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Abstract—In this paper, we propose a new class of quantized
message-passing decoders for LDPC codes over the BSC. The
messages take values (or levels) from a finite set. The update
rules do not mimic belief propagation but instead are derived
using the knowledge of trapping sets. We show that the update
rules can be derived to correct certain error patterns that are
uncorrectable by algorithms such as BP and min-sum. In some
cases even with a small message set, these decoders can guarantee
correction of a higher number of errors than BP and min-sum.
We provide particularly good 3-bit decoders for 3-left-regular
LDPC codes. They significantly outperform the BP and min-
sum decoders, but more importantly, they achieve this at only a
fraction of the complexity of the BP and min-sum decoders.

I. INTRODUCTION

Low-density parity-check (LDPC) [2] codes have received
much attention in the past several years owing to their excep-
tional performance under iterative decoding. A wide spectrum
of iterative decoders of varying complexity have been devel-
oped ranging from simple hard-decision algorithms such as
Gallager-A/B algorithms to the more sophisticated belief prop-
agation (BP) algorithm. Recently, the design of quantized BP
decoders and other low-complexity variants of BP have gained
prominence due to the high-speed requirements and hard-
ware constraints for practical realizations of these decoders.
The first quantized decoders including a three-level decoder
coined Gallager-E algorithm were proposed by Richardson and
Urbanke [3]. They also developed the technique of density
evolution to determine the asymptotic decoding thresholds of
a code. Low complexity approximations to BP with minimal
loss in the asymptotic decoding thresholds have been proposed
by Chen et al. [4]. The class of quantized BP decoders have
been investigated by Lee and Thorpe [5]. Quantized min-sum
decoders have been proposed by Smith, Kschischang and Yu
[6].

A common theme in all the aforementioned works is that
the underlying basis for design of the quantized decoders is
to maximize the decoding thresholds which holds only in
the asymptotic case. Therefore, these quantization schemes do
not guarantee a good performance on a practical finite-length
code especially in the high signal-to-noise (SNR) region. In
addition, the effects of quantization can also contribute to the
error-floor phenomenon. Richardson introduced the notion of
trapping sets in [7] to characterize error floors. Trapping sets

can be present in any finite-length code irrespective of how
good the decoding threshold is and hence, codes optimized for
good decoding thresholds can still exhibit high error floors.
Characterization of error floors and design of LDPC codes
with low error floors has recently been a subject of wide
interest [8], [9], [10], [11].

In this paper, we propose multilevel decoders for LDPC
codes over the binary symmetric channel (BSC). A key
distinction from the traditional quantized decoders is that
the messages are not quantized values of beliefs and the
update rules are not approximations of the rules used in BP.
Instead, they are derived using trapping sets and trapping set
ontology [12]. As we showed in [13] in the case of BSC,
failure characterization is combinatorial in nature, and in the
error floor region reduces to the problem of guaranteed error-
correction capability of a code. In [14] we showed the potential
of multilevel decoding for the case of four levels. In this
paper, we provide two 3-bit decoders for 3-left-regular codes
that outperform floating-point BP and min-sum in the error
floor region inspite of having much lower complexity. The
rest of the paper is organized as follows. Section II provides
preliminaries. Section III provides the general framework of
multilevel decoders. In Section IV, we provide the description
of the 3-bit decoders for 3-left-regular codes. Finally results
and conclusions are presented in Sections V and VI.

II. PRELIMINARIES

Let G = (V ∪ C,E) denote the Tanner graph of a binary
LDPC code C with the set of variable nodes V = {v1, · · · , vn}
and set of check nodes C = {c1, · · · , cm}. E is the set of
edges in G. The code has length n and code rate R. For
a vector v = (v1, v2, . . . , vn), the support of v denoted as
supp(v), is defined as the set of all variable nodes such that
vi 6= 0. A code C is said to be dv-left-regular if all variable
nodes in V of graph G have the same degree dv . The degree
of a node is the number of its neighbors.

Let r = (r1, r2 . . . , rn) be the input to the decoder from the
BSC. A trapping set T(r) is a non-empty set of variable nodes
in G that are not eventually corrected by the decoder [7]. A
standard notation for a trapping set is (a, b) where a = |T(r)|
and b is the number of odd-degree check nodes in the sub-
graph induced by T(r). The critical number of a trapping
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set is the minimal number of variable nodes that have to be
initially in error for the decoder to end up in the trapping set.
Note that these definitions are for the case of BSC. Also in
analysis of decoders in this paper, it is implicitly assumed that
the all-zero codeword is transmitted. This is a valid assumption
since we consider only symmetric decoders, as explained in
[3]. Readers can refer to the work of Chilappagari et al. [8],
[12] for more details on these notions.

