x) =
∑
i6=1

(
r

i

)
xi, a(x) = (

∑
i 6=1

(
r

i

)
ixi)/(

∑
i6=1

(
r

i

)
xi),

b(x) =−(l−1)h2(a(x)/r)+
l

r
log2(p(x))−a(x)

l

r
log2(x),

ω(x) = a(x)/r, h2(x) = −x log2(x)− (1− x) log2(1− x).

Let x̂ denote the unique strictly positive solution of the
equation b(x) = 0 and let ω̂(l, r) = ω(x̂). Then, for any
δ > 0,

lim
M→∞

P{dss(C)/M < (1− δ)lω̂(l, r)} = 0,

where dss(C) denotes the minimum stopping set distance of
the code C.
Discussion: The quantity ω̂(l, r) is the relative weight (nor-
malized to the blocklength) at which the exponent of the
expected stopping set distribution of the underlying standard
(l, r)-regular ensemble becomes positive. It is perhaps not too
surprising that the same quantity also appears in our context.
The lemma asserts that the minimum stopping set distance
grows linearly in M . But the stated bound does not scale with
L. We leave it as an interesting open problem to determine
whether this is due to the looseness of our bound or whether
our bound indeed reflects the correct behavior.

Example 2 ((l = 3, r = 6, L)): An explicit calculation
shows that x̂ ≈ 0.058 and 3ω̂(3, 6) ≈ 0.056. Let
n = M(2L + 1) be the blocklength. If we assume that
2L + 1 = Mα, α ∈ (0, 1), then M = n

1
1+α . Lemma 1

asserts that the minimum stopping set distance grows in the
blocklength at least as 0.056n

1
1+α .

B. The (l, r, L, w) Ensemble

In order to simplify the analysis we modify the ensemble
(l, r, L) by adding a randomization of the edge connections.

3 Sockets are connection points where edges can be attached to a node. E.g.,
if a node has degree 3 then we imagine that it has 3 sockets. This terminology
arises from the so-called configuration model of LDPC ensembles. In this
model we imagine that we label all check-node sockets and all variable-node
sockets with the set of integers from one to the cardinality of the sockets. To
construct then a particular element of the ensemble we pick a permutation
on this set uniformly at random from the set of all permutations and connect
variable-node sockets to check-node sockets according to this permutation.
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For the remainder of this paper we always assume that r ≥ l,
so that the ensemble has a non-trivial design rate.

We assume that the variable nodes are at positions [−L,L],
L ∈ N. At each position there are M variable nodes, M ∈
N. Conceptually we think of the check nodes to be located
at all integer positions from [−∞,∞]. Only some of these
positions actually interact with the variable nodes. At each
position there are l

r
M check nodes. It remains to describe

how the connections are chosen.
Rather than assuming that a variable at position i has exactly

one connection to a check node at position [i− l̂, . . . , i+ l̂],
we assume that each of the l connections of a variable node
at position i is uniformly and independently chosen from the
range [i, . . . , i+w− 1], where w is a “smoothing” parameter.
In the same way, we assume that each of the r connections of
a check node at position i is independently chosen from the
range [i− w + 1, . . . , i]. We no longer require that l is odd.

More precisely, the ensemble is defined as follows. Con-
sider a variable node at position i. The variable node has
l outgoing edges. A type t is a w-tuple of non-negative
integers, t = (t0, t1, . . . , tw−1), so that

∑w−1
j=0 tj = l. The

operational meaning of t is that the variable node has tj
edges which connect to a check node at position i+ j. There
are

(
l+w−1
w−1

)
types. Assume that for each variable we order

its edges in an arbitrary but fixed order. A constellation c is
an l-tuple, c = (c1, . . . , cl) with elements in [0, w − 1]. Its
operational significance is that if a variable node at position
i has constellation c then its k-th edge is connected to a
check node at position i + ck. Let τ(c) denote the type of
a constellation. Since we want the position of each edge to
be chosen independently we impose a uniform distribution
on the set of all constellations. This imposes the following
distribution on the set of all types. We assign the probability

p(t) =
|{c : τ(c) = t}|

wl
.

Pick M so that Mp(t) is a natural number for all types t.
For each position i pick Mp(t) variables which have their
edges assigned according to type t. Further, use a random
permutation for each variable, uniformly chosen from the
set of all permutations on l letters, to map a type to a
constellation.

Under this assignment, and ignoring boundary effects, for
each check position i, the number of edges that come from
variables at position i − j, j ∈ [0, w − 1], is M l

w . In other
words, it is exactly a fraction 1

w of the total number Ml

of sockets at position i. At the check nodes, distribute these
edges according to a permutation chosen uniformly at random
from the set of all permutations on Ml letters, to the M l

r

check nodes at this position. It is then not very difficult to see
that, under this distribution, for each check node each edge
is roughly independently chosen to be connected to one of
its nearest w “left” neighbors. Here, “roughly independent”
means that the corresponding probability deviates at most by a
term of order 1/M from the desired distribution. As discussed
beforehand, we will always consider the limit in which M first
tends to infinity and then the number of iterations tends to
infinity. Therefore, for any fixed number of rounds of DE the

probability model is exactly the independent model described
above.

Lemma 3 (Design Rate): The design rate of the ensemble
(l, r, L, w), with w ≤ 2L, is given by

R(l, r, L, w) = (1− l

r
)− l

r

w + 1− 2
∑w
i=0

(
i
w

)r
2L+ 1

.

Proof: Let V be the number of variable nodes and C be
the number of check nodes that are connected to at least one
of these variable nodes. Recall that we define the design rate
as 1− C/V .

There are V = M(2L + 1) variables in the graph. The
check nodes that have potential connections to variable nodes
in the range [−L,L] are indexed from −L to L + w − 1.
Consider the M l

r
check nodes at position −L. Each of the

r edges of each such check node is chosen independently
from the range [−L−w+ 1,−L]. The probability that such a
check node has at least one connection in the range [−L,L]
is equal to 1 −

(
w−1
w

)r
. Therefore, the expected number of

check nodes at position −L that are connected to the code is
equal to M l

r
(1−

(
w−1
w

)r
). In a similar manner, the expected

number of check nodes at position −L+ i, i = 0, . . . , w− 1,
that are connected to the code is equal to M l

r
(1−

(
w−i−1
w

)r
).

All check nodes at positions −L+w, . . . , L−1 are connected.
Further, by symmetry, check nodes in the range L, . . . , L+w−
1 have an identical contribution as check nodes in the range
−L, . . . ,−L+w−1. Summing up all these contributions, we
see that the number of check nodes which are connected is
equal to

C = M
l

r
[2L− w + 2

w∑
i=0

(1−
( i
w

)r
)].

Discussion: In the above lemma we have defined the design
rate as the normalized difference of the number of variable
nodes and the number of check nodes that are involved in the
ensemble. This leads to a relatively simple expression which
is suitable for our purposes. But in this ensemble there is a
non-zero probability that there are two or more degree-one
check nodes attached to the same variable node. In this case,
some of these degree-one check nodes are redundant and do
not impose constraints. This effect only happens for variable
nodes close to the boundary. Since we consider the case where
L tends to infinity, this slight difference between the “design
rate” and the “true rate” does not play a role. We therefore opt
for this simple definition. The design rate is a lower bound on
the true rate.

C. Other Variants

There are many variations on the theme that show the same
qualitative behavior. For real applications these and possibly
other variations are vital to achieve the best trade-offs. Let us
give a few select examples.
(i) Diminished Rate Loss: One can start with a cycle (as

is the case for tailbiting codes) rather than a chain so
that some of the extra check nodes which we add at the
boundary can be used for the termination on both sides.
This reduces the rate-loss.
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(ii) Irregular and Structured Ensembles: We can start with
irregular or structured ensembles. Arrange a number of
graphs next to each other in a horizontal order. Couple
them by connecting neighboring graphs up to some order.
Emperically, once the coupling is “strong” enough and
spread out sufficiently, the threshold is “very close” to
the MAP threshold of the underlying ensembles. See also
[23] for a study of such ensembles.

The main aim of this paper is to explain why coupled LDPC
codes perform so well rather than optimizing the ensemble.
Therefore, despite the practical importance of these variations,
we focus on the ensemble (l, r, L, w). It is the simplest to
analyze.

III. GENERAL PRINCIPLE

As mentioned before, the basic reason why coupled ensem-
bles have such good thresholds is that their BP threshold is
very close to the MAP threshold of the underlying ensemble.
Therefore, as a starting point, let us review how the BP and
the MAP threshold of the underlying ensemble can be charac-
terized. A detailed explanation of the following summary can
be found in [13].

A. The Standard (l, r)-Regular Ensemble: BP versus MAP

Consider density evolution (DE) of the standard (l, r)-
regular ensemble. More precisely, consider the fixed point (FP)
equation

x = ε(1− (1− x)r−1)l−1, (1)

where ε is the channel erasure value and x is the average
erasure probability flowing from the variable node side to the
check node side. Both the BP as well as the MAP threshold
of the (l, r)-regular ensemble can be characterized in terms
of solutions (FPs) of this equation.

Lemma 4 (Analytic Characterization of Thresholds):
Consider the(l, r)-regular ensemble. Let εBP(l, r) denote its
BP threshold and let εMAP(l, r) denote its MAP threshold.
Define

pBP(x) = ((l− 1)(r− 1)− 1)(1− x)r−2 −
r−3∑
i=0

(1− x)i,

pMAP(x) = x+
1

r
(1− x)r−1(l + l(r− 1)x− rx)− l

r
,

ε(x) =
x

(1− (1− x)r−1)l−1
.

Let xBP be the unique positive solution of the equation pBP(x) =
0 and let xMAP be the unique positive solution of the equation
pMAP(x) = 0. Then εBP(l, r) = ε(xBP) and εMAP(l, r) = ε(xMAP).
We remark that above, for ease of notation, we drop the
dependence of xBP and xMAP on l and r.

Example 5 (Thresholds of (3, 6)-Ensemble): Explicit com-
putations show that εBP(l = 3, r = 6) ≈ 0.42944 and
εMAP(l = 3, r = 6) ≈ 0.488151.

Lemma 6 (Graphical Characterization of Thresholds):
The left-hand side of Figure 4 shows the so-called extended BP
(EBP) EXIT curve associated to the (3, 6)-regular ensemble.

This is the curve given by {ε(x), (1 − (1 − x)r−1)l},
0 ≤ x ≤ 1. For all regular ensembles with l ≥ 3 this curve
has a characteristic “C” shape. It starts at the point (1, 1)
for x = 1 and then moves downwards until it “leaves” the
unit box at the point (1, xu(1)) and extends to infinity. The

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.0 ε

h
E

PB

(1
,x

u(
1
))

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.0 ε

h
(ε
)

εB
P

εM
A

P

∫
hBP = 1

2

Fig. 4. Left: The EBP EXIT curve hEBP of the (l = 3, r = 6)-regular
ensemble. The curve goes “outside the box” at the point (1, xu(1)) and tends
to infinity. Right: The BP EXIT function hBP(ε). Both the BP as well as the
MAP threshold are determined by hBP(ε).

right-hand side of Figure 4 shows the BP EXIT curve (dashed
line). It is constructed from the EBP EXIT curve by “cutting
off” the lower branch and by completing the upper branch
via a vertical line.

The BP threshold εBP(l, r) is the point at which this vertical
line hits the x-axis. In other words, the BP threshold εBP(l, r)
is equal to the smallest ε-value which is taken on along the
EBP EXIT curve.

Lemma 7 (Lower Bound on xBP): For the (l, r)-regular en-
semble

xBP(l, r) ≥ 1− (l− 1)−
1

r−2 .
Proof: Consider the polynomial pBP(x). Note that

pBP(x) ≥ p̃(x) = ((l−1)(r−1)−1)(1−x)r−2−(r−2) for x ∈
[0, 1]. Since pBP(0) ≥ p̃(0) = (l− 2)(r− 1) > 0, the positive
root of p̃(x) is a lower bound on the positive root of pBP(x).
But the positive root of p̃(x) is at 1− ( r−2

(l−1)(r−1)−1 )
1

r−2 . This

in turn is lower bounded by 1− (l− 1)−
1

r−2 .
To construct the MAP threshold εMAP(l, r), integrate the BP

EXIT curve starting at ε = 1 until the area under this curve
is equal to the design rate of the code. The point at which
equality is achieved is the MAP threshold (see the right-hand
side of Figure 4).

Lemma 8 (MAP Threshold for Large Degrees): Consider
the (l, r)-regular ensemble. Let r(l, r) = 1 − l

r
denote

the design rate so that r = l
1−r . Then, for r fixed and

l increasing, the MAP threshold εMAP(l, r) converges
exponentially fast (in l) to 1− r.

Proof: Recall that the MAP threshold is determined
by the unique positive solution of the polynomial equation
pMAP(x) = 0, where pMAP(x) is given in Lemma 4. A closer
look at this equation shows that this solution has the form

x = (1− r)
(
1− r

l
1−r−1(l + r − 1)

1− r
l

1−r−2(1 + l(l + r − 2))
+ o(lr

l
1−r )

)
.

We see that the root converges exponentially fast (in l) to
1 − r. Further, in terms of this root we can write the MAP
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threshold as

x(1 +
1− r − x

(l + r − 1)x
)l−1.

Lemma 9 (Stable and Unstable Fixed Points – [13]):
Consider the standard (l, r)-regular ensemble with l ≥ 3.
Define

h(x) = ε(1− (1− x)r−1)l−1 − x. (2)

Then, for εBP(l, r) < ε ≤ 1, there are exactly two strictly
positive solutions of the equation h(x) = 0 and they are both
in the range [0, 1].

Let xs(ε) be the larger of the two and let xu(ε) be the
smaller of the two. Then xs(ε) is a strictly increasing function
in ε and xu(ε) is a strictly decreasing function in ε. Finally,
xs(ε

BP) = xu(εBP).
Discussion: Recall that h(x) represents the change of the
erasure probability of DE in one iteration, assuming that the
system has current erasure probability x. This change can be
negative (erasure probability decreases), it can be positive, or
it can be zero (i.e., there is a FP). We discuss some useful
properties of h(x) in Appendix II.

As the notation indicates, xs corresponds to a stable FP
whereas xu corresponds to an unstable FP. Here stability
means that if we initialize DE with the value xs(ε) + δ for
a sufficiently small δ then DE converges back to xs(ε).

B. The (l, r, L) Ensemble

Consider the EBP EXIT curve of the (l, r, L) ensemble. To
compute this curve we proceed as follows. We fix a desired
“entropy” value, see Definition 15, call it χ. We initialize DE
with the constant χ. We then repeatedly perform one step
of DE, where in each step we fix the channel parameter in
such a way that the resulting entropy is equal to χ. This is
equivalent to the procedure introduced in [24, Section VIII]
to compute the EBP EXIT curve for general binary-input
memoryless output-symmetric channels. Once the procedure
has converged, we plot its EXIT value versus the resulting
channel parameter. We then repeat the procedure for many
different entropy values to produce a whole curve.

Note that DE here is not just DE for the underlying
ensemble. Due to the spatial structure we in effect deal with
a multi-edge ensemble [25] with many edge types. For our
current casual discussion the exact form of the DE equations
is not important, but if you are curious please fast forward to
Section V.

Why do we use this particular procedure? By using forward
DE, one can only reach stable FPs. But the above procedure
allows one to find points along the whole EBP EXIT curve,
i.e., one can in particular also produce unstable FPs of DE.

The resulting curve is shown in Figure 5 for various values
of L. Note that these EBP EXIT curves show a dramatically
different behavior compared to the EBP EXIT curve of the
underlying ensemble. These curves appear to be “to the right”
of the threshold εMAP(3, 6) ≈ 0.48815. For small values of L
one might be led to believe that this is true since the design rate
of such an ensemble is considerably smaller than 1−l/r. But
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Fig. 5. EBP EXIT curves of the ensemble (l = 3, r = 6, L)
for L = 1, 2, 4, 8, 16, 32, 64, and 128. The BP/MAP thresholds
are εBP/MAP(3, 6, 1) = 0.714309/0.820987, εBP/MAP(3, 6, 2) =
0.587842/0.668951, εBP/MAP(3, 6, 4) = 0.512034/0.574158,
εBP/MAP(3, 6, 8) = 0.488757/0.527014, εBP/MAP(3, 6, 16) =
0.488151/0.505833, εBP/MAP(3, 6, 32) = 0.488151/0.496366,
εBP/MAP(3, 6, 64) = 0.488151/0.492001, εBP/MAP(3, 6, 128) =
0.488151/0.489924. The light/dark gray areas mark the interior of
the BP/MAP EXIT function of the underlying (3, 6)-regular ensemble,
respectively.

even for large values of L, where the rate of the ensemble
is close to 1 − l/r, this dramatic increase in the threshold
is still true. Emperically we see that, for L increasing, the
EBP EXIT curve approaches the MAP EXIT curve of the
underlying (l = 3, r = 6)-regular ensemble. In particular, for
ε ≈ εMAP(l, r) the EBP EXIT curve drops essentially vertically
until it hits zero. We will see that this is a fundamental property
of this construction.

C. Discussion

A look at Figure 5 might convey the impression that the
transition of the EBP EXIT function is completely flat and
that the threshold of the ensemble (l, r, L) is exactly equal to
the MAP threshold of the underlying (l, r)-regular ensemble
when L tends to infinity.

Unfortunately, the actual behavior is more subtle. Figure 6
shows the EBP EXIT curve for L = 32 with a small section
of the transition greatly magnified. As one can see from this
magnification, the curve is not flat but exhibits small “wiggles”
in ε around εMAP(l, r). These wiggles do not vanish as L tends
to infinity but their width remains constant. As we will discuss
in much more detail later, area considerations imply that, in
the limit as L diverges to infinity, the BP threshold is slightly
below εMAP(l, r). Although this does not play a role in the
sequel, let us remark that the number of wiggles is (up to a
small additive constant) equal to L.

Where do these wiggles come from? They stem from the
fact that the system is discrete. If, instead of considering
a system with sections at integer points, we would deal
with a continuous system where neighboring ”sections” are
infinitesimally close, then these wiggles would vanish. This
“discretization” effect is well-known in the physics literature.
By letting w tend to infinity we can in effect create a
continuous system. This is in fact our main motivation for
introducing this parameter.

Emperically, these wiggles are very small (e.g., they are of
width 10−7 for the (l = 3, r = 6, L) ensemble), and further,
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these wiggles tend to 0 when l is increased. Unfortunately
this is hard to prove.

h
E

PB

ε
Fig. 6. EBP EXIT curve for the (l = 3, r = 6, L = 32) ensemble. The
circle shows a magnified portion of the curve. The horizontal magnification
is 107, the vertical one is 1.

