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Abstract—This paper considers the joint-decoding problem
for finite-state channels (FSCs) and low-density parity-check
(LDPC) codes. In the first part, the linear-programming (LP)
decoder for binary linear codes is extended to joint-decoding
of binary-input FSCs. In particular, we provide a rigorous
definition of LP joint-decoding pseudo-codewords (JD-PCWs)
that enables evaluation of the pairwise error probability be-
tween codewords and JD-PCWs in AWGN. This leads naturally
to a provable upper bound on decoder failure probability. If
the channel is a finite-state intersymbol interference channel,
then the joint LP decoder also has the maximum-likelihood
(ML) certificate property and all integer-valued solutions are
codewords. In this case, the performance loss relative to ML
decoding can be explained completely by fractional-valued
JD-PCWs. After deriving these results, we discovered some
elements were equivalent to earlier work by Flanagan on linear-
programming receivers.

In the second part, we develop an efficient iterative solver for
the joint LP decoder discussed in the first part. In particular,
we extend the approach of iterative approximate LP decoding,
proposed by Vontobel and Koetter and analyzed by Burshtein,
to this problem. By taking advantage of the dual-domain
structure of the joint-decoding LP, we obtain a convergent
iterative algorithm for joint LP decoding whose structure is
similar to BCJR-based turbo equalization (TE). The result is a
joint iterative decoder whose per-iteration complexity issimilar
to that of TE but whose performance is similar to that of
joint LP decoding. The main advantage of this decoder is that
it appears to provide the predictability of joint LP decoding
and superior performance with the computational complexity
of TE. One expected application is coding for magnetic storage
where the required block-error rate is extremely low and system
performance is difficult to verify by simulation.

Index Terms—BCJR algorithm, finite-state channels, joint-
decoding, LDPC codes, linear-programming decoding, turbo
equalization

I. I NTRODUCTION

A. Motivation and Problem Statement

Iterative decoding of error-correcting codes, while intro-
duced by Gallager in his 1960 Ph.D. thesis, was largely
forgotten until the 1993 discovery of turbo codes by Berrou et
al. Since then, message-passing iterative decoding has been a
very popular decoding algorithm in research and practice. In
1995, the turbo decoding of a finite-state channel (FSC) and
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a convolutional code (instead of two convolutional codes)
was introduced by Douillard et al. asturbo equalization
(TE) and this enabled the joint-decoding of the channel
and the code by iterating between these two decoders [1].
Before this, one typically separated channel decoding (i.e.,
estimating the channel inputs from the channel outputs) from
the decoding of the error-correcting code (i.e., estimating the
transmitted codeword from estimates of the channel inputs)
[2][3]. This breakthrough received immediate interest from
the magnetic recording community, and TE was applied to
magnetic recording channels by a variety of authors (e.g.,
[4], [5], [6], [7]). TE was later combined with turbo codes
and also extended to low-density parity-check (LDPC) codes
(and calledjoint iterative decoding) by constructing one large
graph representing the constraints of both the channel and the
code (e.g., [8], [9]).

In the magnetic storage industry, error correction based
on Reed-Solomon codes with hard-decision decoding has
prevailed for the last 25 years. Recently, LDPC codes have
attracted a lot of attention and some hard-disk drives (HDDs)
have started using iterative decoding (e.g., [10], [11], [12]).
Despite progress in the area of reduced-complexity detection
and decoding algorithms, there has been some resistance
to the deployment of TE structures (with iterative detec-
tors/decoders) in magnetic recording systems because of error
floors and the difficulty of accurately predicting performance
at very low error rates. Furthermore, some of the spectacular
gains of iterative coding schemes have been observed only in
simulations with block-error rates above10−6. The challenge
of predicting the onset of error floors and the performance
at very low error rates, such as those that constitute the
operating point of HDDs (the current requirement of an
overall block error rate of10−12), remains an open problem.
The presence of error floors and the lack of analytical tools
to predict performance at very low error rates are current
impediments to the application of iterative coding schemes
in magnetic recording systems.

In the last five years, linear programming (LP) decoding
has been a popular topic in coding theory and has given
new insight into the analysis of iterative decoding algorithms
and their modes of failure [13][14][15]. In particular, it has
been observed that LP decoding sometimes performs better
than iterative (e.g., sum-product) decoding in the error-floor
region. We believe this stems from the fact that the LP
decoder always converges to a well-defined LP optimum
point and either detects decoding failure or outputs an ML
codeword. For both decoders, fractional vectors, known as
pseudo-codewords (PCWs), play an important role in the
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performance characterization of these decoders [14][16].
This is in contrast to classical coding theory where the
performance of most decoding algorithms (e.g., maximum-
likelihood (ML) decoding) is completely characterized by the
set of codewords.

While TE-based joint iterative decoding provides good
performance close to capacity, it typically has some trouble
reaching the low error rates required by magnetic recording
and optical communication. To combat this, we extend the
LP decoding to the joint-decoding of a binary-input FSC
and an outer LDPC code. During the review process of our
conference paper on this topic [17], we discovered that this
LP formulation is mathematically equivalent to Flanagan’s
general formulation of linear-programming receivers [18],
[19]. Since our main focus was different than Flanagan’s,
our main results and extensions differ somewhat from his.
In particular, our main motivation is that critical storage
applications (e.g., HDDs) require block error rates that are
too low to be easily verifiable by simulation. For these ap-
plications,an efficient iterative solver for the joint-decoding
LP would have favorable properties: error floors predictable
by pseudo-codeword analysis and convergence based on a
well-defined optimization problem. Therefore, we introduce
a novel iterative solver for the joint LP decoding problem
whose per-iteration complexity (e.g., memory and time) is
similar to that of TE but whose performance appears to be
superior at high SNR [17][20].

B. Notation

Throughout the paper we borrow notation from [14]. Let
I = {1, . . . , N} andJ = {1, . . . , M} be sets of indices
for the variable and parity-check nodes of a binary linear
code. A variable nodei ∈ I is connected to the setN (i) of
neighboring parity-check nodes. Abusing notation, we also
letN (j) be the neighboring variable nodes of a parity-check
nodej ∈ J when it is clear from the context. For the trellis
associated with a FSC, we letE = {1, . . . , O} index the set
of trellis edges associated with one trellis section,S be the
set of possible states, andA be the possible set of noiseless
output symbols. For each edge1, e ∈ EN , in the length-N
trellis, the functionst : EN → {1, . . . , N}, s : EN → S,
s′ : EN → S, x : EN → {0, 1}, and a : EN → A map
this edge to its respective time index, initial state, final state,
input bit, and noiseless output symbol. Finally, the set of
edges in the trellis section associated with timei is defined
to beTi =

{

e ∈ EN | t(e) = i
}

.

C. Background: LP Decoding and Finite-State Channels

In [13][14], Feldman et al. introduced a linear-
programming (LP) decoder for binary linear codes, and
applied it specifically to both LDPC and turbo codes. It is
based on solving an LP relaxation of an integer program
that is equivalent to maximum-likelihood (ML) decoding. For
long codes and/or low SNR, the performance of LP decoding

1In this paper,e is used to denote a trellis edge whilee denotes the
universal constant that satisfieslne = 1.

appears to be slightly inferior to belief-propagation decoding.
Unlike the iterative decoder, however, the LP decoder either
detects a failure or outputs a codeword which is guaranteed
to be the ML codeword.

Let C ⊆ {0, 1}N be the length-N binary linear code
defined by a parity-check matrix andc = (c1, . . . , cN ) be
a codeword. LetL be the set whose elements are the sets of
indices involved in each parity check, or

L = {N (j) ⊆ {1, . . . , N}| j ∈ J } .

Then, we can define the set of codewords to be

C =

{

c ∈ {0, 1}N
∣

∣

∣

∣

∑

i∈L
ci ≡ 0 mod 2, ∀L ∈ L

}

.

Thecodeword polytopeis the convex hull ofC. This polytope
can be quite complicated to describe though, so instead one
constructs a simpler polytope using local constraints. Each
parity-checkL ∈ L defines a local constraint equivalent to
the extreme points of a polytope in[0, 1]N .

Definition 1. The local codeword polytopeLCP(L) asso-
ciated with a parity check is the convex hull of the bit
sequences that satisfy the check. It is given explicitly by

LCP(L) ,
⋂

S⊆L
|S|odd

{

c ∈ [0, 1]N
∣

∣

∣

∣

∑

i∈S
ci −

∑

i∈L−S
ci ≤ |S|−1

}

.

We use the notationP(H) to denote the simpler polytope
corresponding to the intersection of local check constraints;
the formal definition follows.

Definition 2. The relaxed polytopeP(H) is the intersection
of the LCPs over all checks and

P(H) ,
⋂

L∈L
LCP(L).

The LP decoder and its ML certificate property is charac-
terized by the following theorem.