III. MULTILEVEL DECODERS: GENERAL FRAMEWORK

Multilevel decoders are a new class of quantized message-
passing decoders for LDPC codes. For this class, a decoder
F is defined as a 4-tuple given by F = (M,Y,Φv,Φc).
The message set M consists of all the levels under which the
messages are confined to and is defined as M = {0,±Li :
1 ≤ i ≤ M}, where Li ∈ R+ and Li > Lj for any
i > j. The set Y denotes the set of possible values called
channel values, that are computed by the decoder based on
the vector r received from the channel. For the case of BSC,
Y is defined as Y = {±C}, and for each variable node vi in
G, the channel value yi ∈ Y is determined by yi = (−1)riC.
Φv : Y ×Mdv−1 → M denotes the update rule used at a
variable node with degree dv , which is a simple map derived
using knowledge of trapping sets. Φc :Mdc−1 →M denote
the check node map for a check node with degree dc. We
shall restrict ourselves to dv-left-regular codes where the same
map is used at every variable node. Also the update rules we
consider are time-invariant rules, i.e., they do not change from
iteration to iteration.

Remark: In this paper, by the term “trapping sets”, we mean
trapping sets that are known for message-passing decoders
such as Gallager-A/B and/or BP decoders.

A. Update rules

In this paper, we consider the check node update function
Φc to be

Φc(m1, . . . ,mdc−1) =

dc−1∏
j=1

sgn(mj)

 min
j∈{1,...,dc−1}

(|mj |)

where sgn denotes the standard signum function.
Remark: Φc defined in this manner corresponds exactly to

the check node update rule of the min-sum algorithm.
Based on the definition of Φv , we propose two subclasses of

multilevel decoders: linear-threshold decoders and non-linear-
threshold decoders.

Linear-threshold (LT) decoders: For these decoders, the
function Φv determines its output by taking a sum of its
inputs and comparing with a set of thresholds. A threshold
set T = {T1, T2, · · · , TM} where Ti ∈ R+, is defined in a
way such that for any Tp, Tq ∈ T , Tp > Tq if p > q. The
function Φv is defined as

Φv(m1,m2, · · · ,mdv−1, yi) = Q

dv−1∑
j=1

mj + yi



where Q is the quantization function defined as

Q(x) =

{ Li, Ti ≤ x < Ti+1

−Li, −Ti+1 < x ≤ −Ti
0, otherwise

where i = 1, 2, . . . ,M and TM+1 =∞.
Remark: Note that although one might consider these de-

coders as special instances of a quantized min-sum decoder,
the messages are still not beliefs. Also particular message
sets and threshold sets for Φv are defined using knowledge
of trapping sets which will be discussed later.

Non-linear-threshold (NLT) decoders: For these decoders,
the function Φv determines its output by taking the sum of its
incoming messages and a weighted channel value, and then
comparing with a set of thresholds. The weight ωc assigned
to the channel value yi is computed using a symmetric non-
linear function Ω :Mdv−1 → {0, 1}.

Φv(m1,m2, · · · ,mdv−1, yi) = Q

dv−1∑
j=1

mj + ωc · yi

 .

Remark: Due to the nonlinearity, Φv can output different
outgoing messages for any two distinct sets of incoming
messages even though the sum of them is the same. Hence
these decoders are different from quantized min-sum decoders
or any other existing quantized message-passing decoders.

It is evident from the expressions for Φv and Φc, that the
rules are symmetric for both LT and NLT decoders.

B. Isolation assumption

We now introduce a key concept called isolation assumption
that enables us to analyze decoding on isolated subgraphs
induced by trapping sets of a code. Analyzing decoders on
isolated subgraphs is a crucial strategy required for deriving
update rules. It is important to note that this is different
from the independence assumption considered by Gallager [2].
Before we delve into this, we first provide some motivation
for the need of defining such a concept.