We therefore study the ensemble (l, r, L, w). The wiggles
for this ensemble are in fact larger, see e.g. Figure 7. But, as

h
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h
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PB

ε
Fig. 7. EBP EXIT curve for the (l = 3, r = 6, L = 16, w) ensemble. Left:
w = 2; The circle shows a magnified portion of the curve. The horizontal
magnification is 103, the vertical one is 1. Right: w = 3; The circle shows
a magnified portion of the curve. The horizontal magnification is 106, the
vertical one is 1.

mentioned above, the wiggles can be made arbitrarily small
by letting w (the smoothing parameter) tend to infinity. E.g.,
in the left-hand side of Figure 7, w = 2, whereas in the right-
hand side we have w = 3. We see that the wiggle size has
decreased by more than a factor of 103.

IV. MAIN STATEMENT AND INTERPRETATION

As pointed out in the introduction, numerical experiments
indicate that there is a large class of convolutional-like LDPC
ensembles that all have the property that their BP threshold
is “close” to the MAP threshold of the underlying ensemble.
Unfortunately, no general theorem is known to date that states
when this is the case. The following theorem gives a particular
instance of what we believe to be a general principle. The
bounds stated in the theorem are loose and can likely be
improved considerably. Throughout the paper we assume that
l ≥ 3.

A. Main Statement

Theorem 10 (BP Threshold of the (l, r, L, w) Ensemble):
Consider transmission over the BEC(ε) using random

elements from the ensemble (l, r, L, w). Let εBP(l, r, L, w)
denote the BP threshold and let R(l, r, L, w) denote the
design rate of this ensemble.

Then, in the limit as M tends to infinity, and for w >

max
{

216, 24l2r2,
(2lr(1+ 2l

1−2−1/(r−2)
))8

(1−2−1/(r−2))16( 1
2 (1−l

r
))8

}
,

εBP(l, r, L, w) ≤ εMAP(l, r, L, w) ≤

εMAP(l, r)+
w − 1

2L(1−(1−xMAP(l, r))r−1)l
(3)

εBP(l, r, L, w) ≥
(
εMAP(l, r)−w− 1

8

8lr + 4rl2

(1−4w−
1
8 )r

(1−2−
1
r )2

)
×
(
1− 4w−1/8

)rl
. (4)

In the limit as M , L and w (in that order) tend to infinity,

lim
w→∞

lim
L→∞

R(l, r, L, w) = 1− l

r
, (5)

lim
w→∞

lim
L→∞

εBP(l, r, L, w) = lim
w→∞

lim
L→∞

εMAP(l, r, L, w)

= εMAP(l, r). (6)
Discussion:

(i) The lower bound on εBP(l, r, L, w) is the main result
of this paper. It shows that, up to a term which tends
to zero when w tends to infinity, the threshold of the
chain is equal to the MAP threshold of the underlying
ensemble. The statement in the theorem is weak. As we
discussed earlier, the convergence speed w.r.t. w is most
likely exponential. We prove only a convergence speed
of w−

1
8 . We pose it as an open problem to improve this

bound. We also remark that, as seen in (6), the MAP
threshold of the (l, r, L, w) ensemble tends to εMAP(l, r)
for any finite w when L tends to infinity, whereas the BP
threshold is bounded away from εMAP(l, r) for any finite
w.

(ii) We right away prove the upper bound on εBP(l, r, L, w).
For the purpose of our proof, we first consider a “circular”
ensemble. This ensemble is defined in an identical man-
ner as the (l, r, L, w) ensemble except that the positions
are now from 0 to K−1 and index arithmetic is performed
modulo K. This circular ensemble has design rate equal
to 1 − l/r. Set K = 2L + w. The original ensemble is
recovered by setting any consecutive w − 1 positions to
zero. We first provide a lower bound on the conditional
entropy for the circular ensemble when transmitting over
a BEC with parameter ε. We then show that setting w−1
sections to 0, does not significantly decrease this entropy.
Overall this gives an upper bound on the MAP threshold
of the original ensemble.
It is not hard to see that the BP EXIT curve4 is the
same for both the (l, r)-regular ensemble and the cir-
cular ensemble. Indeed, the forward DE (see Defini-
tion 13) converges to the same fixed-point for both en-
sembles. Consider the (l, r)-regular ensemble and let ε ∈
[εMAP(l, r), 1]. The conditional entropy when transmitting
over a BEC with parameter ε is at least equal to 1− l/r

4The BP EXIT curve is the plot of the extrinsic estimate of the BP decoder
versus the channel erasure fraction (see [13] for details).
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minus the area under the BP EXIT curve between [ε, 1]
(see Theorem 3.120 in [13]). Call this area A(ε). Here,
the entropy is normalized by KM , where K is the length
of the circular ensemble and M denotes the number of
variable nodes per section. Assume now that we set w−1
consecutive sections of the circular ensemble to 0 in order
to recover the original ensemble. As a consequence, we
“remove” an entropy (degrees of freedom) of at most
(w − 1)/K from the circular system. The remaining
entropy is therefore positive (and hence we are above
the MAP threshold of the circular ensemble) as long as
1−l/r−(w−1)/K−A(ε) > 0. Thus the MAP threshold
of the circular ensemble is given by the supremum over
all ε such that 1 − l/r − (w − 1)/K − A(ε) ≤ 0. Now
note that A(εMAP(l, r)) = 1 − l/r, so that the above
condition becomes A(εMAP(l, r)) − A(ε) ≤ (w − 1)/K.
But the BP EXIT curve is an increasing function in
ε so that A(εMAP(l, r)) − A(ε) > (ε − εMAP(l, r))(1−
(1−xMAP(l, r))r−1)l. We get the stated upper bound on
εMAP(l, r, L, w) by lower bounding K by 2L.

(iii) According to Lemma 3,
limL→∞ limM→∞R(l, r, L, w) = 1 − l

r
. This

immediately implies the limit (5). The limit for
the BP threshold εBP(l, r, L, w) follows from (4).

(iv) According to Lemma 8, the MAP threshold εMAP(l, r) of
the underlying ensemble quickly approaches the Shannon
limit. We therefore see that convolutional-like ensembles
provide a way of approaching capacity with low complex-
ity. E.g., for a rate equal to one-half, we get εMAP(l =
3, r = 6) = 0.48815, εMAP(l = 4, r = 8) = 0.49774,
εMAP(l = 5, r = 10) = 0.499486, εMAP(l = 6, r = 12) =
0.499876, εMAP(l = 7, r = 14) = 0.499969.

B. Proof Outline

The proof of the lower bound in Theorem 10 is long.
We therefore break it up into several steps. Let us start by
discussing each of the steps separately. This hopefully clarifies
the main ideas. But it will also be useful later when we
discuss how the main statement can potentially be generalized.
We will see that some steps are quite generic, whereas other
steps require a rather detailed analysis of the particular chosen
system.
(i) Existence of FP: “The” key to the proof is to show the

existence of a unimodal FP (ε∗, x∗) which takes on an
essentially constant value in the “middle”, has a fast
“transition”, and has arbitrarily small values towards the
boundary (see Definition 12). Figure 8 shows a typical

-16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16

Fig. 8. Unimodal FP of the (l = 3, r = 6, L = 16, w = 3) ensemble with
small values towards the boundary, a fast transition, and essentially constant
values in the middle.

such example. We will see later that the associated
channel parameter of such a FP, ε∗, is necessarily very
close to εMAP(l, r).

(ii) Construction of EXIT Curve: Once we have established
the existence of such a special FP we construct from
it a whole FP family. The elements in this family of
FPs look essentially identical. They differ only in their
“width.” This width changes continuously, initially being
equal to roughly 2L+ 1 until it reaches zero. As we will
see, this family “explains” how the overall constellation
(see Definition 12) collapses once the channel parameter
has reached a value close to εMAP(l, r): starting from the
two boundaries, the whole constellation “moves in” like
a wave until the two wave ends meet in the middle.
The EBP EXIT curve is a projection of this wave (by
computing the EXIT value of each member of the family).
If we look at the EBP EXIT curve, this phenomenon
corresponds to the very steep vertical transition close to
εMAP(l, r).
Where do the wiggles in the EBP EXIT curve come
from? Although the various FPs look “almost” identical
(other than the place of the transition) they are not exactly
identical. The ε value changes very slightly (around ε∗).
The larger we choose w the smaller we can make the
changes (at the cost of a longer transition).
When we construct the above family of FPs it is math-
ematically convenient to allow the channel parameter ε
to depend on the position. Let us describe this in more
detail.
We start with a special FP as depicted in Figure 8.
From this we construct a smooth family (ε(α), x(α)),
parameterized by α, α ∈ [0, 1], where x(1) = 1 and
where x(0) = 0. The components of the vector ε(α) are
essentially constants (for α fixed). The possible excep-
tions are components towards the boundary. We allow
those components to take on larger (than in the middle)
values.
From the family (ε(α), x(α)) we derive an EBP EXIT
curve and we then measure the area enclosed by this
curve. We will see that this area is close to the design rate.
From this we will be able to conclude that ε∗ ≈ εMAP(l, r).

(iii) Operational Meaning of EXIT Curve: We next show
that the EBP EXIT curve constructed in step (ii) has
an operational meaning. More precisely, we show that
if we pick a channel parameter sufficiently below ε∗ then
forward DE converges to the trivial FP.

(iv) Putting it all Together: The final step is to combine all
the constructions and bounds discussed in the previous
steps to show that εBP(l, r, w, L) converges to εMAP(l, r)
when w and L tend to infinity.

V. PROOF OF THEOREM 10

This section contains the technical details of Theorem 10.
We accomplish the proof by following the steps outlined in
the previous section. To enhance the readability of this section
we have moved some of the long proofs to the appendices.
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A. Step (i): Existence of FP

Definition 11 (Density Evolution of (l, r, L, w) Ensemble):
Let xi, i ∈ Z, denote the average erasure probability which
is emitted by variable nodes at position i. For i 6∈ [−L,L] we
set xi = 0. For i ∈ [−L,L] the FP condition implied by DE
is

xi = ε
(

1− 1

w

w−1∑
j=0

(
1− 1

w

w−1∑
k=0

xi+j−k
)r−1

)l−1

. (7)

If we define

fi =
(

1− 1

w

w−1∑
k=0

xi−k

)r−1

, (8)

then (7) can be rewritten as

xi = ε
(

1− 1

w

w−1∑
j=0

fi+j

)l−1

.

In the sequel it will be handy to have an even shorter form
for the right-hand side of (7). Therefore, let

g(xi−w+1, . . . , xi+w−1) =
(

1− 1

w

w−1∑
j=0

fi+j

)l−1

. (9)

Note that

g(x, . . . , x) = (1− (1− x)r−1)l−1,

where the right-hand side represents DE for the underlying
(l, r)-regular ensemble.

The function fi(xi−w+1, . . . , xi) defined in (8) is decreasing
in all its arguments xj ∈ [0, 1], j = i − w + 1, . . . , i. In the
sequel, it is understood that xi ∈ [0, 1]. The channel parameter
ε is allowed to take values in R+.

Definition 12 (FPs of Density Evolution): Consider DE for
the (l, r, L, w) ensemble. Let x = (x−L, . . . , xL). We call
x the constellation. We say that x forms a FP of DE with
parameter ε if x fulfills (7) for i ∈ [−L,L]. As a short hand
we then say that (ε, x) is a FP. We say that (ε, x) is a non-
trivial FP if x is not identically zero. More generally, let

ε = (ε−L, . . . , ε0, . . . , εL),

where ε ∈ R+ for i ∈ [−L,L]. We say that (ε, x) forms a FP
if

xi = εig(xi−w+1, . . . , xi+w−1), i ∈ [−L,L]. (10)

�

Definition 13 (Forward DE and Admissible Schedules):
Consider DE for the (l, r, L, w) ensemble. More precisely,
pick a parameter ε ∈ [0, 1]. Initialize x(0) = (1, . . . , 1). Let
x(`) be the result of ` rounds of DE. I.e., x(`+1) is generated
from x(`) by applying the DE equation (7) to each section
i ∈ [−L,L],

x
(`+1)
i = εg(x

(`)
i−w+1, . . . , x

(`)
i+w−1).

We call this the parallel schedule.
More generally, consider a schedule in which in each step

` an arbitrary subset of the sections is updated, constrained

only by the fact that every section is updated in infinitely
many steps. We call such a schedule admissible. Again, we
call x(`) the resulting sequence of constellations.

In the sequel we will refer to this procedure as forward
DE by which we mean the appropriate initialization and the
subsequent DE procedure. E.g., in the next lemma we will
discuss the FPs which are reached under forward DE. These
FPs have special properties and so it will be convenient to
be able to refer to them in a succinct way and to be able to
distinguish them from general FPs of DE.

Lemma 14 (FPs of Forward DE): Consider forward DE
for the (l, r, L, w) ensemble. Let x(`) denote the sequence
of constellations under an admissible schedule. Then x(`)

converges to a FP of DE and this FP is independent of the
schedule. In particular, it is equal to the FP of the parallel
schedule.

Proof: Consider first the parallel schedule. We claim that
the vectors x(`) are ordered, i.e., x(0) ≥ x(1) ≥ · · · ≥ 0 (the
ordering is pointwise). This is true since x(0) = (1, . . . , 1),
whereas x(1) ≤ (ε, . . . , ε) ≤ (1, . . . , 1) = x(0). It now follows
by induction on the number of iterations that the sequence x(`)

is monotonically decreasing.
Since the sequence x(`) is also bounded from below it

converges. Call the limit x(∞). Since the DE equations are
continuous it follows that x(∞) is a fixed point of DE (7)
with parameter ε. We call x(∞) the forward FP of DE.

That the limit (exists in general and that it) does not depend
on the schedule follows by standard arguments and we will
be brief. The idea is that for any two admissible schedules the
corresponding computation trees are nested. This means that
if we look at the computation graph of schedule let’s say 1
at time ` then there exists a time `′ so that the computation
graph under schedule 2 is a superset of the first computation
graph. To be able to come to this conclusion we have crucially
used the fact that for an admissible schedule every section
is updated infinitely often. This shows that the performance
under schedule 2 is at least as good as the performance under
schedule 1. The converse claim, and hence equality, follows
by symmetry.

Definition 15 (Entropy): Let x be a constellation. We define
the (normalized) entropy of x to be

χ(x) =
1

2L+ 1

L∑
i=−L

xi.

Discussion: More precisely, we should call χ(x) the average
message entropy. But we will stick with the shorthand entropy
in the sequel.

Lemma 16 (Nontrivial FPs of Forward DE): Consider the
ensemble (l, r, L, w). Let x be the FP of forward DE for
the parameter ε. For ε ∈ ( l

r
, 1] and χ ∈ [0, ε

1
l−1 (ε− l

r
)), if

L ≥ w

2( r
l
(ε− χε−

1
l−1 )− 1)

(11)

then χ(x) ≥ χ.
Proof: Let R(l, r, L, w) be the design rate of the

(l, r, L, w) ensemble as stated in Lemma 3. Note that the
design rate is a lower bound on the actual rate. It follows that
the system has at least (2L + 1)R(l, r, L, w)M degrees of
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freedom. If we transmit over a channel with parameter ε then
in expectation at most (2L+ 1)(1− ε)M of these degrees of
freedom are resolved. Recall that we are considering the limit
in which M diverges to infinity. Therefore we can work with
averages and do not need to worry about the variation of the
quantities under consideration. It follows that the number of
degrees of freedom left unresolved, measured per position and
normalized by M , is at least (R(l, r, L, w)− 1 + ε).

Let x be the forward DE FP corresponding to parameter
ε. Recall that xi is the average message which flows from a
variable at position i towards the check nodes. From this we
can compute the corresponding probability that the node value
at position i has not been recovered. It is equal to ε

(
xi
ε

) l
l−1 =

ε−
1

l−1x
l

l−1

i . Clearly, the BP decoder cannot be better than the
MAP decoder. Further, the MAP decoder cannot resolve the
unknown degrees of freedom. It follows that we must have

ε−
1

l−1
1

2L+ 1

L∑
i=−L

x
l

l−1

i ≥ R(l, r, L, w)− 1 + ε.

Note that xi ∈ [0, 1] so that xi ≥ x
l

l−1

i . We conclude that

χ(x) =
1

2L+ 1

L∑
i=−L

xi ≥ ε
1

l−1 (R(l, r, L, w)− 1 + ε).

Assume that we want a constellation with entropy at least χ.
Using the expression for R(l, r, L, w) from Lemma 3, this
leads to the inequality

ε
1

l−1 (−l
r
− l

r

w + 1− 2
∑w
i=0

(
i
w

)r
2L+ 1

+ ε) ≥ χ. (12)

Solving for L and simplifying the inequality by upper bound-
ing 1− 2

∑w
i=0

(
i
w

)r
by 0 and lower bounding 2L+ 1 by 2L

leads to (11).
Not all FPs can be constructed by forward DE. In particular,

one can only reach (marginally) “stable” FPs by the above
procedure. Recall from Section IV-B, step (i), that we want to
construct an unimodal FP which “explains” how the constel-
lation collapses. Such a FP is by its very nature unstable.

It is difficult to prove the existence of such a FP by direct
methods. We therefore proceed in stages. We first show the
existence of a “one-sided” increasing FP. We then construct
the desired unimodal FP by taking two copies of the one-sided
FP, flipping one copy, and gluing these FPs together.

Definition 17 (One-Sided Density Evolution): Consider the
tuple x = (x−L, . . . , x0). The FP condition implied by one-
sided DE is equal to (7) with xi = 0 for i < −L and xi = x0

for i > 0.
Definition 18 (FPs of One-Sided DE): We say that x is a

one-sided FP (of DE) with parameter ε and length L if (7) is
fulfilled for i ∈ [−L, 0], with xi = 0 for i < −L and xi = x0

for i > 0.
In the same manner as we have done this for two-sided

FPs, if ε = (ε−L, . . . , ε0), then we define one-sided FPs with
respect to ε.

We say that x is non-decreasing if xi ≤ xi+1 for i =
−L, . . . , 0.

Definition 19 (Entropy): Let x be a one-sided FP. We
define the (normalized) entropy of x to be

χ(x) =
1

L+ 1

0∑
i=−L

xi.

Definition 20 (Proper One-Sided FPs): Let (ε, x) be a non-
trivial and non-decreasing one-sided FP. As a short hand, we
then say that (ε, x) is a proper one-sided FP.
A proper one-sided FP is shown in Figure 9.

Definition 21 (One-Sided Forward DE and Schedules):
Similar to Definition 13, one can define the one-sided forward
DE by initializing all sections with 1 and by applying DE
according to an admissible schedule.

Lemma 22 (FPs of One-Sided Forward DE): Consider an
(l, r, L, w) ensemble and let ε ∈ [0, 1]. Let x(0) = (1, . . . , 1)
and let x(`) denote the result of applying ` steps of one-
sided forward DE according to an admissible schedule (cf.
Definition 21). Then
(i) x(`) converges to a limit which is a FP of one-sided DE.

This limit is independent of the schedule and the limit is
either proper or trivial. As a short hand we say that (ε, x)
is a one-sided FP of forward DE.