Theorem 3 ([13]). Consider N consecutive uses of a
symmetric channelPr (Y = y|C = c). If a uniform random
codeword is transmitted andy = (y1, . . . , yN) is received,
then the LP decoder outputsf = (f1, . . . , fN ) given by

argmin
f∈P(H)

N
∑

i=1

fi ln

(

Pr(Yi = yi |Ci = 0)

Pr(Yi = yi |Ci = 1)

)

,

which is the ML solution iff is integral (i.e.,f ∈ {0, 1}N ).

From simple LP-based arguments, one can see that LP
decoder may also output nonintegral solutions.

Definition 4. An LP decoding pseudo-codeword(LPD-
PCW) of a code defined by the parity-check matrixH is
anynonintegralvertex of the relaxed (fundamental) polytope
P(H).

We also define the finite-state channel, which can be
seen as a model for communication systems with memory
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Figure 1: State diagrams for noiseless dicode channel without (left)
and with precoding (right). The edges are labeled by the
input/output pair.

where each output depends only on the current input and the
previous channel state instead of the entire past.

Definition 5. A finite-state channel(FSC) defines a proba-
bilistic mapping from a sequence of inputs to a sequence
of outputs. Each outputYi ∈ Y depends only on the
current input Xi ∈ X and the previous channel state
Si−1 ∈ S instead of the entire history of inputs and
channel states. Mathematically, we defineP (y, s′|x, s) ,

Pr(Yi=y, Si=s′|Xi=x, Si−1=s) for all i, and use the
shorthand notationP0(s) , Pr(S0 = s) and

P
(

yN1 , s
N
1 |x

N
1 , s0

)

,Pr
(

Y N
1 =yN1 , S

N
1 =sN1 |X

N
1 =xN

1 , S0=s0
)

=

N
∏

i=1

P (yi, si|xi, si−1) ,

where the notation Y j
i denotes the subvector

(Yi, Yi+1, . . . , Yj).

An important subclass of FSCs is the set of finite-state
intersymbol interference channels which includes all deter-
ministic finite-state mappings of the inputs corrupted by
memoryless noise.

Definition 6. A finite-state intersymbol interference channel
(FSISIC) is a FSC whose next state is a deterministic
function,η(x, s), of the current states and inputx. Mathe-
matically, this implies that

∑

y∈Y
P (y, s′|x, s) =

{

1 if η(x, s) = s′

0 otherwise
.

Though our derivations are general, we use the following
FSISIC examples throughout the paper to illustrate concepts
and perform simulations.

Definition 7. The dicode channel(DIC) is a binary-input
FSISIC with an impulse response ofG(z) = 1 − z−1 and
additive Gaussian noise [21]. If the input bits are differ-
entially encoded prior to transmission, then the resulting
channel is called theprecoded dicode channel(pDIC) [21].
The state diagrams of these two channels are shown in Fig.
1. For the trellis associated with a DIC and pDIC, we let
E = {1, 2, 3, 4} , S = {0, 1} andA = {−1, 0, 1} . Also,
theclass-II Partial Response(PR2) channel is a binary-input
FSISIC with an impulse response ofG(z) = 1+2z−1+z−2

and additive Gaussian noise [21][22].

D. Outline of the Paper

The remainder of the paper is organized as follows. In
Section II, we introduce the joint LP decoder, define joint-
decoding pseudo-codewords (JD-PCWs), and describe the
appropriate generalized Euclidean distance for this problem.
Then, we discuss the decoder performance analysis using the
union bound (via pairwise error probability) over JD-PCWs.
Section III is devoted to developing the iterative solver for the
joint LP decoder, i.e., iterative joint LP decoder and its proof
of convergence. Finally, Section IV presents the decoder
simulation results and Section V gives some conclusions.

II. JOINT LP DECODER

Feldman et al. introduced the LP decoder for binary linear
codes in [13][14]. It is is based on an LP relaxation of an
integer program that is equivalent to ML decoding. Later,
this method was extended to codes over larger alphabets [23]
and to the simplified decoding of intersymbol interference
(ISI) [24]. In particular, this section describes an extension
of the LP decoder to the joint-decoding of binary-input
FSCs and defines LP joint-decoding pseudo-codewords (JD-
PCWs) [17]. This extension is natural because Feldman’s LP
formulation of a trellis decoder is general enough to allow
optimal (Viterbi style) decoding of FSCs, and the constraints
associated with the outer LDPC code can be included in the
same LP. This type of extension has been considered as a
challenging open problem in prior works [13][25] and was
first given by Flanagan [18][19], but was discovered inde-
pendently by us and reported in [17]. In particular, Flanagan
showed that any communication system which admits a sum-
product (SP) receiver also admits a corresponding linear-
programming (LP) receiver. Since Flanagan’s approach is
more general, it is also somewhat more complicated; the
resulting LPs are mathematically equivalent though. One ben-
efit of restricting our attention to FSCs is that our description
of the LP is based on finding a path through a trellis, which
is somewhat more natural for the joint-decoding problem.

These LP decoders provide a natural definition of PCWs
for joint-decoding, and they allow new insight into the joint-
decoding problem. Joint-decoding pseudo-codewords (JD-
PCWs) are defined and the decoder error-rate is upper
bounded by a union bound sum over JD-PCWs. This leads
naturally to a provable upper bound (e.g., a union bound)
on the probability of LP decoding failure as a sum over all
codewords and JD-PCWs. Moreover, we can show that all
integer solutions are indeed codewords and that this joint
LP decoder also has an ML certificate property. Therefore,
all decoder failures can be explained by (fractional) JD-
PCWs. It is worth noting that this property is not guaranteed
by other convex relaxations of the same problem (e.g.,
see Wadayama’s approach based on quadratic programming
[25]).

Our primary motivation is the prediction of the error rate
for joint-decoding at high SNR. The basic idea is to run
simulations at low SNR and keep track of all observed
codeword and pseudo-codeword errors. An estimate of the
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error rate at high SNR is computed using a truncated union
bound formed by summing over all observed error patterns at
low SNR. Computing this bound is complicated by the fact
that the loss of channel symmetry implies that the dominant
PCWs may depend on the transmitted sequence. Still, this
technique provides a new tool to analyze the error rate of
joint decoders for FSCs and low-density parity-check (LDPC)
codes. Thus, novel prediction results are given in Section IV.

A. Joint LP Decoding Derivation

Now, we describethe joint LP decoderin terms of the
trellis of the FSC and the checks in the binary linear code2.
Let N be the length of the code andy = (y1, y2, . . . , yN )
be the received sequence. The trellis consists of(N + 1)|S|
vertices (i.e., one for each state and time) and a set of at
most 2N |S|2 edges (i.e., one edge for each input-labeled
state transition and time). The LP formulation requires one
indicator variable for each edgee ∈ Ti, and we denote that
variable bygi,e. So, gi,e is equal to 1 if the candidate path
goes through the edgee in Ti. Likewise, the LP decoder
requires one cost variable for each edge and we associate
the branch metricbi,e with the edgee given by

bi,e,

{

− lnP
(

yt(e), s
′(e)|x(e), s(e)

)

if t(e)>1

− ln
[

P
(

yt(e), s
′(e)|x(e), s(e)

)

P0 (s(e))
]

if t(e)=1.

First, we define the trellis polytopeT formally below.

Definition 8. The trellis polytopeT enforces the flow con-
servation constraints for channel decoder. The flow constraint
for statek at time i is given by

Fi,k ,







g ∈ [0, 1]N×O

∣

∣

∣

∣

∣

∣

∑

e:s′(e)=k

gi,e =
∑

e:s(e)=k

gi+1,e







.

Using this, thetrellis polytopeT is given by

T ,







g ∈
N−1
⋂

i=1

⋂

k∈S
Fi,k

∣

∣

∣

∣

∣

∣

∑

e∈Tp
gp,e = 1, for anyp ∈ I







.

From simple flow-based arguments, it is known that ML
edge path on trellis can be found by solving a minimum-cost
LP applied to the trellis polytopeT .

Theorem 9 ([13, p. 94]). Finding the ML edge-path through
a weighted trellis is equivalent to solving the minimum-cost
flow LP

argmin
g∈T

∑

i∈I

∑

e∈Ti
bi,egi,e

and the optimumg must be integral (i.e.,g ∈ {0, 1}N×O)
unless there are ties.

The indicator variablesgi,e are used to define the LP and
the code constraints are introduced by defining an auxiliary
variablefi for each code bit.

2It is straightforward to extend this joint LP decoder to non-binary linear
codes based on [23].

Definition 10. Let the code-space projectionQ, be the map-
ping from g to the input vectorf = (f1, . . . , fN) ∈ [0, 1]N

defined byf = Q (g) with

fi =
∑

e∈Ti:x(e)=1

gi,e.

