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Abstract—Model selection in clustering requires (i) to specify
a suitable clustering principle and (ii) to control the model
order complexity by choosing an appropriate number of clus-
ters depending on the noise level in the data. We advocate
an information theoretic perspective where the uncertainty in
the measurements quantizes the set of data partitionings and,
thereby, induces uncertainty in the solution space of clusterings. A
clustering model, which can tolerate a higher level of fluctuations
in the measurements than alternative models, is considered to
be superior provided that the clustering solution is equally
informative. This tradeoff between informativeness and robustness
is used as a model selection criterion. The requirement that data
partitionings should generalize from one data set to an equally
probable second data set gives rise to a new notion of structure
induced information.

I. INTRODUCTION

Data clustering or data partitioning has emerged as the
workhorse of exploratory data analysis. This unsupervised
learning methodology comprises a set of data analysis tech-
niques which group data into clusters by either optimizing
a quality criterion or by directly employing a clustering
algorithm. The zoo of models range from centroid based algo-
rithms like k-means or k-medoids, spectral graph meth-
ods like Normalized Cut, Average Cut or Pairwise
Clustering to linkage inspired grouping principles like
Single Linkage, Average Linkage or Path-based
Clustering.

The various clustering methods and algorithms ask for a
unifying meta-principle how to choose the “right” clustering
method dependent on the data source. This paper advocates
a shift of viewpoint away from the problem “What is the
‘right’ clustering model?” to the question “How can we
algorithmically validate clustering models?”. This conceptual
shift roots in the assumption that ultimately, the data should
vote for their prefered model type and model complexity[4].
Therefore, algorithms which are endowed with the ability
to validate clustering concepts can maneuver through the
space of clustering models and, dependent on the training and
validation data sets, they can select a model with maximal
information content and optimal robustness.

In this paper, we propose an information theoretic model
validation strategy to select clustering models. A clustering
model is used to generate a code for communication over a
noisy channel. “Good” models are selected according to their
robustness to noise. The approximation precision of clustering
solutions is controlled by an algorithm called empirical risk
approximation (ERA) [2] which quantizes the hypothesis class

of clusterings. ERA employs an hypothetical communication
framework where sets of approximate clustering solutions for
the training and for the test data are used as a communica-
tion code. Approximations of the empirical minimizer with
model averaging over approximate solutions favors stability
of clusterings. Furthermore, it is well known that stability
based model selection [8] yields highly satisfactory results in
applications although the theoretical foundation of this model
selection strategy is still controversially debated [1].

II. STATISTICAL LEARNING OF CLUSTERING

Given are a set of objects O = {o1, . . . , on} ∈ O
and measurements X ∈ X to characterize these objects.
O,X denotes the object or measurement space, respectively.
Such measurements might be d-dimensional vectors X =
{Xi ∈ Rd, 1 ≤ i ≤ n} or relations D = (Dij) ∈ Rn·n
which describe the (dis)-similarity between object oi and oj .
More complicated data structures than vectors or relations,
e.g., three-way data or graphs, are used in various applica-
tions. In the following, we use the generic notation X for
measurements. We have to distinguish between objects and
measurements since repeated measurements might refer to the
same object. Data denote object-measurement relations O×X ,
e.g., vectorial data {Xi : 1 ≤ i ≤ n} describe surjective
relations between objects oi and measurements Xi := X(oi).

The hypotheses for a clustering problem are the functions
assigning data to groups, i.e.,

c : O ×X → {1, . . . , k}n

(O,X) 7→ c(O,X) (1)

The parameter n = |O| denotes the number of objects. In
cases where X uniquely identifies the object set O, i.e., there
exists a bijective function between objects and measurements,
then we omit the first argument of c to simplify notation. A
clustering is then denoted by c : X → {1, . . . , k}n.