(ii) For ε ∈ ( l
r
, 1] and χ ∈ [0, ε

1
l−1 (ε− l

r
)), if L fulfills (11)

then χ(x) ≥ χ.
Proof: The existence of the FP and the independence

of the schedule follows along the same line as the equivalent
statement for two-sided FPs in Lemma 14. We hence skip the
details. Assume that this limit x(∞) is non-trivial. We want
to show that it is proper. This means we want to show that it
is non-decreasing. We use induction. The initial constellation
is non-decreasing. Let us now show that this property stays
preserved in each step of DE if we apply a parallel schedule.
More precisely, for any section i ∈ [−L, 0],

x
(`+1)
i = εg(x

(`)
i−w+1, . . . , x

(`)
i+w−1)

(a)

≤ εg(x
(`)
i+1−w+1, . . . , x

(`)
i+1+w−1)

= x
(`+1)
i+1 ,

where (a) follows from the monotonicity of g(. . . ) and the
induction hypothesis that x(`) is non-decreasing.

Let us now show that for ε ∈ ( l
r
, 1] and χ ∈ [0, ε

1
l−1 (ε− l

r
)),

if L fulfills (11) then χ(x) ≥ χ. First, recall from Lemma 16
that the corresponding two-sided FP of forward DE has
entropy at least χ under the stated conditions. Now compare
one-sided and two-sided DE for the same initialization with the
constant value 1 and the parallel schedule. We claim that for
any step the values of the one-sided constellation at position
i, i ∈ [−L, 0], are larger than or equal to the values of the
two-sided constellation at the same position i. To see this we
use induction. The claim is trivially true for the initialization.
Assume therefore that the claim is true at a particular iteration
`. For all points i ∈ [−L,−w+ 1] it is then trivially also true
in iteration `+ 1, using the monotonicity of the DE map. For
points i ∈ [−w + 2, 0], recall that the one sided DE “sees”
the value x0 for all positions xi, i ≥ 0, and that x0 is the
largest of all x-values. For the two-sided DE on the other
hand, by symmetry, xi = x−i ≤ x0 for all i ≥ 0. Again by
monotonicity, we see that the desired conclusion holds.
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To conclude the proof: note that if for a unimodal two-
sided constellation we compute the average over the positions
[−L, 0] then we get at least as large a number as if we compute
it over the whole length [−L,L]. This follows since the value
at position 0 is maximal.

-16 -14 -12 -10 -8 -6 -4 -2 0

Fig. 9. A proper one-sided FP (ε, x) for the ensemble (l = 3, r = 6, L =
16, w = 3), where ε = 0.488151. As we will discuss in Lemma 23, for
sufficiently large L, the maximum value of x, namely x0, approaches the
stable value xs(ε). Further, as discussed in Lemma 26, the width of the
transition is of order O(w

δ
), where δ > 0 is a parameter that indicates which

elements of the constellation we want to include in the transition.

Let us establish some basic properties of proper one-sided
FPs.

Lemma 23 (Maximum of FP): Let (ε, x), 0 ≤ ε ≤ 1, be a
proper one-sided FP of length L. Then ε > εBP(l, r) and

xu(ε) ≤ x0 ≤ xs(ε),

where xs(ε) and xu(ε) denote the stable and unstable non-zero
FP associated to ε, respectively.

Proof: We start by proving that ε ≥ εBP(l, r). Assume
to the contrary that ε < εBP(l, r). Then

x0 = εg(x−w+1, . . . , xw−1) ≤ εg(x0, . . . , x0) < x0,

a contradiction. Here, the last step follows since ε < εBP(l, r)
and 0 < x0 ≤ 1.

Let us now consider the claim that xu(ε) ≤ x0 ≤ xs(ε).
The proof follows along a similar line of arguments. Since
εBP(l, r) ≤ ε ≤ 1, both xs(ε) and xu(ε) exist and are strictly
positive. Suppose that x0 > xs(ε) or that x0 < xu(ε). Then

x0 = εg(x−w+1, . . . , xw−1) ≤ εg(x0, . . . , x0) < x0,

a contradiction.
A slightly more careful analysis shows that ε 6= εBP, so that

in fact we have strict inequality, namely ε > εBP(l, r). We skip
the details.

Lemma 24 (Basic Bounds on FP): Let (ε, x) be a proper
one-sided FP of length L. Then for all i ∈ [−L, 0],

(i) xi ≤ ε(1− (1− 1

w2

w−1∑
j,k=0

xi+j−k)r−1)l−1,

(ii) xi ≤ ε
(r− 1

w2

w−1∑
j,k=0

xi+j−k

)l−1

,

(iii) xi ≥ ε
( 1

w2

w−1∑
j,k=0

xi+j−k

)l−1

,

(iv) xi ≥

ε
((

1− 1

w

w−1∑
k=0

xi+w−1−k

)r−2 r− 1

w2

w−1∑
j,k=0

xi+j−k

)l−1

.

Proof: We have

xi = ε
(

1− 1

w

w−1∑
j=0

(
1− 1

w

w−1∑
k=0

xi+j−k
)r−1

)l−1

.

Let f(x) = (1−x)r−1, x ∈ [0, 1]. Since f′′(x) = (r−1)(r−
2)(1− x)r−3 ≥ 0, f(x) is convex. Let yj = 1

w

∑w−1
k=0 xi+j−k.

We have

1

w

w−1∑
j=0

(
1− 1

w

w−1∑
k=0

xi+j−k
)r−1

=
1

w

w−1∑
j=0

f(yj).

Since f(x) is convex, using Jensen’s inequality, we obtain

1

w

w−1∑
j=0

f(yj) ≥ f(
1

w

w−1∑
j=0

yj),

which proves claim (i).
The derivation of the remaining inequalities is based on the

following identity:

1−Br−1 = (1−B)(1 +B + · · ·+Br−2). (13)

For 0 ≤ B ≤ 1 this gives rise to the following inequalities:

1−Br−1 ≥ (r− 1)Br−2(1−B), (14)

1−Br−1 ≥ (1−B), (15)

1−Br−1 ≤ (r− 1)(1−B). (16)

Let Bj = 1− 1
w

∑w−1
k=0 xi+j−k, so that 1− fi+j = 1−Br−1

j

(recall the definition of fi+j from (8)). Using (15) this proves
(iii):

xi = ε
( 1

w

w−1∑
j=0

(1− fi+j)
)l−1

≥ ε
( 1

w

w−1∑
j=0

(1−Bj)
)l−1

= ε
( 1

w

w−1∑
j=0

1

w

w−1∑
k=0

xi+j−k

)l−1

.

If we use (16) instead then we get (ii). To prove (iv) we use
(14):

xi ≥ ε
(r− 1

w

w−1∑
j=0

(1−Bj)Br−2
j

)l−1

=

ε
(r− 1

w

w−1∑
j=0

( 1

w

w−1∑
k=0

xi+j−k

)(
1− 1

w

w−1∑
k=0

xi+j−k

)r−2)l−1

.

Since x is increasing,
∑w−1
k=0 xi+j−k ≤

∑w−1
k=0 xi+w−1−k.

Hence,

xi ≥ ε
((

1− 1

w

w−1∑
k=0

xi+w−1−k

)r−2 r−1

w2

w−1∑
j,k=0

xi+j−k

)l−1

.

Lemma 25 (Spacing of FP): Let (ε, x), ε ≥ 0, be a proper
one-sided FP of length L. Then for i ∈ [−L+ 1, 0],

xi − xi−1 ≤ ε
(l− 1)(r− 1)

(
xi
ε

) l−2
l−1

w2

(w−1∑
k=0

xi+k

)
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≤ ε
(l− 1)(r− 1)

(
xi
ε

) l−2
l−1

w
.

Let x̄i denote the weighted average x̄i = 1
w2

∑w−1
j,k=0 xi+j−k.

Then, for any i ∈ [−∞, 0],

x̄i − x̄i−1 ≤
1

w2

w−1∑
k=0

xi+k ≤
1

w
.

Proof: Represent both xi as well as xi−1 in terms of the
DE equation (10). Taking the difference,

xi − xi−1

ε
=(

1− 1

w

w−1∑
j=0

fi+j

)l−1

−
(

1− 1

w

w−1∑
j=0

fi+j−1

)l−1

. (17)

Apply the identity

Am −Bm = (A−B)(Am−1 +Am−2B + · · ·+Bm−1),
(18)

where we set A =
(

1 − 1
w

∑w−1
j=0 fi+j

)
, B =

(
1 −

1
w

∑w−1
j=0 fi+j−1

)
, and m = l− 1. Note that A ≥ B. Thus

(
1− 1

w

w−1∑
j=0

fi+j

)l−1

−
(

1− 1

w

w−1∑
j=0

fi+j−1

)l−1

= Al−1 −Bl−1

= (A−B)(Al−2 +Al−3B + · · ·+Bl−2)
(i)
≤ (l− 1)(A−B)Al−2

(ii)
=

(l− 1)Al−2

w
(fi−1 − fi+w−1).

In step (i) we used the fact that A ≥ B implies Al−2 ≥ ApBq
for all p, q ∈ N so that p+ q = l−2. In step (ii) we made the
substitution A−B = 1

w (fi−1 − fi+w−1). Since xi = εAl−1,

Al−2 =
(
xi
ε

) l−2
l−1 . Thus

xi − xi−1

ε
≤

(l− 1)
(
xi
ε

) l−2
l−1

w
(fi−1 − fi+w−1).

Consider the term (fi−1 − fi+w−1). Set fi−1 = Cr−1 and
fi+w−1 = Dr−1, where C =

(
1 − 1

w

∑w−1
k=0 xi−1−k

)
and

D =
(

1 − 1
w

∑w−1
k=0 xi+w−1−k

)
. Note that 0 ≤ C,D ≤ 1.

Using again (18),

(fi−1−fi+w−1) = (C−D)(Cr−2 + Cr−3D + · · ·+Dr−2)

≤ (r− 1)(C −D).

Explicitly,

(C −D) =
1

w
(

w−1∑
k=0

(xi+w−1−k − xi−1−k)) ≤ 1

w

w−1∑
k=0

xi+k,

which gives us the desired upper bound. By setting all xi+k =
1 we obtain the second, slightly weaker, form.

To bound the spacing for the weighted averages we write
x̄i and x̄i−1 explicitly,

x̄i − x̄i−1 =
1

w2

(
(xi+w−1 − xi+w−2)

+ 2(xi+w−2 − xi+w−3) + · · ·+ w(xi − xi−1)

+ (w − 1)(xi−1 − xi−2) + · · ·+ (xi−w+1 − xi−w)
)

≤ 1

w2

w−1∑
k=0

xi+k ≤
1

w
.

The proof of the following lemma is long. Hence we
relegate it to Appendix III.

Lemma 26 (Transition Length): Let w ≥ 2l2r2. Let (ε, x),
ε ∈ (εBP, 1], be a proper one-sided FP of length L. Then, for
all 0 < δ < 3

25l4r6(1+12lr) ,

|{i : δ < xi < xs(ε)− δ}| ≤ w
c(l, r)

δ
,

where c(l, r) is a strictly positive constant independent of L
and ε.

Let us now show how we can construct a large class of
one-sided FPs which are not necessarily stable. In particular
we will construct increasing FPs. The proof of the following
theorem is relegated to Appendix IV.

Theorem 27 (Existence of One-Sided FPs): Fix the param-
eters (l, r, w) and let xu(1) < χ. Let L ≥ L(l, r, w, χ), where

L(l, r, w, χ) =

max
{ 4lw

r(1− l
r
)(χ−xu(1))

,
8w

κ∗(1)(χ−xu(1))2
,

8w

λ∗(1)(χ− xu(1))(1− l
r
)
,

w
r
l
− 1

}
.

There exists a proper one-sided FP x of length L that either
has entropy χ and channel parameter bounded by

εBP(l, r) < ε < 1,

or has entropy bounded by

(1− l
r
)(χ− xu(1))

8
− lw

2r(L+ 1)
≤ χ(x) ≤ χ

and channel parameter ε = 1.
Discussion: We will soon see that, for the range of parameters
of interest, the second alternative is not possible either. In the
light of this, the previous theorem asserts for this range of
parameters the existence of a proper FP of entropy χ. In what
follows, this FP will be the key ingredient to construct the
whole EXIT curve.

B. Step (ii): Construction of EXIT Curve

Definition 28 (EXIT Curve for (l, r, L, w)-Ensemble): Let
(ε∗, x∗), 0 ≤ ε∗ ≤ 1, denote a proper one-sided FP of length
L′ and entropy χ. Fix 1 ≤ L < L′.

The interpolated family of constellations based on (ε∗, x∗)
is denoted by {ε(α), x(α)}1α=0. It is indexed from −L to L.

This family is constructed from the one-sided FP (ε∗, x∗).
By definition, each element x(α) is symmetric. Hence, it
suffices to define the constellations in the range [−L, 0] and
then to set xi(α) = x−i(α) for i ∈ [0, L]. As usual, we set
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xi(α) = 0 for i /∈ [−L,L]. For i ∈ [−L, 0] and α ∈ [0, 1]
define

xi(α) =


(4α− 3) + (4− 4α)x∗0, α ∈ [ 3

4 , 1],

(4α− 2)x∗0 − (4α− 3)x∗i , α ∈ [ 1
2 ,

3
4 ),

a(i, α), α ∈ ( 1
4 ,

1
2 ),

4αx∗i−L′+L, α ∈ (0, 1
4 ],

εi(α) =
xi(α)

g((xi−w+1(α), . . . , (xi+w−1(α))
,

where for α ∈ ( 1
4 ,

1
2 ),

a(i, α) = x∗
4(L′−L)( 1

2−α) mod (1)

i−d4( 1
2−α)(L′−L)e · x∗1−4(L′−L)( 1

2−α) mod (1)

i−d4( 1
2−α)(L′−L)e+1

.

The constellations x(α) are increasing (component-wise) as
a function of α, with x(α = 0) = (0, . . . , 0) and with x(α =
1) = (1, . . . , 1).
Remark: Let us clarify the notation occurring in the definition
of the term a(i, α) above. The expression for a(i, α) consists
of the product of two consecutive sections of x∗, indexed
by the subscripts i − d4( 1

2 − α)(L′ − L)e and i − d4( 1
2 −

α)(L′ − L)e + 1. The erasure values at the two sections are
first raised to the powers 4(L′ − L)( 1

2 − α) mod (1) and
1− 4(L′ − L)( 1

2 − α) mod (1), before taking their product.
Here, mod (1) represents real numbers in the interval [0, 1].
Discussion: The interpolation is split into 4 phases. For α ∈
[ 3
4 , 1], the constellations decrease from the constant value 1

to the constant value x∗0. For the range α ∈ [ 1
2 ,

3
4 ], the

constellation decreases further, mainly towards the boundaries,
so that at the end of the interval it has reached the value
x∗i at position i (hence, it stays constant at position 0). The
third phase is the most interesting one. For α ∈ [ 1

4 ,
1
2 ] we

“move in” the constellation x∗ by “taking out” sections in
the middle and interpolating between two consecutive points.
In particular, the value a(i, α) is the result of “interpolating”
between two consecutive x∗ values, call them x∗j and x∗j+1,
where the interpolation is done in the exponents, i.e., the value
is of the form x∗βj ·x∗

1−β
j+1 . Finally, in the last phase all values

are interpolated in a linear fashion until they have reached 0.
Example 29 (EXIT Curve for (3, 6, 6, 2)-Ensemble):

Figure 10 shows a small example which illustrates this
interpolation for the (l = 3, r = 6, L = 6, w = 2)-ensemble.
We start with a FP of entropy χ = 0.2 for L′ = 12. This
constellation has ε∗ = 0.488223 and

x∗ = (0, 0, 0, 0, 0, 0.015,

0.131, 0.319, 0.408, 0.428, 0.431, 0.432, 0.432).

Note that, even though the constellation is quite short, ε∗ is
close to εMAP(l = 3, r = 6) ≈ 0.48815, and x∗0 is close
to xs(ε

MAP) ≈ 0.4323. From (ε∗, x∗) we create an EXIT
curve for L = 6. The figure shows 3 particular points of the
interpolation, one in each of the first 3 phases.

Consider, e.g., the top figure corresponding to phase (i). The
constellation x in this case is completely flat. Correspondingly,
the local channel values are also constant, except at the left
boundary, where they are slightly higher to compensate for the
“missing” x-values on the left.

h
E

PB

ε

ε∗

x

ε

-6 -5 -4 -3 -2 -1 0

-6 -5 -4 -3 -2 -1 0

h
E

PB

ε

x

ε∗
ε

-6 -5 -4 -3 -2 -1 0

-6 -5 -4 -3 -2 -1 0

h
E

PB

ε

x

ε∗
ε

-6 -5 -4 -3 -2 -1 0

-6 -5 -4 -3 -2 -1 0

Fig. 10. Construction of EXIT curve for (3, 6, 6, 2)-ensemble. The figure
shows three particular points in the interpolation, namely the points α =
0.781 (phase (i)), α = 0.61 (phase (ii)), and α = 0.4 (phase (iii)). For each
parameter both the constellation x as well as the local channel parameters
ε are shown in the figure on left. The right column of the figure illustrates
a projection of the EXIT curve. I.e., we plot the average EXIT value of the
constellation versus the channel value of the 0th section. For reference, also
the EBP EXIT curve of the underlying (3, 6)-regular ensemble is shown (gray
line).

The second figure from the top shows a point corresponding
to phase (ii). As we can see, the x-values close to 0 have not
changed, but the x-values close to the left boundary decrease
towards the solution x∗. Finally, the last figure shows a point in
phase (iii). The constellation now “moves in.” In this phase, the
ε values are close to ε∗, with the possible exception of ε values
close to the right boundary (of the one-sided constellation).
These values can become large.

The proof of the following theorem can be found in Ap-
pendix V.

Theorem 30 (Fundamental Properties of EXIT Curve):
Consider the parameters (l, r, w). Let (ε∗, x∗), ε∗ ∈ (εBP, 1],
denote a proper one-sided FP of length L′ and entropy χ > 0.
Then for 1 ≤ L < L′, the EXIT curve of Definition 28 has
the following properties:

(i) Continuity: The curve {ε(α), x(α)}1α=0 is continuous for
α ∈ [0, 1] and differentiable for α = [0, 1] except for a
finite set of points.
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(ii) Bounds in Phase (i): For α ∈ [ 3
4 , 1],

εi(α)

{
= ε0(α), i ∈ [−L+ w − 1, 0],

≥ ε0(α), i ∈ [−L, 0].

(iii) Bounds in Phase (ii): For α ∈ [ 1
2 ,

3
4 ] and i ∈ [−L, 0],

εi(α) ≥ ε(x∗0)
x∗−L
x∗0

,

where ε(x) = x
(1−(1−x)r−1)l−1 .

(iv) Bounds in Phase (iii): Let

γ =(
(r− 1)(l− 1)(ε∗)

1
l−1 (1 + w1/8)

w
)l−1. (19)

Let α ∈ [ 1
4 ,

1
2 ]. For xi(α) > γ,

εi(α)

{
≤ ε∗

(
1 + 1

w1/8

)
, i ∈ [−L+ w − 1,−w + 1],

≥ ε∗
(

1− 1
1+w1/8

)
, i ∈ [−L, 0].