For the trellis polytopeT , PT (H) is the set of vectors
whose projection lies inside the relaxed codeword polytope
P(H).

Definition 11. The trellis-wise relaxed polytopePT (H) for
P(H) is given by

PT (H) , {g ∈ T |Q (g) ∈ P(H)} .

The polytopePT (H) has integral vertices which are in
one-to-one correspondence with the set of trelliswise code-
words.

Definition 12. The set of trellis-wise codewordsCT for C is
defined by

CT ,

{

g ∈ PT (H)
∣

∣

∣g ∈ {0, 1}
N×O

}

.

Finally, the joint LP decoder and its ML certificate prop-
erty are characterized by the following theorem.

Theorem 13. The LP joint decoder computes

argmin
g∈PT (H)

∑

i∈I

∑

e∈Ti
bi,egi,e (1)

and outputs a joint ML edge-path ifg is integral.

Proof: Let V be the set of valid input/state sequence
pairs. For a giveny, the ML edge-path decoder finds the
most likely path, through the channel trellis, whose input
sequence is a codeword. Mathematically, it computes

argmax
(xN

1 ,sN0 )∈V
P (yN1 , sN1 |x

N
1 , s0)P0 (s(e))

= argmax
g∈CT

P0 (s(e))
∏

i∈I

∏

e∈Ti: gi,e=1

P
(

yt(e), s
′(e)|x(e), s(e)

)

= argmin
g∈CT

∑

i∈I

∑

e∈Ti: gi,e=1

bi,e

= argmin
g∈CT

∑

i∈I

∑

e∈Ti
bi,egi,e,

where ties are resolved in a systematic manner andb1,e has
the extra term− ln P0 (s(e)) for the initial state probability.
By relaxingCT into PT (H), we obtain the desired result.

Corollary 14. For a FSISIC3, the LP joint decoder outputs
a joint ML codeword ifg is integral.

3In fact, this holds more generally for the restricted class of FSCs used in
[26], which are now called unifilar FSCs because they generalize the unifilar
Markov sources defined in [27].
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Figure 2: Illustration of joint LP decoder outputs for the sin-
gle parity-check code SPC(3,2) over DIC (starts in
zero state). By ordering the trellis edges appropri-
ately, joint LP decoder converges to either a TCW
(0 1 0 0; 0 0 0 1; .0 0 1 0) (top dashed blue path) or a JD-
TPCW (0 1 0 0; 0 0 .5 .5; .5 0 .5 0) (bottom dashed red
paths). UsingQ to project them intoP(H), we obtain the
corresponding SCW(1, 1, 0) and JD-SPCW(1, .5, 0).

Proof: The joint ML decoder for codewords computes

argmax
xN
1 ∈C

∑

sN1 ∈SN

P (yN1 , sN1 |x
N
1 , s0)P0 (s(e))

= argmax
xN
1 ∈C

∑

sN1 ∈SN

∏

i∈I
P (yi, si+1|xi, si)P0 (s(e))

(a)
= argmax

xN
1 ∈C

∏

i∈I
P
(

yi, η (xi, si)
∣

∣xi, si
)

P0 (s(e))

(b)
= argmin

g∈CT

∑

i∈I

∑

e∈Ti
bi,egi,e,

where(a) follows from Definition 6 and(b) holds because
each input sequence defines a unique edge-path. Therefore,
the LP joint-decoder outputs an ML codeword ifg is
integral.

Remark15. If the channel is not a FSISIC (e.g., if it is a
finite-state fading channel), then integer valued solutions of
the LP joint-decoder are ML edge-paths but not necessarily
ML codewords. This occurs because the joint LP decoder
does not sum the probability of the multiple edge-paths
associated with the same codeword (e.g., when multiple
distinct edge-paths are associated with the same input labels).
Instead, it simply gives the probability of the most-likelyedge
path associated that codeword.

B. Joint LP Decoding Pseudo-codewords

Pseudo-codewords have been observed and given names
by a number of authors (e.g., [28], [29], [30]), but the
simplest general definition was provided by Feldman et al.
in the context of LP decoding of parity-check codes [14].
One nice property of the LP decoder is that it always
returns either an integral codeword or a fractional pseudo-
codeword. Vontobel and Koetter have shown that a very

similar set of pseudo-codewords also affect message-passing
decoders, and that they are essentially fractional codewords
that cannot be distinguished from codewords using only
local constraints [16]. The joint-decoding pseudo-codeword
(JD-PCW), defined below, can be used to characterize code
performance at low error rates.

Definition 16. If gi,e ∈ {0, 1} for all e, then the output
of the LP joint decoder is atrellis-wise codeword(TCW).
Otherwise,gi,e ∈ (0, 1) for somee and the solution is called
a joint-decoding trellis-wise pseudo-codeword(JD-TPCW);
in this case, the decoder outputs “failure” (see Fig. 2 for an
example of this definition).

Definition 17. For any TCWg, the projectionf = Q (g) is
called asymbol-wise codeword(SCW). Likewise, for any JD-
TPCWg, the projectionf = Q (g) is called ajoint-decoding
symbolwise pseudo-codeword(JD-SPCW) (see Fig. 2 for a
graphical depiction of this definition).

Remark18. For FSISICs, the LP joint decoder has theML
certificateproperty; if the decoder outputs a SCW, then it is
guaranteed to be the ML codeword (see Corollary 14).

Definition 19. If g is a JD-TPCW, thenp = (p1, . . . , pN )
with

pi =
∑

e∈Ti
gi,ea (e) ,

is called ajoint-decoding symbol-wise signal-space pseudo-
codeword(JD-SSPCW). Likewise, ifg is a TCW, thenp is
called asymbol-wise signal-space codeword(SSCW).

C. Union Bound for Joint LP Decoding

Now that we have defined the relevant pseudo-codewords,
we consider how much a particular pseudo-codeword affects
performance; the idea is to quantify pairwise error probabil-
ities. In fact, we will use the insights gained in the previous
section to obtain a union bound on the decoder’s word-error
probability and to analyze the performance of the proposed
joint LP decoder. Toward this end, let’s consider the pairwise
error event between a SSCWc and a JD-SSPCWp first.

Theorem 20. A necessary and sufficient condition for the
pairwise decoding error between a SSCWc and a JD-SSPCW
p is

∑

i∈I

∑

e∈Ti
bi,egi,e ≤

∑

i∈I

∑

e∈Ti
bi,eg̃i,e, (2)

whereg ∈ PT (H) and g̃ ∈ CT are the LP variables forp
andc respectively.

Proof: By definition, the joint LP decoder (1) prefersp
over c if and only if (2) holds.

For the moment, letc be the SSCW of FSISIC to an
AWGN channel whose output sequence isy = c+v, where
v = (v1, . . . , vN ) is an i.i.d. Gaussian sequence with mean0
and varianceσ2. Then, the joint LP decoder can be simplified
as stated in the Theorem 21.
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Theorem 21. Let y be the output of a FSISIC with zero-
mean AWGN whose variance isσ2 per output. Then, the
joint LP decoder is equivalent to

argmin
g∈PT (H)

∑

i∈I

∑

e∈Ti
(yi − a (e))

2
gi,e.

Proof: For each edgee, the output yi is Gaus-
sian with mean a (e) and varianceσ2, so we have
P
(

yt(e), s
′(e)|x(e), s(e)

)

∼ N
(

a (e) , σ2
)

. Therefore, the
joint LP decoder computes

argmin
g∈PT (H)

∑

i∈I

∑

e∈Ti
bi,egi,e = argmin

g∈PT (H)

∑

i∈I

∑

e∈Ti
(yi − a (e))

2
gi,e.

We will show that each pairwise probability has a simple
closed-form expression that depends only on a generalized
squared Euclidean distanced2gen (c, p) and the noise vari-
anceσ2. One might notice that this result is very similar
to the pairwise error probability derived in [31]. The main
difference is the trellis-based approach that allows one to
obtain this result for FSCs. Therefore, the next definition and
theorem can be seen as a generalization of [31].

Definition 22. Let c be a SSCW andp a JD-SSPCW. Then
thegeneralized squared Euclidean distancebetweenc andp
can be defined in terms of their trellis-wise descriptions by

d2gen (c, p) ,

(

‖d‖2 + σ2
p

)2

‖d‖2

where

‖d‖2 ,
∑

i∈I
(ci − pi)

2
, σ2

p ,
∑

i∈I

∑

e∈Ti
gi,ea

2 (e)−
∑

i∈I
p2i .

Theorem 23. The pairwise error probability between a
SSCWc and a JD-SSPCWp is

Pr(c→ p) = Q

(

dgen (c, p)

2σ

)

,

whereQ (x) = 1√
2π

∫∞
x e

−t2/2dt.