The hypothesis class for a clustering problem is defined as
the set of functions assigning data to groups, i.e., C(X) =
{c(O,X) : O ∈ O}. For n objects we can distinguish
O(kn) such functions. Specific clustering models might re-
quire additional parameters θ which characterize a cluster, e.g.,
the centroids in k-means clustering. The hypothesis class is
then the product space of possible assignments and possible
parameter values.
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III. CLUSTERING COSTS AND EMPIRICAL RISK
APPROXIMATION

Exploratory pattern analysis and model selection for group-
ing requires to assess the quality of clustering hypotheses.
Various criteria emphasize coherency of data or connectedness,
e.g., k-means clustering measures the average distance of data
vectors to the nearest cluster centroid or prototype. For the sub-
sequent discussion on information theoretic model validation,
a cost or risk function R(c,X) is assumed to measure how
well a particular clustering with assignments c(X) and cluster
parameters θ groups the objects. To simplify the notation,
cluster parameters θ are not explicitly listed as arguments of
clustering costs but are subsumed in the specification of the
cost function R. A suitable metric for the space of hypotheses
might be chosen based on such a cost function R.

The clustering solution c⊥(X) minimizes the empirical risk
(ERM) of data clustering given the measurements X, i.e.,

c⊥(X) = arg min
c
R(c,X). (2)

Clustering solutions which are similar in costs to the ERM
solution c⊥(X) define the set Cγ(X) of empirical risk ap-
proximations for clustering, i.e.,

Cγ(X) := {c(X) : R(c,X) ≤ R(c⊥,X) + γ}. (3)

The set Cγ(X) reduces to the ERM solution in the limit
limγ→0 Cγ(X) = {c⊥(X)}.

To validate clustering methods we have to define and
estimate the generalization performance of partitionings. We
adopt the two sample set scenario with training and test data
which is widely used in statistics and statistical learning theory
[11] i.e. to bound the deviation of empirical risk from expected
risk, but also for two-terminal systems in information theory
[6]. We assume for the subsequent discussion that training data
and test data are described by respective object sets O(1),O(2)

and measurements X(1),X(2) ∼ P(X) which are drawn i.i.d.
from the same probability distribution P(X). Furthermore,
X(1),X(2) uniquely identify the training and test object sets
O(1),O(2) so that it is sufficient to list X(j) as references to
object sets O(j), j = 1, 2.

Statistical inference requires that clustering solutions have
to generalize from training data to test data since noise in
the data renders the ERM solution c⊥(X(1)) 6= c⊥(X(2))
unstable. How can we evaluate the generalization properties
of clustering solutions? Before we can evaluate the clustering
costs R(.,X(2)) on test data of the ERM clustering on training
data c⊥(X(1)) we have to identify a clustering c ∈ C(X(2))
which corresponds to c⊥(X(1)). A priori, it is not clear how
to compare clusterings c(X(1)) for measurements X(1) with
clusterings c(X(2)) for measurements X(2). Therefore, we
define the mapping

ψ : C(X(1)) → C(X(2))

c(X(1)) 7→ ψ ◦ c(X(1)) (4)

which identifies a clustering hypothesis for training data
c ∈ C(X(1)) with a clustering hypothesis for test data
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Fig. 1. Generation of a set of 2nR code problems for communication by
e.g. permuting the object indices.

ψ ◦ c ∈ C(X(2)). The reader should note that such a mapping
ψ might change the object indices. In cases when the mea-
surements are elements of an underlying metric space, then a
natural choice for ψ is the nearest neighbor mapping ν(i) =

arg min` ‖X(2)
` −X

(1)
i ‖2 where we identify clustering c(X(1))

with ψ ◦ c(X(1)) =
(
c(X

(2)
ν(1)), c(X

(2)
ν(2)), . . . , c(X

(2)
ν(n))

)
.