For xi(α) ≤ γ and w > max{24l2r2, 216},

εi(α) ≥ ε∗
(

1− 4

w1/8

)(r−2)(l−1)

, i ∈ [−L, 0].

(v) Area under EXIT Curve: The EXIT value at position i ∈
[−L,L] is defined by

hi(α) = (g(xi−w+1(α), . . . , xi+w−1(α)))
l

l−1 .

Let

A(l, r, w, L) =

∫ 1

0

1

2L+ 1

L∑
i=−L

hi(α)dεi(α),

denote the area of the EXIT integral. Then

|A(l, r, w, L)− (1− l

r
)| ≤ w

L
lr.

(vi) Bound on ε∗: For w > max{24l2r2, 216},

|εMAP(l, r)− ε∗| ≤ 2lr|x∗0 − xs(ε
∗)|+ c(l, r, w, L)

(1− (l− 1)−
1

r−2 )2

where

c(l,r, w, L) = 4lrw−
1
8 +

wl(2 + r)

L

+ lr(x∗−L′+L + x∗0 − x∗−L) +
2rl2

(1−4w−
1
8 )r

w−
7
8 .

C. Step (iii): Operational Meaning of EXIT Curve

Lemma 31 (Stability of {(ε(α), x(α))}1α=0): Let
{(ε(α), x(α))}1α=0 denote the EXIT curve constructed
in Definition 28. For β ∈ (0, 1), let

ε(β) = inf
β≤α≤1

{εi(α) : i ∈ [−L,L]}.

Consider forward DE (cf. Definition 13) with parameter ε,
ε < ε(β). Then the sequence x(`) (indexed from −L to L)
converges to a FP which is point-wise upper bounded by x(β).

Proof: Recall from Lemma 14 that the sequence x(`)

converges to a FP of DE, call it x(∞). We claim that x(∞) ≤
x(β).

We proceed by contradiction. Assume that x(∞) is not
point-wise dominated by x(β). Recall that by construction of
x(α) the components are decreasing in α and that they are
continuous. Further, x(∞) ≤ ε < x(1). Therefore,

γ = inf
β≤α≤1

{α |x(∞) ≤ x(α)}

is well defined. By assumption γ > β. Note that there must
exist at least one position i ∈ [−L, 0] so that xi(γ) = x

(∞)
i

5.
But since ε < εi(γ) and since g(. . . ) is monotone in its
components,

xi(γ) = εi(γ)g(xi−w+1(γ), . . . , xi+w−1(γ))

> εg(x
(∞)
i−w+1, . . . , x

(∞)
i+w−1) = x

(∞)
i ,

a contradiction.

D. Step (iv): Putting it all Together

We have now all the necessary ingredients to prove The-
orem 10. In fact, the only statement that needs proof is (4).
First note that εBP(l, r, L, w) is a non-increasing function in
L. This follows by comparing DE for two constellations, one,
say, of length L1 and one of length L2, L2 > L1. It therefore
suffices to prove (4) for the limit of L tending to infinity.

Let (l, r, w) be fixed with w > w(l, r), where

w(l, r) = max
{

216, 24l2r2,
(2lr(1 + 2l

1−2−1/(r−2)
))8

(1−2−1/(r−2))16( 1
2 (1− l

r
))8

}
.

Our strategy is as follows. We pick L′ (length of constellation)
sufficiently large (we will soon see what “sufficiently” means)
and choose an entropy, call it χ̂. Then we apply Theorem 27.
Throughout this section, we will use x∗ and ε∗ to denote the
FP and the corresponding channel parameter guaranteed by
Theorem 27. We are faced with two possible scenarios. Either
there exists a FP with the desired properties or there exists a
FP with parameter ε∗ = 1 and entropy at most χ̂. We will
then show (using Theorem 30) that for sufficiently large L′ the
second alternative is not possible. As a consequence, we will
have shown the existence of a FP with the desired properties.
Using again Theorem 30 we then show that ε∗ is close to
εMAP and that ε∗ is a lower bound for the BP threshold of the
coupled code ensemble.

Let us make this program precise. Pick χ̂ = xu(1)+xBP(l,r)
2

and L′ “large”. In many of the subsequent steps we require
specific lower bounds on L′. Our final choice is one which
obeys all these lower bounds. Apply Theorem 27 with param-
eters L′ and χ̂. We are faced with two alternatives.

Consider first the possibility that the constructed one-sided
FP x∗ has parameter ε∗ = 1 and entropy bounded by

(1− l
r
)(xBP − xu(1))

16
− lw

2r(L′ + 1)
≤ χ(x∗) ≤ xBP +xu(1)

2
.

For sufficiently large L′ this can be simplified to

(1− l
r
)(xBP − xu(1))

32
≤ χ(x∗) ≤ xBP +xu(1)

2
. (20)

5It is not hard to show that under forward DE, the constellation x(`)

is unimodal and symmetric around 0. This immediately follows from an
inductive argument using Definition 13.
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Let us now construct an EXIT curve based on (ε∗, x∗) for a
system of length L, 1 ≤ L < L′. According to Theorem 30,
it must be true that

ε∗ ≤ εMAP(l, r) +
2lr|x∗0 − xs(ε

∗)|+ c(l, r, w, L)

(1− (l− 1)−
1

r−2 )2
. (21)

We claim that by choosing L′ sufficiently large and by
choosing L appropriately we can guarantee that

|x∗0 − xs(ε
∗)| ≤ δ, |x∗0 − x∗−L| ≤ δ, x∗−L′+L ≤ δ, (22)

where δ is any strictly positive number. If we assume this claim
for a moment, then we see that the right-hand-side of (21) can
be made strictly less than 1. Indeed, this follows from w >
w(l, r) (hypothesis of the theorem) by choosing δ sufficiently
small (by making L′ large enough) and by choosing L to be
proportional to L′ (we will see how this is done in the sequel).
This is a contradiction, since by assumption ε∗ = 1. This will
show that the second alternative must apply.

Let us now prove the bounds in (22). In the sequel we
say that sections with values in the interval [0, δ] are part of
the tail, that sections with values in [δ, xs(ε

∗) − δ] form the
transition, and that sections with values in [xs(ε

∗)− δ, xs(ε
∗)]

represent the flat part. Recall from Definition 15 that the
entropy of a constellation is the average (over all the 2L+ 1
sections) erasure fraction. The bounds in (22) are equivalent
to saying that both the tail as well as the flat part must have
length at least L. From Lemma 26, for sufficiently small δ,
the transition has length at most wc(l,r)

δ (i.e., the number of
sections i with erasure value, xi, in the interval [δ, xs(ε

∗)−δ]),
a constant independent of L′. Informally, therefore, most of
the length L′ consists of the tail or the flat part.

Let us now show all this more precisely. First, we show
that the flat part is large, i.e., it is at least a fixed fraction of
L′. We argue as follows. Since the transition contains only a
constant number of sections, its contribution to the entropy is
small. More precisely, this contribution is upper bounded by
wc(l,r)
(L′+1)δ . Further, the contribution to the entropy from the tail is
small as well, namely at most δ. Hence, the total contribution
to the entropy stemming from the tail plus the transition is at
most wc(l,r)

(L′+1)δ + δ. However, the entropy of the FP is equal to
xBP+xu(1)

2 . As a consequence, the flat part must have length
which is at least a fraction xBP+xu(1)

2 − wc(l,r)
(L′+1)δ − δ of L′. This

fraction is strictly positive if we choose δ small enough and
L′ large enough.

By a similar argument we can show that the tail length
is also a strictly positive fraction of L′. From Lemma 23,
xs(ε

∗) > xBP. Hence the flat part cannot be too large since the
entropy is equal to xBP+xu(1)

2 , which is strictly smaller than
xBP. As a consequence, the tail has length at least a fraction
1− xBP+xu(1)

2(xBP−δ) −
1+

wc(l,r)
δ

L′+1 of L′. As before, this fraction is also
strictly positive if we choose δ small enough and L′ large
enough. Hence, by choosing L to be the lesser of the length
of the flat part and the tail, we conclude that the bounds in
(22) are valid and that L can be chosen arbitrarily large (by
increasing L′).

Consider now the second case. In this case x∗ is a proper
one-sided FP with entropy equal to xBP+xu(1)

2 and with param-

eter εBP(l, r) < ε∗ < 1. Now, using again Theorem 30, we
can show

ε∗ > εMAP(l, r)−2w−
1
8

4lr + 2rl2

(1−4w−
1
8 )r

(1−(l−1)−
1

r−1 )2

l≥3

≥ εMAP(l, r)−2w−
1
8

4lr + 2rl2

(1−4w−
1
8 )r

(1−2−
1
r )2

.

To obtain the above expression, we take L′ to be sufficiently
large in order to bound the term in c(l, r, w, L) which contains
L. We also use (22) and choose δ to be sufficiently small to
bound the corresponding terms. We also replace w−7/8 by
w−1/8 in c(l, r, w, L).

To summarize: we conclude that for an entropy equal to
xBP(l,r)+xu(1)

2 , for sufficiently large L′, x∗ must be a proper
one-sided FP with parameter ε∗ bounded as above.

Finally, let us show that ε∗
(
1 − 4

w1/8

)rl
is a lower bound

on the BP threshold. We start by claiming that

ε∗
(

1− 4

w1/8

)rl
< ε∗

(
1− 4

w1/8

)(r−2)(l−1)

= inf
1
4≤α≤1

{εi(α) : i ∈ [−L,L]}.

To prove the above claim we just need to check that
ε(x∗0)x∗−L/x

∗
0 (see bounds in phase (ii) of Theorem 30) is

greater than the above infimum. Since in the limit of L′ →∞,
ε(x∗0)x∗−L/x

∗
0 → ε∗, for sufficiently large L′ the claim is true.

From the hypothesis of the theorem we have w > 216.
Hence ε∗(1 − 4w−1/8)rl > 0. Apply forward DE (cf. Defi-
nition 13) with parameter ε < ε∗(1 − 4w−1/8)rl and length
L. Denote the FP by x∞ (with indices belonging to [−L,L]).
From Lemma 31 we then conclude that x∞ is point-wise upper
bounded by x( 1

4 ). But for α = 1/4 we have

xi(1/4) ≤ x0(1/4) = x∗−L′+L ≤ δ < xu(1) ∀ i,

where we make use of the fact that δ can be chosen arbitrarily
small. Thus x(∞)

i < xu(1) for all i ∈ [−L,L]. Consider a
one-sided constellation, y, with yi = x0(1/4) < xu(1) for all
i ∈ [−L, 0]. Recall that for a one-sided constellation yi = y0

for all i > 0 and as usual yi = 0 for i < −L. Clearly, x(∞) ≤
y. Now apply one-sided forward DE to y with parameter ε
(same as the one we applied to get x∞) and call it’s limit
y(∞). From part (i) of Lemma 22 we conclude that the limit
y(∞) is either proper or trivial. Suppose that y∞ is proper
(implies non-trivial). Clearly, y∞i < xu(1) for all i ∈ [−L, 0].
But from Lemma 23 we have that for any proper one-sided
FP y0 ≥ xu(ε) ≥ xu(1), a contradiction. Hence we conclude
that y∞ must be trivial and so must be x∞.

VI. DISCUSSION AND POSSIBLE EXTENSIONS

A. New Paradigm for Code Design

The explanation of why convolutional-like LDPC ensembles
perform so well given in this paper gives rise to a new
paradigm in code design.

In most designs of codes based on graphs one encounters
a trade-off between the threshold and the error floor behavior.
E.g., for standard irregular graphs an optimization of the
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threshold tends to push up the number of degree-two variable
nodes. The same quantity, on the other hand, favors the
existence of low weight (pseudo)codewords.

For convolutional-like LDPC ensembles the important op-
erational quantity is the MAP threshold of the underlying
ensemble. As, e.g., regular LDPC ensembles show, it is simple
to improve the MAP threshold and to improve the error-
floor performance – just increase the minimum variable-node
degree. From this perspective one should simply pick as large
a variable-node degree as possible.

There are some drawbacks to picking large degrees. First,
picking large degrees also increases the complexity of the
scheme. Second, although currently little is known about the
scaling behavior of the convolutional-like LDPC ensembles,
it is likely that large degrees imply a slowing down of the
convergence of the performance of finite-length ensembles to
the asymptotic limit. This implies that one has to use large
block lengths. Third, the larger we pick the variable-node
degrees the higher the implied rate loss. Again, this implies
that we need very long codes in order to bring down the rate
loss to acceptable levels. It is tempting to conjecture that the
minimum rate loss that is required in order to achieve the
change of thresholds is related to the area under the EXIT
curve between the MAP and the BP threshold. E.g., in Figure 5
this is the light gray area. For the underlying ensemble this
is exactly the amount of guessing (help) that is needed so
that a local algorithm can decode correctly, assuming that the
underlying channel parameter is the MAP threshold.

Due to the above reasons, an actual code design will
therefore try to maintain relatively small average degrees so
as to keep this gray area small. But the additional degree of
freedom can be used to design codes with good thresholds and
good error floors.

B. Scaling Behavior

In our design there are three parameters that tend to infinity.
The number of variables nodes at each position, called M , the
length of the constellation L, and the length of the smoothing
window w. Assume we fix w and we are content with
achieving a threshold slightly below the MAP threshold. How
should we scale M with respect to L so that we achieve the
best performance? This question is of considerable practical
importance. Recall that the total length of the code is of order
L ·M . We would therefore like to keep this product small.
Further, the rate loss is of order 1/L (so L should be large) and
M should be chosen large so as to approach the performance
predicted by DE. Finally, how does the number of required
iterations scale as a function of L?

Also, in the proof we assumed that we fix L and let M
tend to infinity so that we can use DE techniques. We have
seen that in this limit the boundary conditions of the system
dictate the performance of the system regardless of the size of
L (as long as L is fixed and M tends to infinity). Is the same
behavior still true if we let L tend to infinity as a function of
M? At what scaling does the behavior change?

C. Tightening of Proof

As mentioned already in the introduction, our proof is weak
– it promises that the BP threshold approaches the MAP
threshold of the underling ensemble at a speed of w−1/8.
Numerical experiments indicate that the actual convergence
speed is likely to be exponential and that the prefactors are
very small. Why is the analytic statement so loose and how
can it be improved?

Within our framework it is clear that at many places the
constants could be improved at the cost of a more involved
proof. It is therefore likely that a more careful analysis
following the same steps will give improved convergence
speeds.

More importantly, for mathematical convenience we con-
structed an “artificial” EXIT curve by interpolating a particular
fixed point and we allowed the channel parameter to vary as a
function of the position. In the proof we then coarsely bounded
the “operational” channel parameter by the minimum of all
the individual channel parameters. This is a significant source
for the looseness of the bound. A much tighter bound could
be given if it were possible to construct the EXIT curve by
direct methods. As we have seen, it is possible to show the
existence of FPs of DE for a wide range of EXIT values. The
difficulty consists in showing that all these individual FPs form
a smooth one-dimensional manifold so that one can use the
Area Theorem and integrate with respect to this curve.

D. Extensions to BMS Channels and General Ensembles

Preliminary numerical evidence suggests that the behavior
of the convolutional-like LDPC ensembles discussed in this
paper is not restricted to the BEC channel or to regular
ensembles but is a general phenomenon. We will be brief.
A more detailed discussion can be found in the two recent
papers [26], [27]. Let us quickly discuss how one might want
to attack the more general setup.

We have seen that the proof consists essentially of three
steps.
(i) Existence of FP: As long as we stay with the BEC,

a similar procedure as the one used in the proof of
Theorem 27 can be used to show the existence of the
desired FP for more general ensembles.
General BMS channels are more difficult to handle, but
FP theorems do exist also in the setting of infinite-
dimensional spaces. The most challenging aspect of this
step is to prove that the constructed FP has the essential
basic characteristics that we relied upon for our later
steps. In particular, we need it to be unimodal, to have
a short transition period, and to approach the FP density
of the underlying standard ensemble.

(ii) Construction of EXIT Curve and Bounds: Recall that in
order to create a whole EXIT curve, we started with a
FP and interpolated the value of neighboring points. In
order to ensure that each such interpolated constellation
is indeed a FP, we allowed the local channel parameters
to vary. By choosing the interpolation properly, we were
then able to show that this variation is small. As long
as one remains in the realm of BEC channels, the same
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technique can in principle be applied to other ensembles.
For general channels the construction seems more chal-
lenging. It is not true in general that, given a constellation,
one can always find “local” channels that make this
constellation a FP. It is therefore not clear how an
interpolation for general channels can be accomplished.
This is perhaps the most challenging hurdle for any
potential generalization.

(iii) Operational Interpretation: For the operational interpre-
tation we relied upon the notion of physical degradation.
We showed that, starting with a channel parameter of
a channel which is upgraded w.r.t. to any of the local
channels used in the construction of the EXIT curve,
we do not get stuck in a non-trivial FP. For the BEC,
the notion of degradation is very simple, it is the natural
order on the set of erasure probabilities, and this is a total
order. For general channels, an order on channels still
exists in terms of degradation, but this order is partial.
We therefore require that the local channels used in the
construction of the EXIT curve are all degraded w.r.t. a
channel of the original channel family (e.g., the family
of Gaussian channels) with a parameter which is only
slightly better than the parameter which corresponds to
the MAP threshold.

E. Extension to General Coupled Graphical Systems

Codes based on graphs are just one instance of graphical
systems that have distinct thresholds for “local” algorithms
(what we called the BP threshold) and for “optimal” algo-
rithms (what we called the MAP threshold). To be sure, coding
is somewhat special – it is conjectured that the so-called
replica-symmetric solution always determines the threshold
under MAP processing for codes based on graphs. Neverthe-
less, it is interesting to investigate to what extent the coupling
of general graphical systems shows a similar behavior. Is
there a general class of graphical models in which the same
phenomenon occurs? If so, can this phenomenon either be used
to analyze systems or to devise better algorithms?
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APPENDIX I
PROOF OF LEMMA 1

We proceed as follows. We first consider a “circular”
ensemble. This ensemble is defined in an identical manner
as the (l, r, L) ensemble except that the positions are now
from 0 to K − 1 and index arithmetic is performed modulo

K. This circular definition symmetrizes all positions, which
in turn simplifies calculations.

As we will see shortly, most codes in this circular ensemble
have a minimum stopping set distance which is a linear
fraction of M . To make contact with our original problem
we now argue as follows. Set K = 2L+l. If, for the circular
ensemble, we take l − 1 consecutive positions and set them
to 0 then this “shortened” ensemble has length 2L+ 1 and it
is in one-to-one correspondence with the (l, r, L) ensemble.
Clearly, no new stopping sets are introduced by shortening the
ensemble. This proves the claim.

Let A(l, r,M,K,w) denote the expected number of stop-
ping sets of weight w of the “circular” ensemble. Let C denote
a code chosen uniformly at random from this ensemble.