Proof: The pairwise error probability Pr(c→ p) that
the LP joint-decoder will choose the pseudo-codewordp over
c can be written as

Pr(c→ p)

= Pr

{

∑

i∈I

∑

e∈Ti
gi,e (yi − a (e))

2 ≤
∑

i∈I
(yi − ci)

2

}

= Pr
{
∑

i yi (ci − pi) ≤
1
2

(
∑

i c
2
i −

∑

i

∑

e gi,ea
2 (e)

) }

(a)
= Q





∑

i ci (ci − pi)−
1
2

(
∑

i c
2
i −

∑

i

∑

e gi,ea
2 (e)

)

σ
√

∑

i (ci − pi)
2





(b)
= Q

(

‖d‖2 + σ2
p

2σ ‖d‖

)

= Q

(

dgen (c, p)

2σ

)

,

where (a) follows from the fact that
∑

i yi (ci − pi) has a
Gaussian distribution with mean

∑

i ci(ci− pi) and variance
∑

i(ci − pi)
2, and(b) follows from Definition 22.

The performance degradation of LP decoding relative
to ML decoding can be explained by pseudo-codewords
and their contribution to the error rate, which depends on
dgen (c, p) . Indeed, by definingKdgen

(c) as the number of
codewords and JD-PCWs at distancedgen from c andG(c)
as the set of generalized Euclidean distances, we can write
the union bound on word error rate (WER) as

Pw|c ≤
∑

dgen∈G(c)
Kdgen

(c)Q

(

dgen
2σ

)

. (3)

Of course, we need the set of JD-TPCWs to compute
Pr(c→ p) with the Theorem 23. There are two complica-
tions with this approach. One is that, like the original problem
[13], no general method is known yet for computing the
generalized Euclidean distance spectrum efficiently. Another
is, unlike original problem, the constraint polytope may
not be symmetric under codeword exchange. Therefore the
decoder performance may not be symmetric under codeword
exchange. Hence, the decoder performance may depend on
the transmitted codeword. In this case, the pseudo-codewords
will also depend on the transmitted sequence.

III. I TERATIVE SOLVER FOR THEJOINT LP DECODER

In the past, the primary value of linear programming (LP)
decoding was as an analytical tool that allowed one to better
understand iterative decoding and its modes of failure. This
is because LP decoding based on standard LP solvers is
quite impractical and has a superlinear complexity in the
block length. This motivated several authors to propose low-
complexity algorithms for LP decoding of LDPC codes in the
last five years (e.g., [25], [32], [33], [34], [35], [36], [37]).
Many of these have their roots in the iterative Gauss-Seidel
approach proposed by Vontobel and Koetter for approximate
LP decoding [32]. This approach was also analyzed further
by Burshtein [36]. Smoothed Lagrangian relaxation methods
have also been proposed to solve intractable optimal infer-
ence and estimation for more general graphs (e.g., [38]).

In this section, we consider the natural extension of
[32][36] to the joint-decoding LP formulation developed in
Section II. We argue that, by taking advantage of the special
dual-domain structure of the joint LP problem and replacing
minima in the formulation with soft-minima, we can obtain
an efficient method that solves the joint LP. While there
are many ways to iteratively solve the joint LP, our main
goal was to derive one as the natural analogue of turbo
equalization (TE). This should lead to an efficient method
for joint LP decoding whose performance is similar to that of
joint LP and whose per-iteration complexity similar to that
of TE. Indeed, the solution we provide is a fast, iterative,
and provably convergent form of TE whose update rules
are tightly connected to BCJR-based TE. This demonstrates
that an iterative joint LP solver with a similar computational
complexity as TE is feasible (see Remark 27). In practice,
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0 0 0 0

1 1 1 1

g1,1 g2,1 g3,1

g1,2 g2,2 g3,2

g1,3 g2,3 g3,3

g1,4 g2,4 g3,4

g = {gi,e}i∈I, e∈Ti

n0,0 n1,0 n2,0 n3,0

n0,1 n1,1 n2,1 n3,1

m1,1 m2,1
m3,1

w = {w1,B}B∈E1

Figure 3: Illustration of primal variablesg and w defined for
Problem-P and dual variablesn and m defined for
Problem-D1 on the same example given by Fig. 2:
SPC(3,2) with DIC forN = 3.

the complexity reduction of this iterative decoder comes at
the expense of some performance loss, when compared to
the joint LP decoder, due to convergence issues (discussed
in Section III-B).

Previously, a number of authors have attempted to reverse
engineer an objective function targeted by turbo decoding
(and TE by association) in order to discuss its convergence
and optimality [39], [40], [41]. For example, [39] uses a
duality link between two optimality formulations of TE: one
based on Bethe free energy optimization and the other based
on constrained ML estimation. This results of this section
establish a new connection between iterative decoding and
optimization for the joint-decoding problem that can also be
extended to turbo decoding.

A. Iterative Joint LP Decoding Derivation

In Section II, joint LP decoder is presented as an LDPC-
code constrained shortest-path problem on the channel trellis.
In this section, we develop the iterative solver for the joint-
decoding LP. There are few key steps in deriving iterative
solution for the joint LP decoding problem. For the first

Table I Primal Problem (Problem-P)

min
g,w

∑

i∈I

∑

e∈Ti
bi,egi,e

subject to
∑

B∈Ej
wj,B = 1, ∀j ∈ J ,

∑

e∈Tp
gp,e = 1, for anyp ∈ I

∑

B∈Ej ,B∋i
wj,B =

∑

e:x(e)=1

gi,e, ∀i ∈ I, j ∈ N (i)

∑

e:s′(e)=k

gi,e =
∑

e:s(e)=k

gi+1,e, ∀i ∈ I \N, k ∈ S

wj,B ≥ 0, ∀j ∈ J , B ∈ Ej, gi,e ≥ 0, ∀i ∈ I, e ∈ Ti.

step, given by the primal problem (Problem-P) in Table I,
we reformulate the original LP (1) in Theorem 13 using
only equality constraints involving the indicator variables4

g andw. The second step, given by the 1st formulation of
the dual problem (Problem-D1) in Table II, follows from
standard convex analysis (e.g., see [42, p. 224]). Strong
duality holds because the primal problem is feasible and
bounded. Therefore, the Lagrangian dual of Problem-P is
equivalent to Problem-D1 and the minimum of Problem-P
is equal to the maximum of Problem-D1. From now on, we
consider Problem-D1, where the code and trellis constraints
separate into two terms in the objective function. See Fig. 3
for a diagram of the variables involved.

The third step, given by the 2nd formulation of the
dual problem (Problem-D2) in Table III, observes that for-
ward/backward recursions can be used to perform the op-
timization over n and remove one of the dual variable
vectors. This splitting is enabled by imposing the trellis
flow normalization constraint in Problem-P only at one time
instantp ∈ I. This detail givesN different ways to write
the same LP and is an important part of obtaining update
equations similar to those of TE.

Lemma 24. Problem-D1 is equivalent to Problem-D2.

Proof: By rewriting the inequality constraint in Problem-
D1 as

−ni,s′(ei) ≤ −ni−1,s(ei) + Γi,e

we obtain the recursive upper bound fori = p− 1 as

− np−1,k
≤ −np−2,s(ep−1) + Γp−1,e

∣

∣

s′(ep−1)=k

≤ −np−3,s(ep−2)+Γp−2,e
∣

∣

s′(ep−2)=s(ep−1)
+Γp−1,e|s′(ep−1)=k

...

≤ −n1,s(e2)+

p−1
∑

i=2

Γi,e

∣

∣

∣

∣

∣

s′(ep−1)=k,s′(ep−2)=s(ep−1),...,s′(e1)=s(e2).

4The valid patternsEj , {B ⊆ N (j) | |B| is even} for each parity-check
j ∈ J allow us to define the indicator variableswj,B (for j ∈ J and
B ∈ Ej ) which equal 1 if the codeword satisfies parity-checkj using
configurationB ∈ Ej .

Table II Dual Problem 1st Formulation (Problem-D1)

max
m,n

∑

j∈J

min
B∈Ej

[

∑

i∈B
mi,j

]

+min
e∈Tp

[

Γp,e−np−1,s(e)+np,s′(e)

]

subject to

Γi,e ≥ ni−1,s(e) − ni,s′(e), ∀i ∈ I \ p, e ∈ Ti
and

n0,k = nN,k = 0, ∀k ∈ S,
where

Γi,e , bi,e − δx(e)=1

∑

j∈N (i)

mi,j .
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0 0 0 0

1 1 1 1

−
−→
n 0,0 = 0 −

−→
n 1,0

←−
n 2,0

←−
n 3,0 = 0

−
−→
n 0,1 = 0 −

−→
n 1,1

←−
n 2,1

←−
n 3,1 = 0

Figure 4: Illustration of Viterbi updates in Problem-D2 on the same
example given by Fig. 2: DIC forN = 3 with forward
−→
n and backward←−n .