The design of multilevel decoders is based on the knowledge
of trapping sets for existing decoders. Given a list of trapping
sets, the aim is to design a variable node update rule that
guarantees correction of all of them. Consider the subgraph
of a trapping set contained in the Tanner graph with some
nodes initially in error. In order to verify whether a given rule
succeeds on a trapping set, it is necessary not only to know
the subgraph induced by the trapping set, but also the neigh-
borhood of the induced subgraph and messages coming from
this neighborhood. Since this neighborhood can be different
for different Tanner graphs, the design of multilevel decoders
becomes very complex. Therefore, to facilitate the design
process, we work under the assumption that the messages
to the nodes of the trapping set from the nodes outside the
induced subgraph of the trapping set are known. We call this
assumption the isolation assumption to signify the fact that
the trapping set can be considered in isolation from the rest
of the graph and can be analyzed as an independent entity.



Before we formally introduce this, we require the notion of
computation tree and introduce some more notations.

Definition 1: [16] A computation tree corresponding to a
message-passing decoder of the Tanner graph G is a tree that
is constructed by choosing an arbitrary variable node in G as
its root and then recursively adding edges and leaf nodes to
the tree that correspond to the messages passed in the decoder
up to a certain number of iterations. For each vertex that is
added to the tree, the corresponding node update function in
G is also copied.

Let G be the Tanner graph of a 3-left-regular code. Let H
be the induced subgraph of a trapping set (a, b) contained in
G with variable node set P ⊆ V and check node set W ⊆ C.
Let N (u) denote the set of neighbors of a node u. Let T k

i (G)
be the computation tree of graph G corresponding to a decoder
F enumerated for k iterations with variable node vi ∈ V as its
root. Let W ′ ⊆W denote the set of degree-one check nodes in
the subgraph H . Let P ′ ⊆ P denote the set of variable nodes
in H where each variable node has at least one neighbor in
W ′. During decoding on G, for a node vi ∈ P ′, let µl denote
the message that vi receives from its neighboring degree-one
check node in H in the lth iteration.

Definition 2: A vertex w ∈ T k
i (G) is said to be a descen-

dant of a vertex u ∈ T k
i (G) if there exists a path starting from

vertex w to the root vi that traverses through vertex u. The
set of all descendants of the vertex u in T k

i (G) is denoted as
D(u). For a given vertex set U , D(U) (with some abuse of
notation) denotes the set of descendants of all u ∈ U .

Definition 3: T k
i (H) is called the computation tree of the

subgraph H enumerated for k iterations for the decoder F ,
if ∀ cj ∈ W ′, µl is given for all l ≤ k, and if the root node
vi ∈ P requires only the messages computed by the nodes in
H and µl to compute its binary hard-decision value.

Definition 4 (Isolation assumption): The computation tree
T k
i (G) with the root vi ∈ P is said to be isolated if: (i) for

any check node cj ∈ W ′ that is in T k
i (G) with vt ∈ P ′

as its parent, D(cj) ∩ D(N (vt) \ cj) = ∅, and (ii) for any
two check nodes cr, cs ∈ W \ W ′ that are also in T k

i (G),
D(cr)∩D(cs) ⊆ (P ∪W ). If T k

i (G) is isolated ∀vi ∈ P , then
the subgraph H is said to satisfy the isolation assumption in
G for k iterations.

Remark: The isolation assumption can still be satisfied even
when there are nodes in H that appear multiple times in
T k
i (G) as long as these nodes are not descendants of the

degree-one check nodes. Whereas Gallager’s independence
assumption will be violated if any node in H is repeated
in T k

i (G). Hence, isolation assumption is a weaker condition
than independence. For clarity, we illustrate with an example
shown in Fig. 1.

Example 1: Let us assume that the graph G of code C
contains a subgraph H induced by a (6, 2) trapping set. Fig.
1 shows the subgraph H , and the computation tree T 2

3 (G) of
graph G with v3 as its root enumerated for two iterations. The
� denotes a odd-degree check node. The solid lines represent
connections within subgraph H and the dotted lines represent
connections from the rest of the graph G outside the subgraph

v1 v2 v3

v4 v5 v6

c1 c2 c3
c4 c5

c6

c10

c8 c9c7

(a)

v3

c8 c9

v4 v5

c7

c4 c1 c2 c5

v2 v1 v1 v2

(b)

Fig. 1. Subgraph H induced by (6,2) trapping set contained in G: (a) Tanner
graph of H; (b) computational tree T 2

3 (G)

H . The isolation assumption is satisfied for two iterations if
none of the descendants of the check nodes c7 and c8 appear
as a descendant of check node c9 (similar condition has to hold
for c10), and if the only common descendants of the degree-2
check nodes are nodes in H . But the independence assumption
does not hold for two iterations.