The mapping ψ enables us to evaluate clustering costs on
test data X(2) for clusterings c(X(1)) selected on the basis
of training data X(1). Consequently, we can determine how
many γ-optimal training solutions are also γ-optimal on test
data, i.e., ∆C(X(1),X(2)) :=

∣∣(ψ ◦ Cγ(X(1))
)
∩ Cγ(X(2))

∣∣.
A large overlap means that the training approximation set
generalizes to the test data, whereas a small or empty in-
tersection indicates the lack of generalization. Essentially, γ
parametrizes a coarsening of the hypothesis class such that sets
of data partitionings become stable w.r.t measurement fluc-
tuations. The tradeoff between stability and informativeness
is controlled by minimizing γ under the constraint of large
∆C(X(1),X(2))/|Cγ(X(2))| for given risk function R(.,X).

IV. CODING BY APPROXIMATION

In the following, we describe a communication scenario
with a sender S, a receiver R and a problem generator
PG where the problem generator serves as a noisy channel
between sender and receiver. Communication takes place
by approximately optimizing clustering cost functions, i.e.,
by calculating approximation sets Cγ(X(1)), Cγ(X(2)). This
coding concept will be refered to as approximation set coding
(ASC). The noisy channel is characterized by a clustering cost
function R(c,X) which determines the channel capacity of the
ASC scenario. Validation and selection of clustering models is
then achieved by maximizing the channel capacity over a set
of cost functions Rθ(.,X), θ ∈ Θ where θ indexes the various
clustering models.

Sender S and receiver R agree on a clustering principle
R(c,X(1)) and on a mapping function ψ. The following
procedure is then employed to generate the code for the
communication process:

1) Sender S and receiver R obtain a data set X(1) from
the problem generator PG.

2) S and R calculate the γ-approximation set Cγ(X(1)).
3) S generates a set of (random) permutations Σ :=
{σ1, . . . , σ2nR} to rename the objects. The permutations
define a set of optimization problems R(c, σj ◦ X(1))
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Fig. 2. Communication process: (1) the sender selects transformation σs,
(2) the problem generator draws X(2) ∼ P(X) and applies σs to it, and the
receiver estimates σ? based on X̃ = σs ◦X(2).

with associated approximation sets Cγ(σj ◦ X(1)), 1 ≤
j ≤ 2nR.

4) S sends the set of permutations Σ to R who determines
the approximation sets {Cγ(σi ◦X(1))}2nRi=1 .

The rationale behind this procedure is the following: Given
the measurements X(1) the sender has randomly covered the
set of clusterings C(X(1)) by respective approximation sets
{C(σi ◦ X(1)) : 1 ≤ i ≤ 2nR}. Communication succeeds
if the approximation sets are stable under the stochastic
fluctuations of the measurements. The criterion for reliable
communication is defined by the ability of the receiver to
identify a specific permutation that has been selected by the
sender. The approximation sets C(σi ◦X(1)) play the role of
codebook vectors in Shannon’s theory of communication.

After this setup procedure, both sender and receiver have
a list of approximation sets available or can algorithmically
determine membership of clusterings in one of the 2nR ap-
proximation sets.

How is the communication between sender and receiver
organized? During communication, the following steps take
place as depicted in fig. 2:

1) The sender S selects a permutation σs as message and
send it to the problem generator PG.

2) PG generates a new data set X(2) and it applies the
selected permutation to X(2), yielding X̃ = σs ◦X(2).

3) PG send X̃ to the receiver R without revealing σs.
4) R calculates the approximation set Cγ(X̃)
5) R estimates the applied permutation σs by using the

decoding rule

σ̂ = arg max
σ∈Σ

∣∣∣(ψ ◦ Cγ(σ ◦X(1))
)
∩ Cγ(X̃)

∣∣∣ (5)

This communication channel supports to communicate at
most n log k nats if two conditions hold: (i) the channel is
noise free X(1) ≡ X(2); (ii) all clusters have the same number
of objects assigned to.

It is worth mentioning that ASC is conceptually not re-
stricted to clustering problems although we focus the discus-
sion here to this problem domain.