This upper bound−np−1,k ≤ −
−→n p−1,k is achieved by the

forward Viterbi update in Problem-D2 fori = 1, . . . , p− 1.
Again, by expressing the same constraint as

ni−1,s(ei) ≤ Γi,e + ni,s′(ei)

we get a recursive upper bound fori = p + 1. Similar
reasoning shows this upper boundnp,k ≤

←−n p,k is achieved
by the backward Viterbi update in Problem-D2 fori =
N − 1, N − 2, . . . , p. See Fig. 4 for a graphical depiction
of this.

The fourth step, given by the softened dual problem
(Problem-DS) in Table IV, is formulated by replacing the
minimum operator in Problem-D2 with the soft-minimum
operation

min (x1, x2, . . . , xm) ≈ −
1

K
ln

m
∑

i=1

e
−Kxi .

This smooth approximation converges to the minimum func-
tion asK increases [32]. Since the soft-minimum function
is used in two different ways, we use different constants,
K1 andK2, for the code and trellis terms. The smoothness
of Problem-DS allows one to to take derivative of (4)
(giving the Karush–Kuhn–Tucker (KKT) equations, derived
in Lemma 25), and represent (5) and (6) using BCJR-like
forward/backward recursions (given by Lemma 26).

Lemma 25. Consider the KKT equations associated with
performing the minimization in (4) only over the variables

Table III Dual Problem 2nd Formulation (Problem-D2)

max
m

∑

j∈J

min
B∈Ej

[

∑

i∈B
mi,j

]

+ min
e∈Tp

[

Γp,e−
−→n p−1,s(e)+

←−n p,s′(e)

]

where−→n i,k is defined fori = 1, . . . , p− 1 by

−−→n i,k = min
e∈s′−1(k)

−−→n i−1,s(ei) + Γi,e, ∀k ∈ S

and←−n i,k is defined fori = N − 1, N − 2, . . . , p by

←−n i,k = min
e∈s−1(k)

←−n i+1,s′(ei+1) + Γi+1,e, ∀k ∈ S

starting from
−→n 0,k =←−n N,k = 0, ∀k ∈ S.

{mp,j′}j′∈N (p). These equations have a unique solution
given by

mp,j′ = Mp,j′ +
γp
K1

, Mp,j′ ,
1

K1
ln

1− lp,j′

1 + lp,j′

for j′ ∈ N (p) where

lp,j′ ,
∏

i∈N (j′)\p
tanh

(

K1mi,j′

2

)

,

γp , ln

∑

e∈Tp:x(e)=0 e
−K2(Γp−−→n p−1,s(e)+

←−n p,s′(e))

∑

e∈Tp:x(e)=1 e
−K2(Γp−−→n p−1,s(e)+

←−n p,s′(e))
.

Proof: See Appendix A.

Lemma 26. Equations (5) and (6) are equivalent to the
BCJR-based forward and backward recursion given by (7),
(8), and (9).

Proof: By letting, αi (k) ∝ e
K

2
−→n i,k , λi+1,e =

e
−K2Γi+1,e , andβi (k) ∝ e

−K2
←−n i,k , we obtain the desired

result by normalization.
Now, we have all the pieces to complete the algorithm. As

the last step, we combine the results of Lemma 25 and 26 to
obtain the iterative solver for the joint-decoding LP, which is
summarized by the iterative joint LP decoding in Algorithm
1 (see Fig. 5 for a graphical depiction).

Remark27. While Algorithm 1 always has a bit-node update
rule different from standard belief propagation (BP), we note
that settingK1 = 1 in the inner loop gives the exact BP
check-node update and settingK2 = 1 in the outer loop
gives the exact BCJR channel update. In fact, one surprising
result of this work is that such a small change to the BCJR-
based TE update provides an iterative solver for the LP whose
per-iteration complexity similar to TE. It is also possibleto
prove the convergence of a slightly modified iterative solver
that is based on a less efficient update schedule.

Table IV Softened Dual Problem (Problem-DS)

max
m
−

1

K1

∑

j∈J

ln
∑

B∈Ej
e
−K1{

∑

i∈N(j) mi,j1B(i)} (4)

−
1

K2
ln
∑

e∈Tp
e
−K2{Γp,e−−→n p−1,s(e)+

←−n p,s′(e)}

where1B (i) is the indicator function of the setB, −→n i,k is
defined fori = 1, . . . , p− 1 by

−−→n i,k = −
1

K2
ln

∑

ei∈s′−1(k)

e
−K2{−−→n i−1,s(ei)

+Γi,e}, (5)

and←−n i,k is defined fori = N − 1, N − 2, . . . , p by

←−n i,k = −
1

K2
ln

∑

ei+1∈s−1(k)

e

−K2

{←−n i+1,s′(ei+1)+Γi+1,e

}

(6)

starting from
−→n 0,k =←−n N,k = 0, ∀k ∈ S.
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Algorithm 1 Iterative Joint Linear-Programming Decoding

• Step 1. Initializemi,j = 0 for i ∈ I, j ∈ N (i) and
ℓ = 0.

• Step 2. Update Outer Loop: Fori ∈ I,

– (i) Compute bit-to-trellis message

λi,e = e
−K

2
Γi,e

where

Γi,e = bi,e − δx(e)=1

∑

j∈N (i)

mi,j .

– (ii) Compute forward/backward trellis messages

αi+1 (k)=

∑

e∈s′−1(k) αi (s(e)) · λi+1,e
∑

k

∑

e∈s′−1(k) αi (s(e)) · λi+1,e
(7)

βi−1 (k)=

∑

e∈s−1(k) βi (s
′(e)) · λi,e

∑

k

∑

e∈s−1(k) βi (s′(e)) · λi,e
, (8)

whereβN (k) = α0 (k) = 1/ |S| for all k ∈ S.
– (iii) Compute trellis-to-bit messageγi

γi=ln

∑

e∈Ti:x(e)=0 αi−1 (s(e))λi,eβi (s
′(e))

∑

e∈Ti:x(e)=1 αi−1 (s(e))λi,eβi (s′(e))
(9)

• Step 3. Update Inner Loop forℓinner rounds: Fori ∈ I,

– (i) Compute bit-to-check msgmi,j for j ∈ N (i)

mi,j = Mi,j +
γi
K1

– (ii) Compute check-to-bit msgMi,j for j ∈ N (i)

Mi,j =
1

K1
ln

1− li,j
1 + li,j

(10)

where

li,j =
∏

r∈N (j)\i
tanh

(

K1mr,j

2

)

(11)

• Step 4. Compute hard decisions and stopping rule

– (i) For i ∈ I,

f̂i =

{

1 if γi < 0

0, otherwise

– (ii) If f̂ satisfies all parity checks or the maximum
outer iteration number,ℓouter, is reached, stop and
output f̂ . Otherwise incrementℓ and go to Step 2.

B. Convergence Analysis

This section considers the convergence properties of Al-
gorithm 1. Although simulations have not shown any con-
vergence problems with Algorithm 1 in its current form,
our proof requires a modified update schedule that is less
computationally efficient. Following Vontobel’s approachin
[32], which is based on general properties of Gauss-Seidel-
type algorithms for convex minimization, we show that the
modified version Algorithm 1 is guaranteed to converge.
Moreover, a feasible solution to Problem-P can be obtained

0 0 0 0

1 1 1 1

α0 (0) = .5 α1 (0) β2 (0) β3 (0) = .5

α0 (1) = .5 α1 (1) β2 (1) β3 (1) = .5

m1,1 m2,1
m3,1

{λ2,e}e∈T2

0 0 0 0

1 1 1 1

γ2

m1,1 m2,1 m3,1

M1,1 M2,1 M3,1

Figure 5: Illustration of Algorithm 1 steps fori = 2 on the same
example given by Fig. 2: outer loop update (left) and
inner loop update (right).

whose value is arbitrarily close to the optimal value of
Problem-P.

The modified update rule for Algorithm 1 consists of
cyclically, for eachp = 1, . . . , N , computing the quantity
γp (via step 2 of Algorithm 1) and then updatingmp,j

for all j ∈ N (p) (based on step 3 of Algorithm 1). The
drawback of this approach is that one BCJR update is
required for each bit update, rather than forN bit updates.
This modification allows us to interpret Algorithm 1 as a
Gauss-Seidel-type algorithm. We believe that, at the expense
of a longer argument, the convergence proof can be extended
to a decoder which uses windowed BCJR updates (e.g., see
[43]) to achieve convergence guarantees with much lower
complexity. Regardless, the next few lemmas and theorems
can be seen as a natural generalization of [32][36] to the
joint-decoding problem.

Lemma 28. Assume that all the rows ofH have Hamming
weight at least 3. Then, the modified Algorithm 1 converges
to the maximum of the Problem-DS.

Proof: See Appendix B.