Theorem 1 (Isolation theorem): Let G = {V ∪ C,E} of
a 3-left-regular code which contains a subgraph H = {P ∪
W,E′} that is induced by a trapping set (a, b). Let W ′ ⊆W
denote the set of degree-one check nodes in H and let P ′ ⊆ P
denote the set of variable nodes in H where each has at
least one neighbor in W ′. If r is input to decoder F from
the BSC such that supp(r) ∈ P , and if H satisfies the
isolation assumption in G for k iterations, then for each
cj ∈ W ′, the message from cj to its neighbor in H in the
lth iteration denoted by µl, is determined as the output of
Φv(µl−1, µl−1,C) ∀l ≤ k.

Proof: This follows by looking at the computation tree
T l
i (G) where l ≤ k with any vi ∈ P ′ as its root. Let the

initial messages passed from a variable node be ±µ0 ∈ M.
Since supp(r) ∈ P , due to the isolation assumption, this
means that all the variable nodes that are descendants to any
cj ∈ W ′ are initially correct. In the initial iteration, from the
definition of Φc, the outgoing message of check nodes that are
descendants to cj is µ0. In the next iteration, the variable nodes
connected to these check nodes receive µ0 on all their edges
due to the isolation assumption and send Φv(µ0, µ0,C) as
their outgoing messages. Due to the definition of Φc, the check
nodes connected to these nodes in T l

i (G) send µ1 which is
simply Φv(µ0, µ0,C). This process inductively follows while
traversing up the tree for l iterations. Moreover, computation
of the hard-decision value for any node vi in H requires only
messages from nodes in H in addition to µl.

Remark: Note that the isolation assumption and theorem can
be restated for the min-sum decoder.

Corollary 1: Consider the min-sum decoder for 3-left-
regular LDPC codes with Y = {±1}. If subgraph H contained
in G satisfies the isolation assumption for k iterations, and if
all variable nodes outside H are initially correct, then µl of the
degree-one check node for the min-sum decoder is 2µl−1 + 1.

Corollary 2: If H is a subgraph contained in G such that
it satisfies the isolation assumption for k iterations, and if
all variable nodes outside H are initially correct, then the
computation tree T k

i (G) with vi ∈ P is equivalent to T k
i (H),

provided µl for each degree-one check node in H is computed



using the isolation theorem.
Remark: The above corollary validates decoding on isolated

subgraphs that are induced by trapping sets and this property
is useful for deriving good update rules. Note that the number
of iterations required for a subgraph to satisfy the isolation
assumption in order to converge becomes an important param-
eter. Also the notion of critical number can now be extended
for multilevel decoders as well.

IV. 3-BIT DECODERS FOR 3-LEFT-REGULAR LDPC CODES

We provide two particularly good 3-bit decoders: a 7-level
LT decoder, and a 5-level NLT decoder for 3-left-regular
LDPC codes. These were derived by considering a systemtatic
hierarchy of trapping sets called trapping set ontology [12],
and using the approach described in the previous section. Some
important criteria to be considered in the derivation of the
rules are increase in critical number and convergence in fewer
iterations. Due to space constraints, we do not give details of
deriving good rules in this paper but we shall demonstrate
how multilevel decoders can correct certain error patterns
uncorrectable by even floating-point algorithms.

The function Φv can be uniquely defined by setting con-
straints on the magnitudes and thresholds. We shall use this
approach to define the decoders.

For the 7-level LT decoder, the constraints that uniquely
define the decoder are L1 < C < 2L1, L2 = 2L1 + C,
L3 = 2L2 + C, and T1 = L1, T2 = L2, T3 = L3.

For the 5-level NLT decoder, the constraints that specify the
decoder are C = L1, L2 = 3L1, T1 = L1, T2 = L2, and the
channel weight function used to compute ωc is given by

ωc = Ω(m1,m2)

= 1−
(
sign(m1)⊕ sign(m2)

)
· δ(|m1|+ |m2| − 2L2).

As an example, we now illustrate how a 3-error pattern
on a n = 786, R = 0.75 quasicyclic code [17] that was
uncorrectable by min-sum decoder, is correctable by the 7-
level LT decoder.