V. ERROR ANALYSIS OF APPROXIMATION SET CODING

To determine the optimal approximation precision for an
optimization problem R(.,X) we have to determine necessary
and sufficient conditions which have to hold in order to
reliably identify approximation sets. Reliable identification of
approximation sets enable us to define a communication pro-
tocol using the above described coding scheme. Therefore, we

analyse the error probability of approximation set coding and
the channel capacity which is associated with a particular cost
function R(.,X). This channel capacity will be refered to as
approximation capacity since it determines the approximation
precision of the coding scheme.

A communication error occurs if the sender selects σs and
the receiver decodes σ̂ = σj , j 6= s. To estimate the probability
of this event, we introduce the sets

∆Cj :=
(
ψ ◦ Cγ(σj ◦X(1))

)
∩ Cγ(X̃(2)), σj ∈ Σ. (6)

The set ∆Cj measures the intersection between the approxima-
tion set Cγ(σj ◦X(1)) for σj-permuted measurements and the
approximation set which has been calculated by the receiver
based on the test data X̃.

The probability of a communication error is given by a
substantial overlap ∆Cj with σj ∈ Σ \ {σs}, i.e.,

P(σ̂ 6= σs|σs) = P
(

max
σj∈Σ\{σs}

|∆Cj | ≥ |∆Cs|
∣∣∣∣σs)

≤
∑

σj∈Σ\{σs}

P
(
|∆Cj | ≥ |∆Cs|

∣∣σs) (7)

=
∑

σj∈Σ\{σs}

EX(1,2)Eσj
[
I{|∆Cj |≥|∆Cs|}

∣∣σs]

The notation X(1,2) = (X(1),X(2)) and I{f} =

{
1 f is true
0 otherwise

is used. The inequality in (7) is caused by the union bound.
The confusion probability with message σj , j 6= s for given
training data X(1) and test data X(2) conditioned on σs is
defined by

Eσj
[
I{|∆Cj |≥|∆Cs|}

]
=

1

|{σj}|
∑
{σj}

I{log |∆Cj |≥log |∆Cs|}

(a)

≤
∑
{σj}

exp (log |∆Cj | − log |∆Cs|)
|{σj}|

=
1

|{σj}|
∑
{σj}

|∆Cj |
|∆Cs|

(b)
=

|Cγ(X(1))||Cγ(X(2))|
|{σj}||∆Cs|

(c)
= exp (−nIγ(σj , σ̂)) (8)

The expectation Eσj
[
I{|∆Cj |≥|∆Cs|}

]
in derivation (8) is con-

ditioned on σs which has been omitted to increase the readabil-
ity of the formulas. The summation {σj} is indexed by all pos-
sible realizations of the transformation σj that are uniformly
selected. (a) we have used the inequality I{x≥0} ≤ exp(x);
(b) averaging over a random permutation σj of object indices
breaks any statistical dependence between sender and receiver
approximation sets which corresponds to the error case in
jointly typical coding [5]; (c) we have introduced the mutual
information between the uniform distribution of the sender



message σj and the receiver message σ̂

Iγ(σj , σ̂) =
1

n
log

(
|{σj}||∆Cs|
|C(1)
γ ||C(2)

γ |

)
(9)

=
1

n

(
log
|{σj}|
|C(1)
γ |

+ log
|C(2)|
|C(2)
γ |
− log

|C(2)|
|∆Cs|

)
To compactify the formula, the following notation is intro-
duced: C(i) := C(X(i)), C(i)

γ := Cγ(X(i)), i = 1, 2. The
interpretation of eq. (9) is straightforward: The first logarithm
measures the entropy of the number of transformations which
can be resolved with an uncertainty of C(1)

γ in the space of
clusterings on the sender side. The logarithm log(|C(2)|/|C(2)

γ |)
calculates the entropy of the receiver clusterings which are
quantized by C(2)

γ . The third logarithm measures the joint en-
tropy of (σj , σ̂) which depends on the size of the intersection
|∆Cs| = |

(
ψ ◦ Cγ(σs ◦X(1))

)
∩ Cγ(σs ◦X(2))|.