Next, we introduce the softened primal problem (Problem-
PS) in Table V, using the definitionswj , {wj,B}B∈Ej and

gp , {gp,e}e∈Tp . Using standard convex analysis (e.g., see
[42, p. 254, Ex. 5.5]), one can show that Problem-PS is the
Lagrangian dual of Problem-DS and that the minimum of
Problem-PS is equal to the maximum of Problem-DS. In
particular, Problem-PS can be seen as a maximum-entropy
regularization of Problem-DS that was derived by smoothing
dual problem given by Problem-D2. Thus, our Algorithm 1
is dually-related to an interior-point method for solving the
LP relaxation of joint ML decoding on trellis-wise polytope

Table V Softened Primal Problem (Problem-PS)

min
g,w

∑

i∈I

∑

e∈Ti
bi,egi,e −

1

K1

∑

j∈J
H(wj)−

1

K2
H(gp)

subject to the same constraints as Problem-P.
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using the entropy function (forx in the standard simplex)

H(x) , −
∑

i

xi lnxi (12)

as a barrier function (e.g., see [38, p. 126]) for the polytope.

Remark29. By taking sufficiently largeK1 and K2, the
primal LP of joint LP decoder in Problem-P, emerges as the
“zero temperature” limit of the approximate LP relaxations
given by Problem-PS [32][38]. Also, Problem-PS can be seen
as a convex free-energy minimization problem [38].

Next, we develop a relaxation bound, given by Lemma 30
and Lemma 31 to quantify the performance loss of Algorithm
1 (when it converges) in relation to the joint LP decoder.

Lemma 30. Let P ∗ be the minimum value of Problem-P and
P̃ be the minimum value of Problem-PS. Then

0 ≤ P̃ − P ∗ ≤ δN,

where

N̄ ,

∑

j∈J |N (j)|

N
, R , 1−

M

N

and

δ ,

(

1−R+ N̄
)

ln 2

K1
+

ln O

K2N
.

Proof: See Appendix C.

Lemma 31. For any ǫ > 0, the modified Algorithm 1
returns a feasible solution for Problem-DS that satisfies the
KKT conditions within ǫ. With this, one can construct a
feasible solution(g̃ǫ, w̃ǫ) for Problem-PS that has the (nearly
optimal) valueP̃ǫ. For small enoughǫ, one finds that

0 ≤ P̃ǫ − P̃ ≤ δN,

where

δ ,

(

1−R+ N̄
)

ln 2

K1
+ ǫ

(

3

N

∑

l∈I

∑

e∈Tl
|bl,e|+ C

)

.

Proof: See Appendix D.
Lastly, we obtain the desired conclusion, which is stated

as Theorem 32.

Theorem 32. For anyδ > 0, there exists a sufficiently small
ǫ > 0 and sufficiently largeK1 and K2 such that finitely
many iterations of the modified Algorithm 1 can be used
to construct a feasible(g̃ǫ, w̃ǫ) for Problem-PS that is also
nearly optimal. The value of this solution is denotedP̃ǫ and
satisfies

0 ≤ P̃ǫ − P ∗ ≤ δN,

where

δ ,

(

1−R+ N̄
)

ln 2

K1
+

ln O

K2N
+ǫ

(

3

N

∑

l∈I

∑

e∈Tl
|bl,e|+ C

)

.

Proof: Combining results of Lemma 28, Lemma 30, and
Lemma 31, we obtain the desired error bound.

Remark33. The modified (i.e., cyclic schedule) Algorithm
1 is guaranteed to converge to a solution whose value

can be made arbitrarily close toP ∗. Therefore, the joint
iterative LP decoder provides an approximate solution to
Problem-P whose value is governed by the upper bound
in Theorem 32. Algorithm 1 can be further modified to
be of Gauss-Southwell type so that the complexity analysis
in [36] can be extended to this case. Still, the analysis
in [36], although a valid upper bound, does not capture
the true complexity of decoding because one must choose
δ = o

(

1
N

)

to guarantee that the iterative LP solver finds
the true minimum. Therefore, the exact convergence rate and
complexity analysis of Algorithm 1 is left for future study.In
general, the convergence rate of coordinate-descent methods
(e.g., Gauss-Seidel and Gauss-Southwell type algorithms)for
convex problems without strict convexity is an open problem.

IV. ERROR RATE PREDICTION AND VALIDATION

In this section, we validate the proposed joint-decoding
solution and discuss some implementation issues. Then,
we present simulation results and compare with other ap-
proaches. In particular, we compare the performance of
the joint LP decoder and joint iterative LP decoder with
the joint iterative message-passing decoder on two finite-
state intersymbol interference channels (FSISCs) described in
Definition 7. For preliminary studies, we use a(3, 5)-regular
binary LDPC code on the precoded dicode channel (pDIC)
with length 155 and 455. For a more practical scenario, we
also consider a(3, 27)-regular binary LDPC code with length
4923 and rate 8/9 on the class-II Partial Response (PR2)
channel used as a partial-response target for perpendicular
magnetic recording. All parity-check matrices were chosen
randomly except that double-edges and four-cycles were
avoided. Since the performance depends on the transmitted
codeword, the WER results were obtained for a few chosen
codewords of fixed weight. The weight was chosen to be
roughly half the block length, giving weights 74, 226, and
2462 respectively.

The performance of the three algorithms was assessed
based on the following implementation details.

Joint LP Decoder:Joint LP decoding is performed in
the dual domain because this is much faster than the primal
domain when using MATLAB. Due to the slow speed of LP
solver, simulations were completed up to a WER of roughly
10−4 on the three different non-zero LDPC codes with block
lengths 155 and 455 each. To extrapolate the error rates to
high SNR (well beyond the limits of our simulation), we
use a simulation-based semi-analytic method with a truncated
union bound (see (3)) as discussed in Section II. The idea
is to run a simulation at low SNR and keep track of all
observed codeword and pseudo-codeword (PCW) errors and
a truncated union bound is computed by summing over all
observed errors. The truncated union bound is obtained by
computing the generalized Euclidean distances associated
with all decoding errors that occurred at some low SNR
points (e.g., WER of roughly than10−1) until we observe
a stationary generalized Euclidean distance spectrum. It is
quite easy, in fact, to store these error events in a list which
is finally pruned to avoid overcounting. Of course, low SNR
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Figure 6: Comparisons between the joint LP decoding, joint iterativeLP decoding, and joint iterative message-passing (MP) decoding
on the pDIC with AWGN for random (3,5) regular LDPC codes of lengthN = 155 (left) andN = 450 (right). The joint LP
decoding experiments were repeated for three different non-zero codewords and depicted in three different curves. Thedashed
curves are computed using the union bound in Equation (3) based on JD-PCWs observed at 3.46 dB (left) 2.67 dB (right).
Note that SNR is defined as channel output power divided byσ2.

allows the decoder to discover PCWs more rapidly than
high SNR and it is well-known that the truncated bound
should give a good estimate at high SNR if all dominant
joint decoding PCWs have been found (e.g., [44], [45]). One
nontrivial open question is the feasibility and effectiveness of
enumerating error events for long codes. In particular, we do
not address how many instances must be simulated to have
high confidence that all the important error events are found
so there are no surprises at high SNR.

Joint Iterative LP Decoder:Joint iterative decoding is
performed based on the Algorithm 1 on all three LDPC codes
of different lengths. For block lengths 155 and 455, we chose
the codeword which shows the worst performance for the
joint LP decoder experiments. We used a simple scheduling
update scheme: variables are updated according to Algorithm
1 with cyclically with ℓinner = 2 inner loop iterations for
each outer iteration. The maximum number of outer iterations
is ℓouter= 100, so the total iteration count,ℓouterℓinner, is
at most 200. The choice of parameters areK1 = 1000 and
K2 = 100 on the LDPC codes with block lengths 155 and
455. For the LDPC code with length 4923,K2 is reduced
to 10. To prevent possible underflow or overflow, a few
expressions must be implemented carefully. When

K1 min
r∈N (j)\i

mr,j ≥ 35,

a well-behaved approximation of (10) and (11) is given by





1

K1
ln









2+ 2
∑

r∈N (j)\i
e
−K1(|mr,j |−minr∈N(j)\i mr,j)











− min
r∈N (j)\i

mr,j

]

sgn(li,j) ,

where sgn(x) is the usual sign function. Also, (9) should be
implemented using

max
e∈Ti:x(e)=0

{

ᾱi−1 (s(e)) + λ̄i,e + β̄i (s
′(e))

}

− max
e∈Ti:x(e)=1

{

ᾱi−1 (s(e)) + λ̄i,e + β̄i (s
′(e))

}

+ log





∑

e∈Ti:x(e)=0

ᾱi−1 (s(e)) + λ̄i,e + β̄i (s
′(e))−

max
e∈Ti:x(e)=0

{

ᾱi−1 (s(e)) + λ̄i,e + β̄i (s
′(e))

}

]

− log





∑

e∈Ti:x(e)=1

ᾱi−1 (s(e)) + λ̄i,e + β̄i (s
′(e))−

max
e∈Ti:x(e)=1

{

ᾱi−1 (s(e)) + λ̄i,e + β̄i (s
′(e))

}

]

,

where ᾱi (k) , lnαi (k) , β̄i (k) , lnβi (k) and λ̄i,e ,

lnλi,e.
Joint Iterative Message-Passing Decoder:Joint iterative

message decoding is performed based on the state-based
algorithm described in [43] on all three LDPC codes of
different lengths. To make a fair comparison with the Joint
Iterative LP Decoder, the same maximum iteration count and
the same codewords are used.