Recall that every variable node at position i connects to a
check node at positions i− l̂, . . . , i+ l̂, modulo K. There are
M variable nodes at each position and M l

r
check nodes at

each position. Conversely, the Ml edges entering the check
nodes at position i come equally from variable nodes at
position i − l̂, . . . , i + l̂. These Ml edges are connected to
the check nodes via a random permutation.

Let wk, k ∈ {0, . . . ,K − 1}, 0 ≤ wk ≤ M , denote the
weight at position i, i.e., the number of variable nodes at
position i that have been set to 1. Call w = (w0, . . . , wK−1)
the type. We are interested in the expected number of stopping
sets for a particular type; call this quantity A(l, r,M,K,w).
Since the parameters (l, r,M,K) are understood from the
context, we shorten the notation to A(w). We claim that

A(w) =

∏K−1
k=0

(
M
wk

)
coef{p(x)M

l
r , x

∑l̂
i=−l̂

wk+i}∏K−1
k=0

( Ml∑
l̂
i=−l̂

wk+i

)
(a)

≤
K−1∏
k=0

(M+1)
( M∑l̂

i=−l̂
wk+i

l

)
coef{p(x)M

l
r , x

∑l̂
i=−l̂

wk+i}( Ml∑
l̂
i=−l̂

wk+i

) .

(23)

where p(x) =
∑
i 6=1

(
r
i

)
xi. This expression is easily explained.

The wk variable nodes at position k that are set to 1 can be
distributed over the M variable nodes in

(
M
wk

)
ways. Next, we

have to distribute the
∑l̂
i=−l̂ wk+i ones among the M l

r
check

nodes in such a way that every check node is fulfilled (since
we are looking for stopping sets, “fulfilled” means that a check
node is either connected to no variable node with associated
value “1” or to at least two such nodes). This is encoded by
coef{p(x)M

l
r , x

∑l̂
i=−l̂

wk+i}. Finally, we have to divide by the
total number of possible connections; there are Ml check node
sockets at position k and we distribute

∑l̂
i=−l̂ wk+i ones. This

can be done in
( Ml∑

l̂
i=−l̂

wk+i

)
ways. To justify step (a) note that

l̂∏
i=−l̂

(
M

wk+i

) 1
l

≤ 2M
1
l

∑l̂
i=−l̂

h(
wk+i
M )

Jensen
≤ 2Mh( 1

l

∑l̂
i=−l̂

wk+i
M )

≤ (M + 1)

(
M

1
l

∑l̂
i=−l̂ wk+i

)
.
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Note that, besides the factor (M + 1), which is negligible,
each term in the product (23) has the exact form of the
average stopping set weight distribution of the standard (l, r)-
ensemble of length M and weight 1

l

∑l̂
i=−l̂ wk. (Potentially

this weight is non-integral but the expression is nevertheless
well defined.)

We can therefore leverage known results concerning the
stopping set weight distribution for the underlying (l, r)-
regular ensembles. For the (l, r)-regular ensembles we know
that the relative minimum distance is at least ω̂(l, r) with
high probability [13, Lemma D.17]. Therefore, as long as

1
lM

∑l̂
i=−l̂ wk+i < ω̂(l, r), for all 0 ≤ k < K, 1

MK logA(w)
is strictly negative and so most codes in the ensemble do not
have stopping sets of this type. The claim now follows since
in order for the condition 1

lM

∑l̂
i=−l̂ wk+i < ω̂(l, r) to be

violated for at least one position k we need 1
M

∑K−1
k=0 wk to

exceed lω̂(l, r).

APPENDIX II
BASIC PROPERTIES OF h(x)

Recall the definition of h(x) from (2). We have,
Lemma 32 (Basic Properties of h(x)): Consider the (l, r)-

regular ensemble with l ≥ 3 and let ε ∈ (εBP, 1].
(i) h′(xu(ε)) > 0 and h′(xs(ε)) < 0; |h′(x)| ≤ lr for x ∈

[0, 1].
(ii) There exists a unique value 0 ≤ x∗(ε) ≤ xu(ε) so that

h′(x∗(ε)) = 0, and there exists a unique value xu(ε) ≤
x∗(ε) ≤ xs(ε) so that h′(x∗(ε)) = 0.

(iii) Let

κ∗(ε) = min{−h′(0),
−h(x∗(ε))

x∗(ε)
},

λ∗(ε) = min{h′(xu(ε)),
−h(x∗(ε))

xu(ε)− x∗(ε)
},

κ∗(ε) = min{h′(xu(ε)),
h(x∗(ε))

x∗(ε)− xu(ε)
},

λ∗(ε) = min{−h′(xs(ε)),
h(x∗(ε))

xs(ε)− x∗(ε)
}.

The quantities κ∗(ε), λ∗(ε), κ
∗(ε), and λ∗(ε) are non-

negative and depend only on the channel parameter ε and
the degrees (l, r). In addition, κ∗(ε) is strictly positive
for all ε ∈ [0, 1].

(iv) For 0 ≤ ε ≤ 1,

x∗(ε) >
1

l2r2
.

(v) For 0 ≤ ε ≤ 1,

κ∗(ε) ≥
1

8r2
.

(vi) If we draw a line from 0 with slope −κ∗, then h(x) lies
below this line for x ∈ [0, x∗].
If we draw a line from xu(ε) with slope λ∗, then h(x)
lies below this line for all x ∈ [x∗, xu(ε)].
If we draw a line from xu(ε) with slope κ∗, then h(x)
lies above this line for x ∈ [xu(ε), x∗].
Finally, if we draw a line from xs(ε) with slope −λ∗,
then h(x) lies above this line for all x ∈ [x∗, xs(ε)].
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Fig. 11. Pictorial representation of the various quantities which appear in
Lemma 32. We use the (3, 6) ensemble to transmit over a BEC with erasure
probability ε = 0.44. The function h(x) = 0.44(1 − (1 − x)5)2 − x is
represented in the figure by the smooth bold curve. The roots of h(x) = 0
or, equivalently, the FPs of DE are given by 0, xu(0.44) ≈ 0.2054, and
xs(0.44) ≈ 0.3265. There are only two stationary points of h(x), i.e., only
two points at which h′(x) = 0. They are given by x∗(0.44) ≈ 0.0697 and
x∗(0.44) ≈ 0.2673. Along with the curve h(x), the figure contains three
dashed lines representing the tangents at the points 0, xu(0.44) and xs(0.44).
The slopes of the tangents at 0, xu(0.44) and xs(0.44) are h′(0) = −1,
h′(xu) = 0.1984 and h′(xs) = −0.2202, respectively. Also shown are the
four lines which bound h(x) in the various regions. These lines are given
(their end-points) by: {(0, 0), (x∗, h(x∗))} , {(x∗, h(x∗)), (xu(0.44), 0)},
{(xu(0.44), 0), (x∗, h(x∗))} and {(x∗, h(x∗)), (xs(0.44), 0)} and have
slopes −0.4191, 0.2157, 0.1048 and −0.1098 respectively. Thus we have
κ∗(0.44) = 0.1048, λ∗(0.44) = 0.1098, κ∗(0.44) = 0.4191 and
λ∗(0.44) = 0.1984.

Example 33 ((3, 6)-Ensemble): Consider transmission us-
ing a code from the (3, 6) ensemble over a BEC with ε = 0.44.
The fixed point equation for the BP decoder is given by

x = 0.44(1− (1− x)5)2.

The function h(x) = 0.44(1 − (1 − x)5)2 − x is shown in
Figure 11. The equation h(x) = 0 has exactly 3 real roots,
namely, 0, xu(0.44) ≈ 0.2054 and xs(0.44) ≈ 0.3265. Further
properties of h(x) are shown in Figure 11.
Let us prove each part separately. In order to lighten our
notation, we drop the ε dependence for quantities like xu, xs,
x∗, or x∗.
(i) Note that h(x) > 0 for all x ∈ (xu, xs), with equality

at the two ends. This implies that h′(xu) > 0 and that
h′(xs) < 0. With respect to the derivative, we have

|h′(x)| = |ε(l−1)(r−1)(1−x)r−2(1−(1−x)r−1)l−2−1|
≤ (l− 1)(r− 1) + 1 ≤ lr.

(ii) We claim that h′′(x) = 0 has exactly one real solution in
(0, 1). We have

h′′(x) =

ε(l− 1)(r− 1)(1− x)r−3(1− (1− x)r−1)l−3

×
[
(1− x)r−1(lr− l− r)− r + 2

]
. (24)

Thus h′′(x) = 0 for x ∈ (0, 1) only at

x = 1−
( r− 2

lr− l− r

) 1
r−1

. (25)

Since l ≥ 3, the above solution is in (0, 1).
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Since h(0) = h(xu) = h(xs) = 0, we know from Rolle’s
theorem that there must exist an 0 ≤ x∗ ≤ xu and an
xu ≤ x∗ ≤ xs, such that h′(x∗) = h′(x∗) = 0.
Now suppose that there exists a y ∈ (0, 1), x∗ 6= y 6= x∗,
such that h′(y) = 0, so that h′(·) vanishes at three distinct
places in (0, 1). Then by Rolle’s theorem we conclude
that h′′(x) = 0 has at least two roots in the interval
(0, 1), a contradiction.

(iii) To check that the various quantities in part (iii) are strictly
positive, it suffices to verify that h(x∗) 6= 0 and h(x∗) 6=
0. But we know from Lemma 9 that h(x) = 0 has exactly
two solutions, namely xu and xs, and neither of them is
equal to x∗ or x∗ since h′(xu) > 0.

(iv) From (24), for all x ∈ [0, 1] we can upper bound |h′′(x)|
by

(l−1)(r−1)[lr−l−r−r+2] < l2r2. (26)

Note that h′(0) = −1 and, by definition, h′(x∗) = 0,
so that 1

x∗
= h′(x∗)−h′(0)

x∗−0 . Consider the function h′(x),
x ∈ [0, x∗]. From the continuity of the function h′(x) and,
using the mean-value theorem, we conclude that there
exists an η ∈ (0, x∗) such that h′′(η) = h′(x∗)−h′(0)

x∗
. But

from (26) we know that h′′(η) < l2r2. It follows that
1
x∗

= h′(x∗)−h′(0)
x∗

< l2r2.
(v) To get the universal lower bound on κ∗(ε) note that the

dominant (i.e., smaller) term in the definition of κ∗(ε) is
−h(x∗(ε))
x∗(ε)

. (The second term, −h′(0), is 1.) Recall that x∗
is the point where h(x) takes on the minimum value in
the range [0, xu(ε)]. We can therefore rewrite κ∗(ε) in the
form 1

x∗
max0≤x≤xu(ε){−h(x)}. To get a lower bound

on κ∗(ε) we use the trivial upper bound x∗(ε) ≤ 1. It
therefore remains to lower bound max0≤x≤xu(ε){−h(x)}.
Notice that −h(x) is a decreasing function of ε for every
x ∈ [0, xu(1)]. Thus, inserting ε = 1, we get

max
0≤x≤xu(1)

[x− (1− (1− x)r−1)l−1]

= max
0≤x≤xu(1)

[(x
1

l−1 )l−1 − (1− (1− x)r−1)l−1]

≥ max
0≤x≤(r−1)

− l−1
l−2

(x
1

l−1 − (r− 1)x)x
l−2
l−1 .

Let us see how we derived the last inequality. First we
claim that for x ∈ [0, (r − 1)−

l−1
l−2 ] we have x

1
l−1 ≥

(r − 1)x ≥ 1 − (1 − x)r−1. Indeed, this can be easily
seen by using the identity 1−(1−x)r−1 = x(1+(1−x)+
· · ·+(1−x)r−2) and x ≤ 1. Then we use Al−1−Bl−1 =
(A−B)(Al−2 +Al−3B+ · · ·+Bl−2) ≥ (A−B)Al−2

for all 0 ≤ B ≤ A. Finally we use

(xu(1))
1

l−1 = (1− (1− xu(1))r−1) ≤ (r− 1)xu(1),

so that

xu(1) ≥ (r− 1)−
l−1
l−2 . (27)

As a consequence [0, (r−1)−
l−1
l−2 ] ⊆ [0, xu(1)] and hence

we get the last inequality. Now we can further lower
bound the right-hand-side above by evaluating it at any
element of [0, (r− 1)−

l−1
l−2 ].

We pick x̂ = 2−
l−1
l−2 (r−1)−

l−1
l−2 . Continuing the chain of

inequalities we get

x=x̂
≥ (2l−1(r− 1))−

1
l−2 (x̂)

l−2
l−1

= (2l−1(r− 1))−
1

l−2 (2−1(r− 1)−1)

=
1

2
2l−3
l−2 (r− 1)

l−1
l−2

(a)

≥ 1

8(r− 1)2
≥ 1

8r2
.

Since l ≥ 3 we have 2l−3
l−2 ≤ 3 and l−1

l−2 ≤ 2. Hence we
obtain (a).

(vi) Let us prove that for all x ∈ (xu, x
∗), h(x) is strictly

above the line which contains the point (xu, 0) and has
slope κ∗. Denote this line by l(x). More precisely, we
have l(x) = κ∗(x − xu). Suppose to the contrary that
there exists a point y ∈ (xu, x

∗) such that h(y) < l(y).
In this case we claim that the equation h(x)− l(x) = 0
must have at least 4 roots.
This follows from (a) h(xu) = l(xu), (b) h′(xu) ≥
l′(xu), (c) h(y) < l(y), (d) h(x∗) ≥ l(x∗), and, finally,
(e) h(1) < l(1), where xu < y < x∗ < 1. If all
these inequalities are strict then the 4 roots are distinct.
Otherwise, some roots will have higher multiplicities.
But if h(x)− l(x) = 0 has at least 4 roots then h′′(x)−
l′′(x) = 0 has at least 2 roots. Note that l′′(x) = 0, since
l(x) is a linear function. This leads to a contradiction,
since, as discussed in part (ii), h′′(x) has only one (single)
root in (0, 1).
The other cases can be proved along similar lines.

APPENDIX III
PROOF OF LEMMA 26

We split the transition into several stages. Generically, in
each of the ensuing arguments we consider a section with
associated value just above the lower bound of the corre-
sponding interval. We then show that, after a fixed number
of further sections, the value must exceed the upper bound
of the corresponding interval. Depending on the length L and
the entropy of the constellation there might not be sufficiently
many sections left in the constellation to pass all the way to
xs(ε)− δ. In this case the conclusion of the lemma is trivially
fulfilled. Therefore, in the sequel, we can always assume that
there are sufficiently many points in the constellation.

In the sequel, κ∗(ε) and x∗(ε) are the specific quantities
for a particular ε, whereas κ∗ and x∗ are the strictly positive
universal bounds valid for all ε, discussed in Lemma 32. We
write κ∗ and x∗ instead of 1

8r2 and 1
l2r2

to emphasize their
operational meaning.
(i) Let δ > 0. Then there are at most w( 1

κ∗δ
+ 1) sections i

with value xi in the interval [δ, x∗(ε)].
Let i be the smallest index so that xi ≥ δ. If xi+(w−1) ≥
x∗(ε) then the claim is trivially fulfilled. Assume there-
fore that xi+(w−1) ≤ x∗(ε). Using the monotonicity of
g(·),

xi = εg(xi−(w−1), . . . , xi, . . . , xi+(w−1))

≤ εg(xi+(w−1), . . . , xi+(w−1)).
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This implies

xi+(w−1) − xi ≥ xi+(w−1) − εg(xi+(w−1), . . . , xi+(w−1))

(2)
= −h(xi+(w−1))

Lemma 32 (vi)
≥ −l(xi+(w−1))

≥ −l(xi) ≥ −l(δ) = κ∗(ε)δ.

This is equivalent to

xi+(w−1) ≥ xi + κ∗(ε)δ.

More generally, using the same line of reasoning,

xi+l(w−1) ≥ xi + lκ∗(ε)δ,

as long as xi+l(w−1) ≤ x∗(ε).
We summarize. The total distance we have to cover is
x∗ − δ and every (w − 1) steps we cover a distance of
at least κ∗(ε)δ as long as we have not surpassed x∗(ε).
Therefore, after (w − 1)bx∗(ε)−δκ∗(ε)δ

c steps we have either
passed x∗ or we must be strictly closer to x∗ than κ∗(ε)δ.
Hence, to cover the remaining distance we need at most
(w− 2) extra steps. The total number of steps needed is
therefore upper bounded by w − 2 + (w − 1)bx∗(ε)−δκ∗(ε)δ

c,
which, in turn, is upper bounded by w( x∗(ε)κ∗(ε)δ

+ 1). The
final claim follows by bounding x∗(ε) with 1 and κ∗(ε)
by κ∗.

(ii) From x∗(ε) up to xu(ε) it takes at most w( 8
3κ∗(x∗)2

+ 2)
sections.
Recall that x̄i is defined by x̄i = 1

w2

∑w−1
j,k=0 xi+j−k.

From Lemma 24 (i), xi ≤ εg(x̄i, x̄i, . . . , x̄i) = x̄i+h(x̄i).
Sum this inequality over all sections from −∞ to k ≤ 0,

k∑
i=−∞

xi ≤
k∑

i=−∞
x̄i +

k∑
i=−∞

h(x̄i).

Writing
∑k
i=−∞ x̄i in terms of the xi, for all i, and

rearranging terms,

−
k∑

i=−∞
h(x̄i) ≤

1

w2

w−1∑
i=1

(
w − i+ 1

2

)
(xk+i − xk−i+1)

≤ w

6
(xk+(w−1) − xk−(w−1)).

Let us summarize:

xk+(w−1) − xk−(w−1) ≥ −
6

w

k∑
i=−∞

h(x̄i). (28)

From (i) and our discussion at the beginning, we can
assume that there exists a section k so that x∗(ε) ≤
xk−(w−1). Consider sections xk−(w−1), . . . , xk+(w+1), so
that in addition xk+(w−1) ≤ xu(ε). If no such k exists
then there are at most 2w − 1 points in the interval
[x∗(ε), xu(ε)], and the statement is correct a fortiori.
From (28) we know that we have to lower bound
− 6
w

∑k
i=−∞ h(x̄i). Since by assumption xk+(w−1) ≤

xu(ε), it follows that x̄k ≤ xu(ε), so that every contri-
bution in the sum − 6

w

∑k
i=−∞ h(x̄i) is positive. Further,

by (the Spacing) Lemma 25, w(x̄i − x̄i−1) ≤ 1. Hence,

− 6

w

k∑
i=−∞

h(x̄i) ≥ −6

k∑
i=−∞

h(x̄i)(x̄i − x̄i−1). (29)

Since by assumption x∗(ε) ≤ xk−(w−1), it follows that
x̄k ≥ x∗(ε) and by definition x−∞ = 0. Finally,
according to Lemma 32 (iii), −h(x) ≥ κ∗(ε)x for x ∈
[0, x∗(ε)]. Hence,

−6

k∑
i=−∞

h(x̄i)(x̄i − x̄i−1) ≥ 6κ∗(ε)

∫ x∗(ε)
2

0

xdx

=
3

4
κ∗(ε)(x∗(ε))

2. (30)

The inequality in (30) follows since there must exist a
section with value greater than x∗(ε)

2 and smaller than
x∗(ε). Indeed, suppose, on the contrary, that there is no
section with value between (x∗(ε)2 , x∗(ε)). Since x̄k ≥
x∗(ε), we must then have that x̄k − x̄k−1 >

x∗(ε)
2 . But

by the Spacing Lemma 25 we have that x̄k − x̄k−1 ≤
1
w . This would imply that 1

w > x∗(ε)
2 . In other words,

w < 2
x∗(ε)

. Using the universal lower bound on x∗(ε)

from Lemma 32 (iv), we conclude that w < 2l2r2, a
contradiction to the hypothesis of the lemma.
Combined with (28) this implies that

xk+(w−1) − xk−(w−1) ≥
3

4
κ∗(ε)(x∗(ε))

2.