Example 2: Let H be the subgraph induced by the (9,5)
trapping set which contains a (6,2) and has three degree-one
checks as shown in Fig. 2. Consider the 3-error pattern shown
in the figure where • denotes an initially wrong variable node.

v1 v2 v3

v4 v5 v6

c1 c2 c3 c4 c5 c6

c10

c8
c9

c7

v7

v8

v9

c11

c12

c13

c14

Fig. 2. Subgraph induced by (9,5) trapping set that contains a (6,2)

Under the isolation assumption, let us analyze the decoding
of 7-level LT decoder on the subgraph with the help of the
isolation theorem. Let mk(vi, :) denote all outgoing messages
of node vi in the first half of kth iteration and let mk(:, vi)

denote all incoming messages to node vi from checks in the
second half of kth iteration. We will show only messages
passed by certain crucial nodes in each iteration. Assume that
all messages are initially zero.

In first half of iteration 1, all outgoing messages are ±L1,
i,e, m1(vi, :) = (−L1,−L1,−L1) for i ∈ {1, 2, 3} and
m1(vi, :) = (L1, L1, L1) for i /∈ {1, 2, 3}. In the second half,
check nodes send their messages by the isolation assumption.
Then m1(:, vi) = (−L1,−L1,−L1) for i ∈ {4, 5}.

In the first half of iteration 2, because Φv(L1, L1,−C) = 0,
and Φv(−L1,−L1,C) = 0, this update rule helps prevent
nodes v4 and v5 from sending wrong messages. Then m2(vi, :
) = 0 for i ∈ {1 to 5}. Check nodes send their messages in
the second half and m2(:, vi) = (0, 0, L1) for i ∈ {1, 2}.

Finally in the first half of iteration 3, nodes v1 and v2 are
the only nodes that can send wrong messages. But because
Φv(0, L1,−C) = 0, the nodes send zero instead, and the
decoder converges at the end of iteration 3.

Remark: From the above example, we see that certain
outputs of Φv were crucial for preventing propagation of
wrong messages and convergence within 3 iterations. Whereas
the min-sum decoder requires 4 iterations under the isolation
assumption to converge on the same 3-error pattern. Now if
subgraph H contained in G satisfies the isolation assumption
for only 3 iterations, then min-sum is not guaranteed to correct
three errors. For the quasicyclic code, this particular 3-error
pattern on such a subgraph fails to be corrected by min-sum
but is corrected by 7-level LT decoder. In fact, 7-level LT
decoder corrects all 3-error patterns on the code.

Although we considered error patterns that failed to decode
by the min-sum in example 2, the same analysis can be carried
out on error patterns that failed to decode by BP as well.
The rules can be derived to correct such patterns in a similar
fashion by ensuring convergence in fewest number of iterations
under the isolation assumption. For example, the 7-level LT
decoder did not fail for any 4-error patterns on the same
quasicyclic code whereas the BP and min-sum decoders failed
in the region of simulation in Fig. 4.

V. NUMERICAL RESULTS

Simulations for frame error rate (FER) were carried out on
three different codes: 1) n = 155, R = 0.4, Tanner code, 2)
n = 768, R = 0.75, Quasicyclic code with dmin = 12, and
3) a n = 4085, R = 0.82, MacKay code. The codes were
chosen to cover a broad spectrum of LDPC codes in order to
validate our approach. The Tanner code is well-understood and
has been analyzed for many different decoders. The high-rate
quasicyclic code was chosen since the error floor problem is
much more challenging for high-rate codes. A MacKay code
was chosen as an example of a high-rate random code. Fig. 3,
Fig. 4, and Fig. 5 show the simulation results. The maximum
number of iterations used was 100 for all decoders. Structures
of these three codes can be found in [17].

For all three codes, the 3-bit decoders significantly outper-
form BP in the error floor region. Notice the difference in
slopes in the FER curves. For the Tanner code, the 5-NLT
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decoder guarantees correction of all error patterns up to 5
errors. An interesting point to note is that the highly complex
linear programming (LP) decoding fails to correct all 5-errors
on the Tanner code, whereas the 3-bit decoder is able to, which
illustrates the power of multilevel decoding.

VI. DISCUSSION AND CONCLUSIONS

Multilevel decoding was established as a powerful decoding
technique for LDPC codes. From our concluding example, we
highlighted the importance of the isolation assumption as a
crucial strategy for deriving good rules. Also from the results,
it is evident that there is a certain aspect of universality to these
decoders; the same 3-bit decoder performs well on a variety of
codes. This suggests that deriving good rules based on trapping
sets appears to take the structure of the local neighborhood into
local computations of messages, which is a tiny step closer in
our pursuit to approach maximum-likelihood decoding. Our
future work includes deriving bounds and relating the isolation
theorem with guaranteed error-correction capability.
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