A. Results

Fig. 6 compares the results of all three decoders and the
error-rate estimate given by the union bound method dis-
cussed in Section II. The solid lines represent the simulation
curves while the dashed lines represent a truncated union
bound for three different non-zero codewords. Surprisingly,
we find that joint LP decoder outperforms joint iterative
message passing decoder by about 0.5 dB at WER of10−4.
We also observe that that joint iterative LP decoder loses
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Figure 7: Comparisons between the joint iterative LP decoding,
joint iterative MP decoding and soft-output Viterbi algo-
rithm (SOVA)-based TE decoding (taken from [22]) on
the PR2 channel with AWGN for random (3,27) regular
LDPC codes of lengthN = 4923. Note that SNR is
defined as channel output power divided byσ2.

about 0.1 dB at low SNR. This may be caused by using
finite values forK1 and K2. At high SNR, however, this
gap disappears and the curve converges towards the error
rate predicted for joint LP decoding. This shows that joint
LP decoding outperforms belief-propagation decoding for
short length code at moderate SNR with the predictability
of LP decoding. Of course, this can be achieved with a
computational complexity similar to turbo equalization.

One complication that must be discussed is the dependence
on the transmitted codeword. Computing the bound is com-
plicated by the fact that the loss of channel symmetry implies
that the dominant PCWs may depend on the transmitted
sequence. It is known that long LDPC codes with joint iter-
ative decoding experience a concentration phenomenon [43]
whereby the error probability of a randomly chosen codeword
is very close, with high probability, to the average error
probability over all codewords. This effect starts to appear
even at the short block lengths used in this example. More
research is required to understand this effect at moderate
block lengths and to verify the same effect for joint LP
decoding.

Fig. 7 compares the joint iterative LP decoder and joint
iterative message-passing decoder in a practical scenario.
Again, we find that the joint iterative LP decoder provides
gains over the joint iterative message-passing decoder at high
SNR. The slope difference between the curves also suggests
that the performance gains of joint iterative LP decoder
will increase with SNR. This shows that joint iterative
LP decoding can provide performance gains at high SNR
with a computational complexity similar to that of turbo
equalization.

V. CONCLUSIONS

In this paper, we consider the problem of linear-
programming (LP) decoding of low-density parity-check

(LDPC) codes and finite-state channels (FSCs). First, we
present an LP formulation of joint-decoding for LDPC codes
on FSCs that offers decoding performance improvements
over joint iterative message-passing decoding at moderate
SNR. Then, joint-decoding pseudo-codewords (JD-PCWs)
are defined and the decoder error rate is upper bounded by a
union bound over JD-PCWs that is evaluated for determinis-
tic ISI channels with AWGN. Next, we propose a simulation-
based semi-analytic method for estimating the error rate of
LDPC codes on finite-state intersymbol interference channel
(FSISIC) at high SNR using only simulations at low SNR.
Finally, we present a novel iterative solver for the joint LP
decoding problem. This greatly reduces the computational
complexity of the joint LP solver by exploiting the LP dual
problem structure. Its main advantage is that it provides
the predictability of LP decoding and significant gains over
turbo equalization (TE) especially in the error-floor with a
computational complexity similar to TE.

APPENDIX

A. Proof of Lemma 25

Restricting the minimization in (4) to the variables
{mp,j′}j′∈N (p) gives

− min
{mp,j}j∈N(p)







1

K1

∑

j∈N (p)

ln
∑

B∈Ej
e
−K1

∑

i∈N(j) mi,j1B(i)+

1

K2
ln
∑

e∈Tp
e
−K2(Γp,e−−→n p−1,s(e)+

←−n p,s′(e))







. (13)

The solution to (13) can be obtained by solving the KKT
equations. Forp ∈ I, we take the first derivative with respect
to {mp,j′}j′∈N (p) and set it to zero; this yields





∑

B∈Ej′ ,p/∈B e
−K1

∑

i∈N(j′)\p mi,j′1B(i)

∑

B∈Ej′ ,B∋p e
−K1

∑

i∈N(j′)\p mi,j′1B(i)



 · eK1mp,j′ =





∑

e∈Tp:x(e)=0 e
−K2(Γp,e−−→n p−1,s(e)+

←−n p,s′(e))

∑

e∈Tp:x(e)=1 e
−K2(Γp,e−−→n p−1,s(e)+

←−n p,s′(e))



 (14)

By defining−K1Mp,j′ as

ln

∑

B∈Ej′ ,p/∈B e
−K1

∑

i∈N(j′)\p mi,j′1B(i)

∑

B∈Ej′ ,B∋p e
−K1

∑

i∈N(j′)\p mi,j′1B(i)
(15)

= ln

∏

i∈N (j′)\p (1 + νi,j′ ) +
∏

i∈N (j′)\p (1− νi,j′)
∏

i∈N (j′)\p (1 + νi,j′ )−
∏

i∈N (j′)\p (1− νi,j′)

=− ln
1− lp,j′

1 + lp,j′
,

whereνi,j′ , e
−K1mi,j′ , we can rewrite (14) to obtain the

desired result.



13

B. Proof of Lemma 28

To characterize the convergence of the iterative joint
LP decoder, we consider the modification of Algorithm 1
with cyclic updates. The analysis follows [32] and uses the
proposition aboutconvergence of block coordinate descent
methodsfrom [46, p. 247].

Proposition 34. Consider the problem

min
x∈X

f (x)

where X = X1 × X2 × · · · × Xm and eachXi is a
closed convex subset ofRni . The vectorx is partitioned
so x = (x1, x2, . . . , xm) with xi ∈ R

ni . Suppose thatf
is continuously differentiable and convexon X and that, for
everyx ∈ X and everyi = 1, . . . ,m, the problem

min
ξi∈Xi

f (x1, . . . , xi−1, ξi, xi+1, . . . , xm)

has aunique minimum. Now, consider the sequencexk+1 =
(

xk+1
1 , . . . , xk+1

m

)

defined by

xk+1
i = argmin

ξi∈Xi

f
(

xk+1
1 , . . . , xk+1

i−1 , ξi, x
k
i+1, . . . , x

k
m

)

,

for i = 1, . . . ,m. Then, every limit point of this sequence
minimizesf overX .

By using Proposition 34, we will show that the modified
Algorithm 1 converges. Definemi = {mi,j}j∈N (i) and

f (m) ,f (m1, . . . , mN)

=
1

K1

∑

j∈J

ln
∑

B∈Ej
e
−K1{

∑

i∈N(j) mi,j1B(i)}+

1

K2
ln
∑

e∈Tp
e

−K2

{

Γp,e−−→n p−1,s(ep)+
←−n p,s′(ep)

}

.

Let us consider cyclic coordinate decent algorithm which
minimizesf cyclically with respect to the coordinate vari-
able. Thusm1 is changed first, thenm2 and so forth through
mN . Then (4), (5), and (6) are equivalent to for eachp ∈ I
with properXp as

min
ξp∈Xp

f (m1, . . . , mp−1, ξp, mp+1, . . . , mN )

= min
ξp∈Xp

1

K1

∑

j∈J

ln
∑

B∈Ej
e

−K1

{

ξp,j1N(j)(p)1B(i)+
∑

i∈N(j)

mi,j1B(i)

}

+
1

K2
ln
∑

e∈Tp
exp







−K2



bp,e −
∑

j∈N (p)

ξp,jδx(ep)=1





+ ln
∑

{e1,...,ep−1}
e

−K2

{

n1,s(e2)−
p−1
∑

i=2

bi,e+
p−1
∑

i=2

∑

j∈N(i)

mi,jδx(ei)=1

}

+ ln
∑

{ep+1,...,eN}
e

−K2

{

N
∑

i=p+1

bi,e−
N
∑

i=p+1

∑

j∈N(i)

mi,jδx(ki)=1

}







.

Using the properties of log-sum-exp functions (e.g., see [42,
p. 72]), one can verify thatf is continuously differentiable
and convex. The minimum overξp for all i ∈ I is uniquely
obtained because of the unique KKT solution in Lemma
25. Therefore, we can apply the Proposition 34 to achieve
the desired convergence result under the modified update
schedule. It is worth mentioning that the Hamming weight
condition prevents degeneracy of Problem-DS based on the
fact that, otherwise, some pairs of bits must always be equal.