We summarize. The total distance we have to cover is
xu(ε) − x∗(ε) and every 2(w − 1) steps we cover a
distance of at least 3

4κ∗(ε)(x∗(ε))
2 as long as we have not

surpassed xu(ε). Allowing for 2(w−1)−1 extra steps to
cover the last part, bounding again w−1 by w, bounding
xu(ε)−x∗(ε) by 1 and replacing κ∗(ε) and x∗(ε) by their
universal lower bounds, proves the claim.

(iii) From xu(ε) to xu(ε) + 3κ∗(x∗)
2

4(1+12lr) it takes at most 2w
sections.
Let k be the smallest index so that xu(ε) ≤ xk−(w−1). It
follows that x̄k−2w+1 ≤ xu(ε) ≤ x̄k. Let k̂ be the largest
index so that x̄k̂ ≤ xu(ε). From the previous line we
deduce that k−2w+1 ≤ k̂ < k, so that k− k̂ ≤ 2w−1.
We use again (28). Therefore, let us bound
− 6
w

∑k
i=−∞ h(x̄i). We have

− 6

w

k∑
i=−∞

h(x̄i) = − 6

w

k̂∑
i=−∞

h(x̄i)−
6

w

k∑
i=k̂+1

h(x̄i)

(a)

≥ 3

4
κ∗(ε)(x∗(ε))

2−12lr(xk+(w−1)−xu(ε)).

We obtain (a) as follows. There are two sums, one from
−∞ to k̂ and another from k̂+ 1 to k. Let us begin with
the sum from −∞ to k̂. First, we claim that x̄k̂ ≥

x∗(ε)
2 .

Indeed, suppose x̄k̂ <
x∗(ε)

2 . Then, using the definition
of k̂,

x̄k̂+1 − x̄k̂ > xu(ε)− x∗(ε)

2
≥ xu(ε)

2
≥ xu(1)

2
(27)

≥ (r− 1)−
l−1
l−2

2
≥ 1

2r2
.

But from (the Spacing) Lemma 25, x̄k̂+1 − x̄k̂ ≤
1
w ,

a contradiction, since from the hypothesis of the lemma
w ≥ 2r2. Using (29) and (30) with the integral from 0 to
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x∗(ε)/2 we get the first expression in (a). Note that the
integral till x∗(ε)/2 suffices because either x̄k̂ ≤ x∗(ε) or,
following an argument similar to the one after (30), there
must exist a section with value between (x∗(ε)2 , x∗(ε)).
We now focus on the sum from k̂ + 1 to k. From the
definition of k̂, for all i ∈ [k̂ + 1, k], |h(x̄i)| ≤ lr(x̄i −
xu(ε)). Indeed, recall from Lemma 32 that |h′(x)| ≤ lr

for x ∈ [0, 1]. In particular, this implies that the line with
slope lr going through the point (xu(ε), 0) lies above
h(x) for x ≥ xu(ε). Further, x̄i − xu(ε) ≤ x̄k − xu(ε) ≤
xk+w−1 − xu(ε). Finally, using k − k̂ ≤ 2w − 1 we get
the second expression in (a).
From (28) we now conclude that

xk+w−1 − xu(ε) ≥
3

4
κ∗(ε)(x∗(ε))

2 − 12lr(xk+w−1 − xu(ε)),

which is equivalent to

xk+(w−1) − xu(ε) ≥ 3κ∗(ε)(x∗(ε))
2

4(1 + 12lr)
.

The final claim follows by replacing again κ∗(ε) and
x∗(ε) by their universal lower bounds κ∗ and x∗.

(iv) From xu(ε) + 3κ∗(x∗)
2

4(1+12lr) to xs(ε) − δ it takes at most
w 1
δmin{κmin,λmin} steps, where

κmin = min
εmin≤ε≤1

κ∗(ε), λmin = min
εmin≤ε≤1

λ∗(ε).

From step (iii) we know that within a fixed number of
steps we reach at least 3κ∗(x∗)

2

4(1+12lr) above xu(ε). On the
other hand we know from Lemma 23 that x0 ≤ xs(ε). We
conclude that xs(ε)−xu(ε) ≥ 3κ∗(x∗)

2

4(1+12lr) . From Lemma 9
we know that xs(ε

BP)−xu(εBP) = 0 and that this distance
is strictly increasing for ε ≥ εBP. Therefore there exists a
unique number, call it εmin, εmin > εBP(l, r), so that

xs(ε)− xu(ε) ≥ 3κ∗(x∗)
2

4(1 + 12lr)
,

if and only if ε ≥ εmin. As defined above let,

κmin = min
εmin≤ε≤1

κ∗(ε), λmin = min
εmin≤ε≤1

λ∗(ε).

Since εmin > εBP(l, r), both κmin and λmin are strictly pos-
itive. Using similar reasoning as in step (i), we conclude
that in order to reach from xu(ε) + 3κ∗(x∗)

2

4(1+12lr) to xs(ε)− δ
it takes at most w xs(ε)−xs(ε)

δmin{κmin,λmin} steps, where we have

used the fact that, by assumption, δ ≤ 3κ∗(x∗)
2

4(1+12lr) .
From these four steps we see that we need at most

w(
1

δ
[

1

κ∗
+

1

min{κmin, λmin}
] + [

2

3κ∗(x∗)2
+ 5])

≤ w1

δ
[

1

κ∗
+

1

min{κmin, λmin}
+

2

3κ∗(x∗)2
+ 5]

, w
c(l, r)

δ

sections in order to reach xs(ε) − δ once we reach δ. This
constant depends on (l, r) but it is independent of L and ε.

APPENDIX IV
PROOF OF THEOREM 27

To establish the existence of x with the desired properties,
we use the Brouwer FP theorem: it states that every continuous
function f from a convex compact subset S of a Euclidean
space to S itself has a FP.

Let z denote the one-sided forward DE FP for parameter
ε = 1. Let the length L be chosen in accordance with the
the statement of the theorem. By assumption L > w

r
l
−1 . Using

Lemma 22 part (ii), we conclude that χ(z) ≥ 1
2 (1− l

r
), i.e., z

is non-trivial. By Lemma 22 part (i), it is therefore proper, i.e.,
it is non-decreasing. Suppose that χ(z) ≤ χ. In this case, it is
easy to verify that the second statement of the theorem is true.
So in the remainder of the proof we assume that χ(z) > χ.

Consider the Euclidean space [0, 1]L+1. Let S(χ) be the
subspace

S(χ) ={x ∈ [0, 1]L+1 : χ(x) = χ;xi ≤ zi, i ∈ [−L, 0];

x−L ≤ x−L+1 ≤ · · · ≤ x0}.

First note that S(χ) is non-empty since z is non-trivial and
has entropy at least χ. We claim that S(χ) is convex and
compact. Indeed, convexity follows since S(χ) is a convex
polytope (defined as the intersection of half spaces). Since
S(χ) ⊂ [0, 1]L+1 and S(χ) is closed, S(χ) is compact.

Note that any constellation belonging to S(χ) has entropy
χ and is increasing, i.e., any such constellation is proper. Our
first step is to define a map V (x) which “approximates” the
DE equation and is well-suited for applying the Brouwer FP
theorem. The final step in our proof is then to show that the
FP of the map V (x) is in fact a FP of one-sided DE.

The map V (x) is constructed as follows. For x ∈ S(χ), let
U(x) be the map,

(U(x))i = g(xi−w+1, . . . , xi+w−1), i ∈ [−L, 0].

Define V : S(χ)→ S(χ) to be the map

V (x) =

{
U(x) χ

χ(U(x)) , χ ≤ χ(U(x)),

α(x)U(x) + (1− α(x))z, otherwise,

where
α(x) =

χ(z)− χ
χ(z)− χ(U(x))

.

Let us show that this map is well-defined. First consider the
case χ ≤ χ(U(x)). Since x ∈ S(χ), x ≤ z (componentwise).
By construction, it follows that U(x) ≤ U(z) = z, where the
last step is true since z is the forward FP of DE for ε = 1.
We conclude that U(x) χ

χ(U(x)) ≤ z. Further, by construction
χ(U(x) χ

χ(U(x)) ) = χ. It is also easy to check that U(x) is
non-negative and that it is non-decreasing. It follows that in
this case V (x) ∈ S(χ).

Consider next the case χ > χ(U(x)). As we have seen,
x ≤ z so that χ(U(x)) ≤ χ(U(z)) = χ(z). Together with
χ > χ(U(x)) this shows that α(x) ∈ [0, 1]. Further, the choice
of α(x) guarantees that χ(V (x)) = χ. It is easy to check that
V (x) is increasing and bounded above by z. This shows that
also in this case V (x) ∈ S(χ).

We summarize, V maps S(χ) into itself.
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In order to be able to invoke Brouwer’s theorem we need to
show that V (x) is continuous. This means we need to show
that for every x ∈ S(χ) and for any ε > 0, there exists a δ > 0
such that if y ∈ B(x, δ) ∩ S(χ) then ‖V (y)− V (x)‖2 ≤ ε.

First, note that U(x) and χ(x) are continuous maps on
S(χ). As a result, χ(U(x)), which is the composition of two
continuous maps, is also continuous.

Fix x ∈ S(χ). We have three cases: (i) χ(U(x)) > χ, (ii)
χ(U(x)) < χ, and (iii) χ(U(x)) = χ.

We start with (i). Let ρ = χ(U(x))−χ and fix ε > 0. From
the continuity of χ(U(x)) we know that there exists a ball
B(x, ν1) of radius ν1 > 0 so that if y ∈ B(x, ν1)∩S(χ) then
|χ(U(x)) − χ(U(y))| ≤ ρ, so that χ(U(y)) ≥ χ. It follows
that for those y, V (y) = U(y) χ

χ(U(y)) .
For a subsequent argument we will need also a tight

bound on |χ(U(x))−χ(U(y))| itself. Let us therefore choose
γ = min{ε, ρ}, γ > 0. And let us choose ν1 so that if
y ∈ B(x, ν1) ∩ S(χ) then |χ(U(x)) − χ(U(y))| ≤ γχ

2(L+1) ,
so that χ(U(y)) ≥ χ.

Further, since U(·) is continuous, there exists ν2 > 0 such
that for all y ∈ B(x, ν2)∩S(χ), ‖U(x)−U(y)‖2 ≤ ε

2 . Choose
ν = min{ν1, ν2}. Then for all y ∈ B(x, ν) ∩ S(χ),

‖V (x)− V (y)‖2 = χ
∥∥∥ U(x)

χ(U(x))
−

U(y)

χ(U(y))

∥∥∥
2

≤ χ
∥∥∥ U(x)

χ(U(x))
−

U(y)

χ(U(x))

∥∥∥
2

+ χ
∥∥∥ U(y)

χ(U(x))
−

U(y)

χ(U(y))

∥∥∥
2

χ(U(x))>χ

≤ ‖U(x)− U(y)‖2 +
‖U(y)‖2

χ

∣∣∣χ(U(x))− χ(U(y))
∣∣∣

≤ ε

2
+

(L+ 1)

χ

∣∣∣χ(U(x))− χ(U(y))
∣∣∣

≤ ε

2
+

(L+ 1)

χ

γχ

2(L+ 1)
≤ ε,

where above we used the bound ‖U(y)‖2 ≤ (L+ 1).
Using similar logic, one can prove (ii).
Consider claim (iii). In this case χ(U(x)) = χ, which

implies that V (x) = U(x). As before, there exists 0 < ν1 such
that for all y ∈ B(x, ν1) ∩ S(χ), ‖U(x) − U(y)‖2 < ε

2 . Let
γ = min{χ(z)− χ, χ}. Since we assumed that χ(z) > χ, we
have γ > 0. Furthermore, there exists 0 < ν2 such that for all
y ∈ B(x, ν2)∩S(χ), |χ(U(x))−χ(U(y))| < γε

2(L+1) . Choose
ν = min{ν1, ν2}. Consider y ∈ B(x, ν) ∩ S(χ). Assume first
that χ(U(y)) ≥ χ. Thus, as before,

‖V (x)− V (y)‖2 ≤ ε.

Now let us assume that χ(U(y)) < χ. Then we have

‖V (x)− V (y)‖2 = ‖U(x)− α(y)U(y)− (1− α(y))z‖2
≤ α(y)‖U(x)− U(y)‖2 + |1− α(y)|‖U(x)− U(z)‖2

≤ ε

2
+ (L+ 1)

∣∣∣χ(U(y))− χ(U(x))

χ(z)− χ(U(y))

∣∣∣
≤ ε

2
+

1

2

∣∣∣ γε

χ(z)− χ

∣∣∣ < ε,

where above we used: (i) ‖U(x) − U(z)‖2 ≤ L + 1, (ii)
χ(U(y)) < χ, (iii) χ(U(x)) = χ (when we explicitly write
|1− α(y)|).

We can now invoke Brouwer’s FP theorem to conclude that
V (·) has a FP in S(χ), call it x.

Let us now show that, as a consequence, either there exists
a one-sided FP of DE with parameter ε = 1 and entropy
bounded between (1− l

r
)(χ−xu(1))

8 − lw
2r(L+1) and χ, or x itself

is a proper one-sided FP of DE with entropy χ. Clearly, either
χ ≤ χ(U(x)) or χ(U(x)) < χ. In the first case, i.e., if
χ ≤ χ(U(x)), then x = V (x) = U(x) χ

χ(U(x)) . Combined
with the non-triviality of x, we conclude that x is a proper
one-sided FP with entropy χ and the channel parameter (given
by χ

χ(U(x)) ) less than or equal to 1. Also, from Lemma 23 we
then conclude that the channel parameter is strictly greater
than εBP(l, r).

Assume now the second case, i.e., assume that χ(U(x)) <
χ. This implies that

x = α(x)(U(x)) + (1− α(x))z.

But since x ≤ z,

α(x)x+ (1− α(x))z ≥ x = α(x)(U(x)) + (1− α(x))z.

As a result, x ≥ (U(x)). We will now show that this implies
the existence of a one-sided FP of DE with parameter ε = 1

and with entropy bounded between (1− l
r
)(χ−xu(1))

8 − lw
2r(L+1)

and χ.
Let x(0) = x and define x(`) = U(x(`−1)), ` ≥ 1.

By assumption, x ≥ U(x), i.e., x(0) ≥ x(1). By induction
this implies that x(`−1) ≥ x(`), i.e, the sequence x(`) is
monotonically decreasing. Since it is also bounded from below,
it converges to a fixed point of DE with parameter ε = 1, call
it x(∞).

We want to show that x(∞) is non-trivial and we want to
give a lower bound on its entropy. We do this by comparing
x(`) with a constellation that lower-bounds x(`) and which
converges under DE to a non-trivial FP.

We claim that at least the last N = (L + 1)χ−xu(1)
2

components of x are above χ+xu(1)
2 :

χ(L+ 1) = χ(x)(L+ 1) ≤ N + (L+ 1−N)
χ+ xu(1)

2
,

where on the right hand side we assume (worst case) that the
last N components have height 1 and the previous (L+1−N)

components have height χ+xu(1)
2 . If we solve the inequality for

N we get N ≥ (L+ 1) χ−xu(1)
2−χ−xu(1) ≥ (L+ 1)χ−xu(1)

2 .
Consider standard DE for the underlying regular (l, r)

ensemble and ε = 1. We claim that it takes at most m

m = max{ 2

κ∗(1)(χ− xu(1))
,

2

λ∗(1)(1− l
r
)
}

DE steps to go from the value χ+xu(1)
2 to a value above

1+ l
r

2 . The proof idea is along the lines used in the proof of
Lemma 26. Consider the function h(x) as defined in (2) for
ε = 1. Note that xu(1) < χ+xu(1)

2 and that 1+ l
r

2 < xs(1) = 1.
Further, the function h(x) is unimodal and strictly positive in
the range (xu(1), xs(1)) and h(x) is equal to the change in x
which happens during one iteration, assuming that the current
value is x. If χ+xu(1)

2 ≥ 1+ l
r

2 then the statement is trivially
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true. Otherwise, the progress in each required step is at least
equal to

min{h(
χ+ xu(1)

2
), h(

1 + l
r

2
)}

≥min{κ∗(1)(
χ+ xu(1)

2
− xu(1)), λ∗(1)(1−

1 + l
r

2
)}.

We use Lemma 32 part (vi) to get the last inequality. The
claim now follows by observing that the total distance that
has to be covered is no more than 1.

Consider the constellation y(0), which takes the value 0

for [−L,−N ] and the value χ+xu(1)
2 for [−N + 1, 0]. By

construction, y = y(0) ≤ x(0) = x. Define y(`) = U(y(`−1)),
` ≥ 1. By monotonicity we know that U(y(`)) ≤ U(x(`)) (and
hence y(∞) ≤ x(∞)). In particular this is true for ` = m. But
note that at least the last N −wm positions of y(m) are above
1+ l

r

2 . Also, by the choice of L, N − wm ≥ N/2.
Define the constellation v(0) which takes the value 0 for

[−L,−N/2] and the value 1+ l
r

2 for [−N/2 + 1, 0]. Define
v(`) =

1+ l
r

2 U(v(`−1)), ` ≥ 0. Again, observe that by definition
v(0) ≤ y(m) and 1+ l

r

2 ≤ 1, hence we have v(∞) ≤ y(∞). From
Lemma 22 we know that for a length N/2 = (L+ 1)χ−xu(1)

4

and a channel parameter 1+ l
r

2 the resulting FP of forward DE
has entropy at least

χ′ =
1− l

r

4
− lw

r(χ− xu(1))(L+ 1)
> 0.

Above, χ′ > 0 follows from the first assumption on L
in the hypothesis of the theorem. It follows that v(∞) has
(unnormalized) entropy at least equal to χ′(N/2) and therefore
normalized entropy at least χ′(χ−xu(1))

4 .
Since x(∞) ≥ y(∞) ≥ v(∞), we conclude that x(∞) is a

one-sided FP of DE for parameter ε = 1 with entropy bounded
between (1− l

r
)(χ−xu(1))

8 − lw
2r(L+1) and χ.