Inserting (8) into (7) yields the upper bound for the error
probability

P(σ̂ 6= σs|σs) ≤ exp(nR log 2) exp (−nIγ(σj , σ̂))

= exp(−n(Iγ(σj , σ̂)−R log 2)) (10)

The communication rate nR log 2 is limited by the mutual
information Iγ(σj , σ̂) for asymptotically error-free communi-
cation.

VI. INFORMATION THEORETICAL MODEL SELECTION

The analysis of the error probability suggests the following
inference principle for model selection: the approximation
precision is controlled by γ which has to be minimized to
derive more expressive clusterings. For large γ the rate R will
be low since we resolve the space of clusterings in only a
coarse grained fashion. For too small γ the error probability
does not vanish which indicates confusions between σj and σs.
The optimal γ-value is given by the smallest γ or, equivalently
the highest approximation precision

γ? = arg max
γ∈[0,∞)

Iγ(σ, σ̂). (11)

Another choice to be made in modeling is to select a suitable
cost function for clustering R(.,X). Let us assume that a
number of cost functions {R1(.,X), R2(.,X), . . . , Rm(.,X)}
are considered as candidates. The cost function to be selected
is

R?(c,X) = arg max
1≤j≤m

Iγ(σ(Rj), σ̂(Rj)) (12)

where both the random variables σ and σ̂ depend on R(c,X).
The selection rule (12) prefers the model which is “expres-
sive” enough to exhibit high information content (e.g., many
clusters) and, at the same time robustly resists to noise in
the data set. The bits or nats which are measured in the ASC
communication setting are context sensitive since they refer to
a hypothesis class C(X), i.e., how finely or coarsely functions
can be resolved in C.

VII. COMPUTATION OF THE APPROXIMATION CAPACITY

To estimate the mutual information Iγ(σ, σ̂) compu-
tationally, we have to calculate the size of the sets
|Cγ(X(1))|, |Cγ(X(2))|, |{σj}|, |∆Cs|.

The cardinality |{σj}| is determined by the type of the
empirical minimizer c⊥(X), i.e., the probabilities pν :=
P(c⊥(X(1)) = ν), 1 ≤ ν ≤ k with

|{σj}|
.
= exp(nH(p1, . . . , pk)) (13)

whereH(p1, . . . , pk) = −
∑k
ν=1 pν log pν denotes the entropy

of the type of c⊥(X(1)), (an
.
= bn ⇔ limn→∞

1
n log an

bn
= 0).

The cardinality of the approximation sets can be estimated
estimated using concepts from statistical physics. The ap-
proximation sets Cγ(X(1,2)) are known as microcanonical
ensembles in statistical mechanics. Estimating their size is
achieved up to logarithmic corrections by calculating the
partition function

|Cγ(X(1,2))| .
=

∑
c∈C(X(1,2))

exp(−βR(c,X(1,2))). (14)

The scaling factor β, also know as inverse computational
temperature, is determined such that the average costs of
the ensemble Cγ(X(1)) yields R(c⊥,X(1)) + γ. The weights
exp(−βR(c,X(1,2))) are known as Boltzmann factors.

The joint entropy in the mutual information, which is related
to the intersection

|∆C| =
∣∣∣(ψ ◦ Cγ(X(1))

)
∩ Cγ(X(2))

∣∣∣
=

∑
c∈C(X(2))

I{c∈ψ◦Cγ(X(1))}I{c∈Cγ(X(2))}

.
=

∑
c∈C(X(2))

exp(−βR(ψ−1 ◦ c,X(1))) ·

exp(−βR(c,X(2))), (15)

involves a product of Boltzmann factors.
The identification of approximation sets with microcanon-

ical ensembles provides access to a rich source of compu-
tational and analytical methods from statistical physics to
calculate the mutual information Iγ(σ, σ̂). This analogy is by
no means accidental since information theory and statistical
mechanics are both specializations of empirical process theory
with large deviation analysis of many particle systems. The
central role of entropy and free energy is reflected in ASC
coding where the logarithm of the partition function arises in
the mutual information (9) twice.