C. Proof of Lemma 30

Denote the optimum solution of Problem-P byg∗ andw∗

and the optimum solution of Problem-PS byg̃ andw̃. Since
g∗ and w∗ are the optimal with respect to the Problem-P,
we have

P ∗ =
∑

i∈I

∑

e∈Ti
bi,eg

∗
i,e ≤

∑

i∈I

∑

e∈Ti
bi,eg̃i,e = P̃ . (16)

On the other hand,̃g andw̃ are the optimal with respect to
the Problem-PS, we have

∑

i∈I

∑

e∈Ti
bi,eg̃i,e −

1

K1

∑

j∈J
H(w̃j)−

1

K2
H(g̃p)

≤
∑

i∈I

∑

e∈Ti
bi,eg

∗
i,e −

1

K1

∑

j∈J
H(w∗j )−

1

K2
H(g∗p),

whereH(·) is the entropy defined by (12). We rewrite this
as
∑

i∈I

∑

e∈Ti
bi,eg̃i,e

≤
∑

i∈I

∑

e∈Ti
bi,eg

∗
i,e +

1

K1





∑

j∈J
H(w̃j)−

∑

j∈J
H(w∗j )





+
1

K2

(

H(g̃p)−H(g∗p)
)

≤
∑

i∈I

∑

e∈Ti
bi,eg

∗
i,e +

1

K1

∑

j∈J
H(w̃j) +

1

K2
H(g̃p). (17)

The last inequality is due to nonnegativity of entropy. Using
Jensen’s inequality, we obtain

∑

j∈J
H(w̃j) ≤

∑

j∈J
ln |Ej | =

∑

j∈J
(|N (j)| − 1) ln 2

= N
(

1−R+ N̄
)

ln 2 (18)

and

H(g̃p) ≤ ln O. (19)

By substituting (18) and (19) to (17), we have

P̃ − P ∗ ≤
N
(

1−R+ N̄
)

ln 2

K1
+

ln O

K2
. (20)

Combining (16) and (20) gives the result.
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D. Proof of Lemma 31

For the coordinate-descent solution of Problem-DS, mini-
mizing over thep-th block gives

− min
{mp,j}j∈N(p)

1

K1

∑

j∈N (p)

ln
∑

B∈Ej
e
−K1{

∑

i∈N(j) mi,j1B(i)}

(21)
subject to

Γp,e =
−→n p−1,s(e) −

←−n p,s′(e), ∀e ∈ Tp.

The solution can be obtained by applying the KKT conditions
and this yields

∑

e:x(e)=1 λp,e

1−
∑

e:x(e)=1 λp,e
= e

K1(Mp,j−mp,j). (22)

Given a feasible solution of the modified Algorithm 1, we
define

λj
i ,

∑

e:x(e)=1

λj
i,e =

1

1 + e
K1(mi,j−Mi,j)

,

λi ,
1

|N (i)|

∑

j∈N (i)

λj
i =

∑

e:x(e)=1

λi,e

with

λi,e ,
1

|N (i)|

∑

j∈N (i)

λj
i,e

and

ǫ , max
i∈I

max
j∈N (i)

|λj
i − λi|.

Suppose we stop iterating whenǫ ≤ 1
6 and define

λ̂i , (1− 6ǫ)λi + 6ǫ
∑

e:x(e)=1

1

|E|

= (1− 6ǫ)λi + 3ǫ =
∑

e:x(e)=1

λ̂i,e,

where

λ̂i,e , (1− 6ǫ)λi,e +
6ǫ

|E|
.

First, we claim that̂λ ,

{

λ̂i

}

∈ P(H). This is because
setting

wj,B ,
e
−K1

∑

l∈N(j) ml,j1B(l)

∑

B′∈Ej e
−K1

∑

l∈N(j) ml,j1B′(l)
(23)

obviously satisfies for∀j ∈ J

wj,B ≥ 0, ∀B ∈ Ej ,
∑

B∈Ej
wj,B = 1

and satisfies for∀i ∈ I, j ∈ N (i)

∑

B∈Ej ,B∋i
wj,B =

∑

B∈Ej ,B∋i
e

−K1
∑

l∈N(j) ml,j1B(l)

∑

B′∈Ej
e

−K1
∑

l∈N(j) ml,j1B′ (l)
= λj

i .

From [36, p. 4841], it follows that̃λ ∈ P(H). Next, we show

that
{

λ̂i,e

}

∈ T . Note that defining

λi,e ,
e
−K2{Γi,e−−→n i−1,s(ei)

+←−n i,s′(ei)
}

∑

e∈Ti e
−K2{Γi,e−−→n i−1,s(ei)

+←−n i,s′(ei)
}

implies that (by (14))
∑

e:x(e)=1 λi,e

1−
∑

e:x(e)=1 λi,e
= e

K1(Mp,j−mp,j),

obviously satisfies for∀i ∈ I

λi,e ≥ 0, ∀e ∈ Ti,
∑

e∈Ti
λi,e = 1

and for∀i ∈ I \N, k ∈ S by (5) and (6)

∑

e:s′(e)=k

λi,e =

∑

e:s′(e)=k e
−K2{Γi,e−−→n i−1,s(ei)

+←−n i,s′(ei)
}

∑

e∈Ti e
−K2{Γi,e−−→n i−1,s(ei)

+←−n i,s′(ei)
}

=
∑

e:s(e)=k

λi+1,e.

Furthermore,
∑

e∈Ti
λ̂i,e = (1− 6ǫ)

∑

e∈Ti
λi,e + 6ǫ

∑

e∈Ti

1

|E|
= 1,

∑

e:s′(e)=k

λ̂i,e = (1− 6ǫ)
∑

e:s′(e)=k

λi,e + 6ǫ
∑

e:s′(e)=k

1

|E|

= (1− 6ǫ)
∑

e:s(e)=k

λi+1,e + 6ǫ
∑

e:s(e)=k

1

|E|

=
∑

e:s(e)=k

λ̂i+1,e,

and by Definition 8,λ̂ ∈ P(H). Therefore, we conclude

that
{

λ̂i,e

}

∈ PT (H) is feasible in Problem-P. From [36,
p. 4855], it follows that there exist feasiblêwj vectors

associated with
{

λ̂i,e

}

.

Denote the minimum value of Problem-PS byP̃ . Then by
the Lagrange duality we can upper boundP̃ǫ − P̃ with

∑

i∈I

∑

e∈Ti
bi,eλ̂i,e −

1

K1

∑

j∈J
H(ŵj)−

1

K2
H(λ̂p)− P̃

≤
∑

i∈I

∑

e∈Ti
bi,eλ̂i,e −

1

K1

∑

j∈J
H(ŵj)−

1

K2
H(λ̂p)

+
1

K1

∑

j∈J
ln
∑

B∈Ej
e
−K1{

∑

i∈N(j) mi,j1B(i)}

(a)

≤
1

K1

∑

j∈J
[H(wj)−H(ŵj)]−

1

K2
H(λ̂p)

+ǫ

(

3
∑

l∈I

∑

e∈Tl
|bl,e|+CN

)

≤
1

K1

∑

j∈J
H(wj) + ǫN

(

3

N

∑

l∈I

∑

e∈Tl
|bl,e|+ C

)

,
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where(a) is given by rewriting (23) as

1

K1

∑

j∈J
ln
∑

B∈Ej
e
−K1{

∑

i∈N(j) mi,j1B(i)}

=
1

K1

∑

j∈J
H(wj)−

∑

j∈J

∑

B∈Ej
wj,B

∑

l∈N (j)

ml,j1B(l)

≤
1

K1

∑

j∈J
H(wj)−

∑

l∈I

∑

e∈Tl
bl,eλ̂l,e+ǫ

(

3
∑

l∈I

∑

e∈Tl
|bl,e|+CN

)

.

The last step of this equation follows from
∑

j∈J

∑

B∈Ej
wj,B

∑

l∈N (j)

ml,j1B(l)

=
∑

l∈I

∑

j∈N (l)

ml,jλ
j
l

≥
∑

l∈I

∑

j∈N (l)

ml,j (λl − ǫ)

≥
∑

l∈I

∑

e∈Tl



δx(e)=1

∑

j∈N (l)

ml,j



λl,e−ǫ
∑

l∈I

∑

j∈N (l)

|ml,j|

≥
∑

l∈I

∑

e∈Tl
bl,eλl,e − ǫCN

≥
∑

l∈I

∑

e∈Tl
bl,eλ̂l,e − 3ǫ

∑

l∈I

∑

e∈Tl
|bl,e| − ǫCN.

In the above equation, the details of the last two inequalities
are not included due to space limitations, but they can be
derived using arguments very similar to [36, p. 4840-4841].
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