APPENDIX V
PROOF OF THEOREM 30

(i) Continuity: In phases (i), (ii), and (iv) the map is dif-
ferentiable by construction. In phase (iii) the map is
differentiable in each “period.” Further, by definition of
the map, the (sub)phases are defined in such a way that
the map is continuous at the boundaries.

(ii) Bounds in Phase (i): Consider α ∈ [ 3
4 , 1]. By construction

of the EXIT curve, all elements xi(α), i ∈ [−L, 0],
are the same. In particular, they are all equal to x0(α).
Therefore, all values εi(α), i ∈ [−L + w − 1, 0], are
identical, and equal to ε0(α).
For points close to the boundary, i.e., for i ∈ [−L,−L+
w−2], some of the inputs involved in the computation of
εi(α) are 0 instead of x0(α). Therefore, the local channel
parameter εi(α) has to be strictly bigger than ε0(α) in
order to compensate for this. This explains the lower
bound on εi(α).

(iii) Bounds in Phase (ii): Let i ∈ [−L, 0] and α ∈ [ 1
2 ,

3
4 ].

Then

x∗−L ≤ xi(α) = εi(α)g(xi−w+1(α), . . . , xi+w−1(α))

≤ εi(α)g(x∗0, . . . , x
∗
0) = εi(α)

x∗0
ε(x∗0)

.

This gives the lower bound εi(α) ≥ ε(x∗0)
x∗−L
x∗0

.
(iv) Bounds in Phase (iii): Let α ∈ [ 1

4 ,
1
2 ] and i ∈ [−L, 0].

Note that x0( 1
2 ) = x∗0 but that x0( 1

4 ) = x∗−L′+L. The
range [ 1

4 ,
1
2 ] is therefore split into L′ − L “periods.” In

each period, the original solution x∗ is “moved in” by
one segment. Let p ∈ {1, . . . , L′−L} denote the current
period we are operating in. In the sequel we think of
p as fixed and consider in detail the interpolation in
this period. To simplify our notation, we reparameterize
the interpolation so that if α goes from 0 to 1, we
moved in the original constellation exactly by one more
segment. This alternative parametrization is only used in
this section. In part (vi), when deriving bounds on ε∗, we
use again the original parametrization.
Taking this reparameterization into account, for α ∈
[0, 1], according to Definition 28,

xi(α) =

{
(x∗i−p)

α(x∗i−p+1)1−α, i ∈ [−L, 0],

0, i < −L.

We remark that xi(α) decreases with α. Thus we have for
any α, xi(1) ≤ xi(α) ≤ xi(0). By symmetry, xi(α) =
x−i(α) for i ≥ 1.
We start by showing that if xi(α) > γ and i ∈ [−L +
w−1,−w+ 1] then εi(α)/ε∗ ≤ 1 + 1

w1/8 . For α ∈ [0, 1],
define

fi(α) =
(

1− 1

w

w−1∑
k=0

xi−k(α)
)r−1

.

Further, define

f∗i =
(

1− 1

w

w−1∑
k=0

x∗i−p+1−k

)r−1

.

Note that the values x∗i in the last definition are the values
of the one-sided FP. In particular, this means that for
i ≥ 0 we have x∗i = x∗0.
From the definition of the EXIT curve we have

εi(α) =
xi(α)(

1− 1
w

∑w−1
j=0 fi+j(α)

)l−1 . (31)

By monotonicity,(
1−
∑w−1
j=0 fi+j(α)

w

)l−1

≥
(

1−
∑w−1
j=0 f

∗
i+j−1

w

)l−1

=
x∗i−p
ε∗

.

In the first step we used the fact that −L+w− 1 ≤ i ≤
−w + 1 and the second step is true by definition.
Substituting this into the denominator of (31) results in

εi(α)

ε∗
≤
(x∗i−p+1

x∗i−p

)1−α
≤
x∗i−p+1

x∗i−p
= 1 +

1
x∗i−p+1

(∆x∗)i−p+1
− 1

,

where we defined (∆x∗)i = x∗i − x∗i−1. If we plug
the upper bound on (∆x∗)i−p+1 due to (the Spacing)
Lemma 25 into this expression we get

1

x∗i−p+1/(∆x
∗)i−p+1 − 1

≤ 1(
x∗i−p+1

ε∗

) 1
l−1 w

(l−1)(r−1) − 1

.
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By assumption xi(α) > γ. But from the monotonicity we
have x∗i−p+1 = xi(0) ≥ xi(α). Thus x∗i−p+1 > γ. This
is equivalent to(x∗i−p+1

ε∗

) 1
l−1 w

(r− 1)(l− 1)
− 1 ≥ w1/8. (32)

As a consequence,

εi(α)

ε∗
≤ 1 +

1

x∗i−p+1/(∆x
∗)i − 1

≤ 1 +
1

w1/8
,

the promised upper bound.
Let us now derive the lower bounds. First suppose that
xi(α) > γ. For i ∈ [−L, 0] we can use again monotonic-
ity to conclude that

x∗i−p ≤ xi(α) = εi(α)
(

1−
∑w−1
j=0 fi+j(α)

w

)l−1

≤ εi(α)
x∗i−p+1

ε∗
.

This proves that

εi(α)

ε∗
≥

x∗i−p
x∗i−p+1

= 1− (∆x∗)i−p+1

x∗i−p+1

.

Note that this sequence of inequalities is true for the
whole range i ∈ [−L, 0]. Since x∗i−p+1 = xi(0) ≥ xi(α),
we have x∗i−p+1 > γ and using (32) we have

(∆x∗)i−p+1

x∗i−p+1

≤ 1

1 + w1/8
.

As a consequence,

εi(α)

ε∗
≥ 1− (∆x∗)i−p+1

x∗i−p+1

≥ 1− 1

1 + w1/8
.

It remains to consider the last case, i.e., we assume that
xi(α) ≤ γ. From Lemma 24 (iv) we have

(x∗i−p/ε
∗)

1
l−1 ≥(

1− 1

w

w−1∑
k=0

x∗i−p+w−1−k

)r−2 r−1

w2

w−1∑
j,k=0

x∗i−p+j−k

≥
(

1− 1

w

w−1∑
k=0

x∗i−p+w−k

)r−2 r−1

w2

w−1∑
j,k=0

x∗i−p+j−k,

and

(x∗i−p+1/ε
∗)

1
l−1 ≥(

1− 1

w

w−1∑
k=0

x∗i−p+w−k

)r−2 r−1

w2

w−1∑
j,k=0

x∗i−p+1+j−k.

We start with (31). Write xi(α) in the numerator explic-
itly as (x∗i−p)

α(x∗i−p+1)1−α and bound each of the two
terms by the above expressions. This yields(εi(α)

ε∗

) 1
l−1 ≥

(
1− 1

w

w−1∑
k=0

x∗i−p+w−k

)(r−2) r− 1

w2

(
∑w−1
j,k=0 x

∗
i−p+j−k)α(

∑w−1
j,k=0 x

∗
i−p+1+j−k)1−α

1− 1
w

∑w−1
j=0 fi+j(α)

.

Applying steps, similar to those used to prove Lemma 24
(ii), to the above denominator, we get:

1− 1

w

w−1∑
j=0

fi+j(α) ≤ r− 1

w2

w−1∑
j,k=0

xi+j−k(α)

≤ r− 1

w2

w−1∑
j,k=0

(x∗i−p+j−k)α(x∗i−p+1+j−k)1−α.

Combining all these bounds and canceling common terms
yields(εi(α)

ε∗

) 1
l−1 ≥

(
1− 1

w

w−1∑
k=0

x∗i−p+w−k

)(r−2)

(
∑w−1
j,k=0 x

∗
i−p+j−k)α(

∑w−1
j,k=0 x

∗
i−p+1+j−k)1−α∑w−1

j,k=0(x∗i−p+j−k)α(x∗i−p+1+j−k)1−α
. (33)

Applying Holder’s inequality6 we get

(
∑w−1
j,k=0 x

∗
i−p+j−k)α(

∑w−1
j,k=0 x

∗
i−p+1+j−k)1−α∑w−1

j=0

∑w−1
k=0 (x∗i−p+j−k)α(x∗i−p+1+j−k)1−α

≥ 1.

Putting everything together we now get(εi(α)

ε∗

) 1
l−1 ≥

(
1− 1

w

w−1∑
k=0

x∗i−p+w−k

)r−2

. (34)

By assumption xi(α) ≤ γ. Again from monotonicity we
have xi(α) ≥ xi(1) = x∗i−p. Thus x∗i−p ≤ γ. Combining
this with Lemma 24 (iii) and (19) in the hypothesis of
the theorem, we obtain

(r− 1)(l− 1)(1 + w1/8)

w
≥ 1

w2

w−1∑
j,k=0

x∗i−p+j−k.

Suppose that x∗
i−p+w−dw7/8e > 1

w1/8 . Then from the
above inequality we conclude that

(r− 1)(l− 1)(1 + w1/8)

w
≥ 1

w2w1/8
(1 + 2 + · · ·+ w

7
8 ),

where we set to zero all the terms smaller than
x∗
i−p+w−dw7/8e. Upper bounding (1 + w1/8) by 2w1/8

we get

4(r− 1)(l− 1) ≥ w1/2.

But this is contrary to the hypothesis of the theorem, w >
24l2r2. Hence we must have x∗

i−p+w−dw7/8e ≤
1

w1/8 .
Therefore,

1

w

w−1∑
k=0

x∗i−p+w−k ≤
1

w

(w − dw7/8e
w1/8

+ dw7/8e+ 1
)
,

6For any two n−length real sequences (a0, a1, . . . , an−1) and
(b0, b1, . . . , bn−1) and two real numbers p, q ∈ (1,∞) such that 1

p
+ 1
q
= 1,

Holder’s inequality asserts that

n−1∑
k=0

|akbk| ≤
( n−1∑
k=0

|ak|p
) 1
p
( n−1∑
k=0

|bk|q
) 1
q
.
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where we replace x∗i−p+1, . . . , x
∗
i−p+w−dw7/8e by 1

w1/8

and the remaining dw7/8e+1 values by 1. Thus we have

1

w

w−1∑
k=0

x∗i−p+w−k ≤
4

w1/8
.

Using w ≥ 216 and combining everything, we get(εi(α)

ε∗

) 1
l−1 ≥

(
1− 4

w1/8

)r−2

.

(v) Area under EXIT Curve:7 Consider the set of M variable
nodes at position i, i ∈ [−L,L]. We want to compute
their associated EXIT integral, i.e., we want to compute∫ 1

0
hi(α)dεi(α). We use the technique introduced in [2].

We consider the set of M computation trees of height 2
rooted in all variable nodes at position i, i ∈ [−L,L].
For each such computation tree there are l check nodes
and 1+l(r−1) variable nodes. Each of the leaf variable
nodes of each computation tree has a certain position in
the range [i−w+1, i+w−1]. These positions differ for
each computation tree. For each computation tree assign
to its root node the channel value εi(α), whereas each
leaf variable node at position k “sees” the channel value
xk(α).
In order to compute

∫ 1

0
hi(α)dεi(α) we proceed as fol-

lows. We apply the standard area theorem [13, Theorem
3.81] to the M simple codes represented by these M
computation trees. Each such code has length 1+l(r−1)
and l (linearly independent) check nodes. As we will
discuss shortly, the standard area theorem tells us the
value of the sum of the 1 + l(r − 1) individual EXIT
integrals associated to a particular code. This sum consists
of the EXIT integral of the root node as well as the
l(r − 1) EXIT integrals of the leaf nodes. Assume that
we can determine the contributions of the EXIT integrals
of the leaf nodes for each computation tree. In this case
we can subtract the average such contribution from the
sum and determine the average EXIT integral associated
to the root node. In the ensuing argument, we consider
a fixed instance of a computation tree rooted in i. We
then average over the randomness of the ensemble. For
the root node the channel value stays the same for all
instances, namely, εi(α) as given in Definition 28 of
the EXIT curve. Hence, for the root node the average,
over the ensemble, is taken only over the EXIT value.
Then, exchanging the integral (w.r.t. α) and the average
and using the fact that each edge associated to the root
node behaves independently, we conclude that the average
EXIT integral associated to the root node is equal to∫ 1

0
hi(α)dεi(α), the desired quantity. Let us now discuss

this program in more detail.
For i ∈ [−L + w − 1, L − w + 1] we claim that the
average sum of the EXIT integrals associated to any such

7A slightly more involved proof shows that the area under the EXIT curve
(or more precisely, the value of the EXIT integral) is equal to the design
rate, assuming that the design rate is defined in an appropriate way (see the
discussion on page 4). For our purpose it is sufficient, however, to determine
the area up to bounds of order w/L. This simplifies the expressions and the
proof.

computation tree is equal to 1+l(r−2). This is true since
for i in this range, the positions of all leaf nodes are in
the range [−L,L]. Now applying the area theorem8 one
can conclude that the average sum of all the 1 + l(r −
1) EXIT integrals associated to the tree code equals the
number of variable nodes minus the number of check
nodes: 1 + l(r− 1)− l = 1 + l(r− 2).
For i ∈ [−L,−L+w− 2] ∪ [L−w+ 2, L] the situation
is more complicated. It can happen that some of the
leaf nodes of the computation tree see a perfect channel
for all values α since their position is outside [−L,L].
These leaf nodes are effectively not present in the code
and we should remove them before counting. Although
it would not be too difficult to determine the exact
average contribution for such a root variable node we
only need bounds – the average sum of the EXIT integrals
associated to such a root node is at least 0 and at most
1 + l(r− 2).
We summarize: If we consider all computation trees
rooted in all variable nodes in the range [−L,L] and apply
the standard area theorem to each such tree, then the total
average contribution is at least M(2L−2w+3)(1+l(r−
2)) and at most M(2L + 1)(1 + l(r − 2)). From these
bounds we now have to subtract the contribution of all the
leaf nodes of all the computation trees and divide by M
in order to determine bounds on

∑L
i=−L

∫ 1

0
hi(α)dεi(α).

Consider the expected contribution of the l(r− 1) EXIT
integrals of each of the M computation trees rooted at
i, i ∈ [−L + w − 1, L − w + 1]. We claim that this
contribution is equal to Ml(r− 1)2/r. For computation
trees rooted in i ∈ [−L,−L+w−2]∪ [L−w+ 2, L], on
the other hand, this contribution is at least 0 and at most
Ml(r− 1).
Let us start with computation trees rooted in i, i ∈
[−L+w− 1, L−w+ 1]. Fix i. It suffices to consider in
detail one “branch” of a computation tree since the EXIT
integral is an expected value and expectation is linear. By
assumption the root node is at position i. It is connected
to a check node, let’s say at position j, j ∈ [i, i+w−1],
where the choice is made uniformly at random. In turn,
this check node has (r−1) children. Let the positions of
these children be k1, . . . , kr−1, where all these indices are
in the range [k−w+1, k], and all choices are independent
and are made uniformly at random.
Consider now this check node in more detail and apply
the standard area theorem to the corresponding parity-
check code of length r. The message from the root node
is xi(α), whereas the messages from the leaf nodes are
xkl(α), l = 1, . . . , r−1, respectively. We know from the
standard area theorem applied to this parity-check code
of length r that the sum of the r EXIT integrals is equal

8To be precise, the proof of the area theorem given in [13, Theorem 3.81]
assumes that the channel value of the root node, call it εi(α), stays within the
range [0, 1]. This does not apply in our setting; for α → 0, εi(α) becomes
unbounded. Nevertheless, it is not hard to show, by explicitly writing down
the sum of all EXIT integrals, using integration by parts and finally using the
fact that (x(α), ε(α)) is a FP, that the result still applies in this more general
setting.
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to r− 1. So the average contribution of one such EXIT
integral is (r−1)/r, and the average of (r−1) randomly
chosen such EXIT integrals is (r − 1)2/r. Recalling
that so far we only considered 1 out of l branches and
that there are M computation trees, the total average
contribution of all leaf nodes of all computation trees
rooted in i should therefore be Ml(r− 1)2/r.
Let us now justify why the contribution of the leaf
nodes is equal to the “average” contribution. Label the
r edges of the check node from 1 to r, where “1” labels
the root node. Further, fix j, the position of the check
node. As we have seen, we get the associated channels
(i, k1, . . . , kr−1) if we root the tree in position i, connect
to check node j, and then connect further to k1, . . . , kr−1.
This particular realization of this branch happens with
probability w−r (given that we start in i) and the expected
number of branches starting in i that have exactly the
same “type” (i, k1, . . . , kr−1) equals Mlw−r. Consider
a permutation of (i, k1, . . . , kr−1) and keep j fixed.
To be concrete, let’s say we consider the permutation
(k3, i, k2, . . . , k1). This situation occurs if we root the
tree in k3, connect to check node j, and then connect
further to i, k2, . . . , k1. Again, this happens with prob-
ability w−r and the expected number of such branches
is Mlw−r. It is crucial to observe that all permutations
of (i, k1, . . . , kr−1) occur with equal probability in these
computation trees and that all the involved integrals occur
for computation graphs that are rooted in a position in the
range [−L,L]. Therefore, the “average” contribution of
the (r − 1) leaf nodes is just a fraction (r − 1)/r of
the total contribution, as claimed. Here, we have used
a particular notion of “average.” We have averaged not
only over various computation trees rooted at position
i but also over computation trees rooted let’s say in
position kl, l = 1, . . . r − 1. Indeed, we have averaged
over an equivalence class given by all permutations of
(i, k1, . . . , kr−1), with j, the position of the check node
held fixed. Since i ∈ [−L+w − 1, L−w + 1], all these
quantities are also in the range [−L,L], and so they are
included in our consideration.
It remains to justify the “average” contributions that we
get for computation trees rooted in i ∈ [−L,−L + w −
2]∪ [L−w+ 2, L]. The notion of average is the same as
we have used it above. Even though we are talking about
averages, for each computation tree it is clear that the
contribution is non-negative since all the involved channel
values xk(α) are increasing functions in α. This proves
that the average contribution is non-negative. Further, the
total uncertainty that we remove by each variable leaf
node is at most 1. This proves the upper bound.
We can now summarize. We have∑L

i=−L
∫ 1

0
hi(α)dεi(α)

2L+ 1
≤ 1− l

r
+

2(w−1)

2L+ 1

l(r− 1)2

r
,

≤ 1− l

r
+
w

L
lr,∑L

i=−L
∫ 1

0
hi(α)dεi(α)

2L+ 1
≥ 1− l

r
− 2(w-1)

2L+1
(1+l(r-1)-

l

r
)

≥ 1− l

r
− w

L
lr.