The cardinalities of the approximation sets can also be
numerically estimated by sampling using Markov Chain Monte
Carlo methods or by employing analytical techniques like
deterministic annealing [9], [3].

VIII. WHY INFORMATION THEORY FOR CLUSTERING
VALIDATION?

There exists a long history of information theoretic ap-
proaches to model selection, which traces back at least to



Akaike’s extension of the Maximum Likelihood principle. AIC
penalizes fitted models by twice the number of free param-
eters. The Bayesian Information Criterion (BIC) suggests a
stronger penalty than AIC, i.e., number of model parame-
ters times logarithm of the number of samples. Rissanen’s
minimum description length principles is closely related to
BIC (see e.g. [7] for model selection penalties). Tishby et al
[10] proposed to select the number of clusters according to a
difference of mutual informations which is closely related to
rate distortion theory with side information.

All these information criteria regularize model estimation of
the data source. Approximation set coding pursues a different
strategy for the following reason: Quite often the measurement
space X has a much higher “dimension” than the solution
space. Consider for example the problem of spectral clustering
with k groups based on dissimilarities D: The measurements
are elements of Rn(n−1)/2 for real valued, symmetric weights
with vanishing self-dissimilarities, but we can at most distin-
guish O(kn) different clusterings. Any approach which relies
on estimating the probability distribution P(X) of the data
ultimately will fail since we require far too many observations
than needed to identify one hypothesis or a set of hypotheses,
i.e., one clustering or a set of clusterings.

Using an information theoretic perspective, we might ask
the question how the uncertainty in the measurements reduces
the resolution in the hypothesis class. How similar can two
hypotheses be so that they are still statistically distinguishable
given a cost function R(c,X)? This research program is based
on the idea that approximation sets of clustering cost functions
can be used as a reliable code. The capacity of such a coding
scheme then answers the question how sensitive a particular
cost function is to data noise.

IX. CONCLUSION

Model selection and validation requires to estimate the gen-
eralization ability of models from training to test data. “Good”
models show a high expressiveness and they are robust w.r.t.
noise in the data. This tradeoff between informativeness and
robustness ranks different models when they are tested on new
data and it quantitatively describes the underfitting/overfitting
dilemma. In this paper we have explored the idea to use
approximation sets of clustering solutions as a communica-
tion code. Since clustering solutions with k clusters can be
represented as strings of n symbols with a k-ary alphabet,
the significant problem of model order selection in clustering
can be naturally phrased as a communication problem. The
approximation capacity of a cost function provides a selection
criterion which renders various models comparable in terms
of their respective bit rates. The number of reliably extractable
bits of a clustering cost function R(.,X) define a “task
sensitive information measure” since it only accounts for the
fluctuations in the data X which actually have an influence
on identifying an individual clustering solution or a set of
clustering solutions.

The maximum entropy inference principle suggests that we
should average over the statistically indistinguishible solutions

in the optimal approximation set Cγ?(X). Such a model
averaging strategy replaces the original cost function with the
free energy and, thereby, it defines a continuation methods
with maximal robustness. The urgent question in many data
analysis applications, which regularization term should be used
without introducing an unwanted bias, is naturally answered
by the entropy. The second question, how the regularization
parameter should be selected, in answered by ASC: Choose the
parameter value which maximizes the approximation capacity!

ASC for model selection can be applied to all combina-
torial or continuous optimization problems which depend on
noisy data. The noise level is characterized by two samples
X(1),X(2). Two samples provide by far too little information
to estimate the probability density of the measurements but
two large samples contain sufficient information to determine
the uncertainty in the solution space. The equivalence of
ensemble averages and time averages of ergodic systems is
heavily exploited in statistical mechanics and it also enables
us in this paper to derive a model selection strategy based on
two samples.

Future work also includes the study of algorithmic com-
plexity issues. The question how hard are properly regularized
optimization problems hints at a relationship between compu-
tational complexity and statistical complexity.
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