(vi) Bound on ε∗:
Consider the EXIT function constructed according to
Definition 28. Recall that the EXIT value at position
i ∈ [−L,L] is defined by

hi(α) = (g(xi−w+1(α), . . . , xi+w−1(α)))
l

l−1 , (35)

and the area under the EXIT curve is given by

A(l, r, w, L) =

∫ 1

0

1

2L+ 1

L∑
i=−L

hi(α)dεi(α). (36)

As we have just seen this integral is close to the design
rate R(l, r,w, L), and from Lemma 3 we know that this
design rate converges to 1 − l/r for any fixed w when
L tends to infinity.
The basic idea of the proof is the following. We will show
that A(l, r, w, L) is also “close” to 1− l

r
+ pMAP(x(ε∗)),

where pMAP(·) is the polynomial defined in Lemma 4. In
other words, x(ε∗) must be “almost” a zero of pMAP(·).
But pMAP(·) has only a single positive root and this root
is at εMAP(l, r).
More precisely, we first find upper and lower bounds
on A(l, r, w, L) by splitting the integral (36) into four
phases. We will see that the main contribution to the area
comes from the first phase and that this contribution is
close to 1− l

r
−pMAP(x(ε∗)). For all other phases we will

show that the contribution can be bounded by a function
which does not depend on (ε∗, x∗) and which tends to 0
if let w and L tend to infinity.
For i = {1, 2, 3, 4}, define Ti as

Ti =

∫ 5−i
4

4−i
4

2

2L+ 1

−w+1∑
i=−L+w−1

hi(α)dεi(α).

Further, let

T5 =

∫ 1

0

2

2L+ 1

−L+w−2∑
i=−L

hi(α)dεi(α),

T6 =

∫ 1

0

1

2L+ 1

w−2∑
i=−w+2

hi(α)dεi(α).

Clearly, A(l, r, w, L) = T1 + T2 + T3 + T4 + T5 + T6.
We claim that for w > max{24l2r2, 216},

T1 = 1− l

r
−pMAP(x∗0),

−lr(x∗0 − x∗−L) ≤T2 ≤ r(x∗0 − x∗−L),

−w- 18− 2rl2

w
7
8 (1−4w−

1
8 )rεBP(l, r)

≤T3 ≤ 4lrw−
1
8 ,

−lrx∗−L′+L ≤T4 ≤ rx∗−L′+L,

−lw
L
≤T5 ≤

w

L
,

−lw
L
≤T6 ≤

w

L
.

If we assume these bounds for a moment, and sim-
plify the expressions slightly, we see that for w >
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max{216, 24l2r2},

|A(l, r, w, L)−1+
l

r
+pMAP(x∗0))|≤4lrw−

1
8 +

2wl

L

+lr(x∗−L′+L+x∗0−x∗−L)+
2rl2

(1−4w−
1
8 )rεBP(l, r)

w−
7
8 .

Now using the bound in part (v) on the area under the
EXIT curve we get

|pMAP(x∗0)| ≤ c1(l, r, w, L),

where

c1(l, r, w, L) = 4lrw−
1
8 +

2wl

L
+
wlr

L

+lr(x∗−L′+L+x∗0−x∗−L)+
2rl2

(1−4w−
1
8 )rεBP(l, r)

w−
7
8 .

From this we can derive a bound on ε∗ as follows. Using
Taylor’s expansion we get

pMAP(x∗0) = pMAP(xs(ε
∗)) + (x∗0 − xs(ε

∗))(pMAP(η))′,

where (pMAP(x))′ denotes the derivative w.r.t. x and
η ∈ (x∗0, xs(ε

∗)). From Lemma 4 one can verify that
|(pMAP(x))′| ≤ 2lr for all x ∈ [0, 1]. Thus,

|pMAP(xs(ε
∗))| ≤ 2lr|x∗0 − xs(ε

∗)|+ c1(l, r, w, L).

Now using pMAP(xs(ε
MAP)) = 0 and the fundamental

theorem of calculus we have

pMAP(xs(ε
∗)) = −

∫ xs(ε
MAP)

xs(ε∗)

(pMAP(x))′dx.

Further, for a (l, r)-regular ensemble we have

(pMAP(x))′ = (1− (1− x)r−1)lε′(x),

where we recall that ε(x) = x/(1 − (1 − x)r−1)l−1.
Next, from Lemma 23 we have that ε∗ > εBP. Thus
xs(ε

∗) > xBP. Also, εMAP > εBP. As a consequence,
(1 − (1 − x)r−1)l ≥ (1 − (1 − xBP)r−1)l and ε′(x) ≥ 0
for all x in the interval of the above integral.
Combining everything we get

|pMAP(xs(ε
∗))| ≥ (1− (1− xBP)r−1)l

∣∣∣ ∫ xs(ε
MAP)

xs(ε∗)

ε′(x)dx
∣∣∣

= (1− (1− xBP)r−1)l|ε(xs(ε
MAP))− ε(xs(ε

∗))|.

Define

c(l,r, w, L) = 4lrw−
1
8 +

2wl

L
+
wlr

L

+ lr(x∗−L′+L + x∗0 − x∗−L) +
2rl2

(1−4w−
1
8 )r

w−
7
8 .

Then, using ε(xs(ε
∗)) = ε∗ and ε(xs(ε

MAP)) = εMAP(l, r),
the final result is

|εMAP(l, r)− ε∗| ≤ 2lr|x∗0 − xs(ε
∗)|+ c(l, r, w, L)

εBP(l, r)(1− (1− xBP)r−1)l

(a)
=

2lr|x∗0 − xs(ε
∗)|+ c(l, r, w, L)

xBP(l, r)(1− (1− xBP)r−1)
(b)

≤ 2lr|x∗0 − xs(ε
∗)|+ c(l, r, w, L)

(xBP(l, r))2

Lemma 7
≤ 2lr|x∗0 − xs(ε

∗)|+ c(l, r, w, L)

(1− (l− 1)−
1

r−2 )2
.

To obtain (a) we use that xBP is a FP of standard DE for
channel parameter εBP. Also, we use (1− (1−xBP)r−1) ≥
xBP(l, r) to get (b).
It remains to verify the bounds on the six integrals. Our
strategy is the following. For i ∈ [−L+ w − 1,−w + 1]
we evaluate the integrals directly in phases (i), (ii), and
(iii), using the general bounds on the quantities εi(α). For
the boundary points, i.e., for i ∈ [−L,−L+ w − 2] and
i ∈ [−w + 2, 0], as well as for all the positions in phase
(iv), we use the following crude but handy bounds, valid
for 0 ≤ α1 ≤ α2 ≤ 1:∫ α2

α1

hi(α)dεi(α) ≤ hi(α2)εi(α2)− hi(α1)εi(α1)

≤ xi(α2)(g(xi−w+1(α2), . . . , xi+w−1(α2))
1

l−1

≤ xi(α2) ≤ 1, (37)∫ α2

α1

hi(α)dεi(α) ≥ −
∫ α2

α1

εi(α)dhi(α)

≥−l
{

(hi(α2))
1
l −(hi(α1))

1
l

}
≥−l(hi(α2))

1
l ≥ −l.

(38)

To prove (37) use integration by parts to write∫ α2

α1

hi(α)dεi(α) =

∫ α2

α1

d(hi(α)εi(α))−
∫ α2

α1

εi(α)dhi(α).

Now note that εi(α) ≥ 0 and that hi(α) is an increasing
function in α by construction. The second term on the
right hand side of the above equality is therefore negative
and we get an upper bound if we drop it. We get the
further bounds by inserting the explicit expressions for
hi and εi and by noting that xi as well as g are upper
bounded by 1.
To prove (38) we also use integration by parts, but now
we drop the first term. Since hi(α) is an increasing
function in α and it is continuous, it is invertible. We can
therefore write the integral in the form

∫ hi(α2)

hi(α1)
εi(h)dh.

Now note that εi(h)h = xi(h)g
1

l−1 (h) = xi(h)h
1
l ≤

h
1
l , where we used the fact that h = g

l
l−1 (recall the

definition of g(...) from (35)). This shows that εi(h) ≤
h

1−l
l . We conclude that∫ α2

α1

εi(α)dhi(α) ≤
∫ hi(α2)

hi(α1)

h
1−l
l dh

= l
{
hi(α2)

1
l − hi(α1)

1
l

}
≤ lhi(α2)

1
l ≤ l.

The bounds on T4, T5 and T6 are straightforward appli-
cations of (38) and (37). E.g., to prove that T6 ≤ w

L ,
note that there are 2w−3 positions that are involved. For
each position we know from (37) that the integral is upper
bounded by 1. The claim now follows since 2w−3

2L−1 ≤
w
L .

Using (38) leads to the lower bound. Exactly the same
line of reasoning leads to both the bounds for T5.
For the upper bound on T4 we use the second inequality
in (37). We then bound xi(α) ≤ 1 and use hi(...)

1
l =

g(...)
1

l−1 , cf. (35). Next, we bound each term in the
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sum by the maximum term. This maximum is h0( 1
4 )

1
l .

This term can further be upper bounded by 1 − (1 −
x∗−L′+L)r−1 ≤ rx∗−L′+L. Indeed, replace all the x values
in h0( 1

4 ) by their maximum, x∗−L′+L. The lower bound
follows in a similar way using the penultimate inequality
in (38).
Let us continue with T1. Note that for α ∈ [3/4, 1] and
i ∈ [−L+w−1,−w+1], εi(α) = xi(α)

(1−(1−xi(α))r−1)l−1 and
that hi(α) = (1− (1− xi(α))r−1)l. A direct calculation
shows that

T1 =

∫ 1

3
4

hi(α)dεi(α) = pMAP(1)− pMAP(xi(3/4))

= 1− l

r
− pMAP(x0(3/4))

= 1− l

r
− pMAP(x∗0).

Let us now compute bounds on T2. Using (37) we get

T2 ≤
2

2L+ 1

−w+1∑
i=−L+w−1

(hi(3/4)εi(3/4)− hi(1/2)εi(1/2))

≤ {x∗0(1− (1− x∗0)r−1)− x∗−L(1− (1− x∗−L)r−1)}
≤ r(x∗0 − x∗−L).

To obtain the second inequality we use εi(α)hi(α) =
xi(α)(hi(α))

1
l . Using the second inequality of (38) we

lower bound T2 as follows. We have

T2 ≥ −
2l

2L+ 1

−w+1∑
i=−L+w−1

(hi(3/4)
1
l − hi(1/2))

1
l )

≥ −l{(1− x∗−L)r−1 − (1− x∗0)r−1}
≥ −lr(x∗0 − x∗−L).

To obtain the second inequality we use hi(3/4) = (1 −
(1− x∗0)r−1)l and hi(1/2) ≥ (1− (1− x∗−L)r−1)l.
It remains to bound T3. For i ∈ [−L+ w − 1,−w + 1],
consider∫ 1

4

1
2

d(hi(α)εi(α)) = ε∗(hi(
1

2
)− hi(

1

4
)), (39)

where we have made use of the fact that for α = 1
4 and

α = 1
2 , εi(α) = ε∗. To get an upper bound on T3 write∫ 1

2

1
4

εi(α))dhi(α)≥ε∗
(
1− 4

w
1
8

)(r−2)(l−1)
(hi(

1

2
)−hi(

1

4
)).

Here we have used the lower bounds on εi(α) in
phase (iii) from Theorem 30 and the fact that w >
max{216, 24l2r2}. Again using integration by parts, and
upper bounding both ε∗ and (hi(1/2) − hi(1/4)) by 1,
we conclude that∫ 1

4

1
2

hi(α)dεi(α) ≤ 1−
(

1− 4

w1/8

)(r−2)(l−1)

≤ 4rlw−1/8.

Note that the right-hand-side is independent of i so that
this bound extends directly to the sum, i.e.,

T3 ≤ 4rlw−1/8.

For the lower bound we can proceed in a similar fashion.
We first apply integration by parts. Again using (39),
the first term corresponding to the total derivative can
be written as

2

2L+ 1

−w+1∑
−L+w−1

ε∗(hi(
1

2
)− hi(

1

4
)).

We write the other term in the integration by parts as
follows. For every section number i ∈ [−L+w−1,−w+
1], let βi correspond to the smallest number in [ 1

4 ,
1
2 ]

such that xi(βi) > γ. Recall the definition of γ from
part (iv) of Theorem 30. If for any section number i,
xi(

1
2 ) > γ, then βi is well-defined and xi(α) > γ for all

α ∈ [βi,
1
2 ]. Indeed, this follows from the continuity and

the monotonicity of xi(α) w.r.t. α. On the other hand, if
xi(

1
2 ) ≤ γ, we set βi = 1

2 . Then we can write the second
term as

−2

2L+ 1

−w+1∑
−L+w−1

(∫ βi

1
4

εi(α)dhi(α) +

∫ 1
2

βi

εi(α)dhi(α)
)
.

We now lower bound the two integrals as follows. For
α ∈ [βi,

1
2 ] we use the upper bound on εi(α) valid in

phase (iii) from Theorem 30. This gives us the lower
bound

−2

2L+ 1

−w+1∑
−L+w−1

ε∗
(

1 +
1

w1/8

)
(hi(

1

2
)− hi(

1

4
)),

where above we used the fact that hi(βi) ≥ hi( 1
4 ).

For α ∈ [ 1
4 , βi] we use the universal bound −lhi(βi)

1
l

(on
∫ βi

1
4
εi(α)dhi(α)) stated in (38). Since 1/4 ≤ βi ≤

1/2, using the lower bound on εi(βi) ≥ ε∗(1 −
4w−1/8)(r−2)(l−1) (in phase (iii) of Theorem 30), we get

−lhi(βi)
1
l = −l

(xi(βi)
εi(βi)

) 1
l−1

≥ − l
( γ

1
l−1

εBP(l, r)(1−4w−
1
8 )r

)
.

Above we use ε∗ ≥ εBP(l, r), replace (r − 2) by r and
(εBP(l, r))

1
l−1 by εBP(l, r). Putting everything together,

T3 ≥ 1−
(

1 +
1

w1/8

)
− l
( γ

1
l−1

εBP(1−4w−
1
8 )r

)
,

= −w− 1
8 − l

( γ
1

l−1

εBP(1−4w−
1
8 )r

)
.

Since γ
1

l−1 ≤ 2rl

w
7
8

, the final result is

T3 = −w− 1
8 − 2rl2

w
7
8 (1−4w−

1
8 )rεBP(l, r)

.
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[2] C. Méasson, A. Montanari, and R. Urbanke, “Maxwell construction: The
hidden bridge between iterative and maximum a posteriori decoding,”
IEEE Trans. Inform. Theory, vol. 54, no. 12, pp. 5277–5307, 2008.

[3] R. M. Tanner, “Error-correcting coding system,” Oct. 1981, U.S. Patent
# 4,295,218.

[4] ——, “Convolutional codes from quasi-cyclic codes: a link between the
theories of block and convolutional codes,” University of California,
Santa Cruz, Tech Report UCSC-CRL-87-21, Nov. 1987.

[5] A. J. Felström and K. S. Zigangirov, “Time-varying periodic convolu-
tional codes with low-density parity-check matrix,” IEEE Trans. Inform.
Theory, vol. 45, no. 5, pp. 2181–2190, Sept. 1999.

[6] K. Engdahl and K. S. Zigangirov, “On the theory of low density
convolutional codes I,” Problemy Peredachi Informatsii, vol. 35, no. 4,
pp. 295–310, 1999.

[7] K. Engdahl, M. Lentmaier, and K. S. Zigangirov, “On the theory of low-
density convolutional codes,” in AAECC-13: Proceedings of the 13th
International Symposium on Applied Algebra, Algebraic Algorithms and
Error-Correcting Codes. London, UK: Springer-Verlag, 1999, pp. 77–
86.

[8] M. Lentmaier, D. V. Truhachev, and K. S. Zigangirov, “To the theory of
low-density convolutional codes. II,” Probl. Inf. Transm., vol. 37, no. 4,
pp. 288–306, 2001.

[9] R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja, and D. J. Costello,
Jr., “LDPC block and convolutional codes based on circulant matrices,”
IEEE Trans. Inform. Theory, vol. 50, no. 12, pp. 2966 – 2984, Dec.
2004.

[10] A. Sridharan, M. Lentmaier, D. J. Costello, Jr., and K. S. Zigangirov,
“Convergence analysis of a class of LDPC convolutional codes for the
erasure channel,” in Proc. of the Allerton Conf. on Commun., Control,
and Computing, Monticello, IL, USA, Oct. 2004.

[11] M. Lentmaier, A. Sridharan, K. S. Zigangirov, and D. J. Costello, Jr.,
“Iterative decoding threshold analysis for LDPC convolutional codes,”
IEEE Trans. Info. Theory, Oct. 2010.

[12] ——, “Terminated LDPC convolutional codes with thresholds close to
capacity,” in Proc. of the IEEE Int. Symposium on Inform. Theory,
Adelaide, Australia, Sept. 2005.

[13] T. Richardson and R. Urbanke, Modern Coding Theory. Cambridge
University Press, 2008.

[14] M. Lentmaier and G. P. Fettweis, “On the thresholds of generalized
LDPC convolutional codes based on protographs,” in Proc. of the IEEE
Int. Symposium on Inform. Theory, Austin, USA, 2010.

[15] D. G. M. Mitchell, A. E. Pusane, K. S. Zigangirov, and D. J. Costello, Jr.,
“Asymptotically good LDPC convolutional codes based on protographs,”
in Proc. of the IEEE Int. Symposium on Inform. Theory, Toronto, CA,
July 2008, pp. 1030 – 1034.

[16] M. Lentmaier, G. P. Fettweis, K. S. Zigangirov, and D. J. Costello,
Jr., “Approaching capacity with asymptotically regular LDPC codes,” in
Information Theory and Applications, San Diego, USA, Feb. 8–Feb. 13,
2009, pp. 173–177.

[17] R. Smarandache, A. Pusane, P. Vontobel, and D. J. Costello, Jr., “Pseudo-
codewords in LDPC convolutional codes,” in Proc. of the IEEE Int.
Symposium on Inform. Theory, Seattle, WA, USA, July 2006, pp. 1364
– 1368.

[18] ——, “Pseudocodeword performance analysis for LDPC convolutional
codes,” IEEE Trans. Inform. Theory, vol. 55, no. 6, pp. 2577–2598, June
2009.

[19] M. Papaleo, A. Iyengar, P. Siegel, J. Wolf, and G. Corazza, “Windowed
erasure decoding of LDPC convolutional codes,” in Proc. of the IEEE
Inform. Theory Workshop, Cairo, Egypt, Jan. 2010, pp. 78 – 82.

[20] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. A. Spielman, and
V. Stemann, “Practical loss-resilient codes,” in Proc. of the 29th annual
ACM Symposium on Theory of Computing, 1997, pp. 150–159.

[21] J. Thorpe, “Low-density parity-check (LDPC) codes constructed from
protographs,” Aug. 2003, Jet Propulsion Laboratory, INP Progress
Report 42-154.

[22] D. Divsalar, S. Dolinar, and C. Jones, “Constructions of Protograph
LDPC codes with linear minimum distance,” in Proc. of the IEEE Int.
Symposium on Inform. Theory, Seattle, WA, USA, July 2006.

[23] D. G. M. Mitchell, M. Lentmaier, and D. J. Costello, Jr., “New families
of LDPC block codes formed by terminating irregular protograph-based
LDPC convolutional codes,” in Proc. of the IEEE Int. Symposium on
Inform. Theory, Austin, USA, June 2010.
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