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Abstract—Four estimators of the directed information rate be-
tween a pair of jointly stationary ergodic finite-alphabet processes
are proposed, based on universal probability assignmentsThe
first one is a Shannon—McMillan—Breiman type estimator, siniar
to those used by Verd( (2005) and Cai, Kulkarni, and Verd(
(2006) for estimation of other information measures. We she the
almost sure and L; convergence properties of the estimator for
any underlying universal probability assignment. The othe three
estimators map universal probability assignments to diffeent
functionals, each exhibiting relative merits such as smobness,
nonnegativity, and boundedness. We establish the consistgy of
these estimators in almost sure and.; senses, and derive near-
optimal rates of convergence in the minimax sense under mild
conditions. These estimators carry over directly to estimang
other information measures of stationary ergodic finite-abhabet
processes, such as entropy rate and mutual information ratewith
near-optimal performance and provide alternatives to clasical
approaches in the existing literature. Guided by these theetical
results, the proposed estimators are implemented using the
context-tree weighting algorithm as the universal probablity as-
signment. Experiments on synthetic and real data are presead,
demonstrating the potential of the proposed schemes in préice
and the utility of directed information estimation in detecting
and measuring causal influence and delay.

Index Terms—Causal influence, context-tree weighting, di-
rected information, rate of convergence, universal probabity
assignment

Manuscript received Month 00, 0000; revised Month 00, OC&:epted
Month 00, 0000. Date of current version Month 00, 0000. Thirkwwas
supported in part by the Center for Science of InformatioBdf}, an NSF
Science and Technology Center, under grant agreement G8%300, the
US—Israel Binational Science Foundation (BSF) Grant 2088ANSF Grant
CCF-0939370, and the Air Force Office of Scientific ResealsRQSR)
through Grant FA9550-10-1-0124. Haim H. Permuter was sdp@an part
by the Marie Curie Reintegration Fellowship. The matenmthis paper was
presented in part at the 2010 IEEE International Symposionmtormation
Theory, Austin, TX, and the 2012 IEEE International Symposion Infor-
mation Theory, Cambridge, MA.

Jiantao Jiao is with the Department of Electrical EngimagriStanford
University, Stanford, CA 94305, USA (e-mail: jiantao@dtad.edu).

Haim Permuter is with the Department of Electrical and Cotrapngi-
neering, Ben-Gurion University of the Negev, Beer-Sheva084 Israel (e-
mail: haimp@bgu.ac.il).

Lei Zhao was with the Department of Electrical Engineerigianford
University, Stanford CA, USA. He is now with Jump Operatip@hicago,
IL 60654, USA (e-mail: zhaoleil22@gmail.com).

Young-Han Kim is with the Department of Electrical and Corgou
Engineering, University of California, San Diego, La Jol@A 92093, USA
(e-mail: yhk@ucsd.edu).

Tsachy Weissman is with the Department of Electrical Ergjiimg, Stan-
ford University, Stanford CA 94305, USA (e-mail: tsachy@wsbrd.edu).

Communicated by I. Kontoyiannis, Associate Editor for St@m Theory.

Color versions of one or more of the figures in this paper aadlahle
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIT.2013.0000000

I. INTRODUCTION

IRST introduced by Markd [1] and Masséyi [2], directed
information arises as a natural counterpart of mutual

information for channel capacity when causal feedback from
the receiver to the sender is present.(lh [3] and [4], Kramer
extended the use of directed information to discrete memory
less networks with feedback, including the two-way channel
and the multiple access channel. Tatikonda and Mitter [BHus
directed information spectrum to establish a general faekib
channel coding theorem for channels with memory. For a class
of stationary channels with feedback, where the output is a
function of the current and past inputs and channel noise,
Kim [6] proved that the feedback capacity is equal to thetlimi
of the maximum normalized directed information from the
input to the output. Permuter, Weissman, and Goldsnith [7]
considered the capacity of discrete-time finite-state ohbn
with feedback where the feedback is a time-invariant func-
tion of the output. Under mild conditions, they showed that
the capacity is again the limit of the maximum normalized
directed information. Recently, Permuter, Kim, and Weigsm
[8] showed that directed information plays an importantrol
in portfolio theory, data compression, and hypothesisrgst
under causality constraints.

Beyond information theory, directed information is a valu-
able tool in biology, for it provides an alternative to thetioo
of Granger causalityl [9], which has been perhaps the most
widely-used means of identifying causal influence between
two random processes. For example, Mathai, Martins, and
Shapiro [10] used directed information to identify pairavis
influence in gene networks. Similarly, Rao, Hero, Statesd, an
Engel [11] used directed information to test the directidn o
influence in gene networks.

Since directed information has significance in various §igld
it is of both theoretical and practical importance to depelo
efficient methods of estimating it. The problem of estimgtin
information measures, such as entropy, relative entrogly an
mutual information, has been extensively studied in thex-lit
ature. Verd( [[12] gave an overview of universal estimation
of information measures. Wyner and Ziv_[13] applied the
idea of Lempel-Ziv parsing to estimate entropy rate, which
converges in probability for all stationary ergodic proees
Ziv and Merhav [[14] used Lempel-Ziv parsing to estimate
relative entropy (Kullback—Leibler divergence) and ebshled
consistency under the assumption that the observations are
generated by independent Markov sources. Cai, Kulkarai, an
Verd( [15] proposed two universal relative entropy estoma
for finite-alphabet sources, one based on the Burrows—\Wheel
transform (BWT) [16] and the other based on the context-tree
weighting (CTW) algorithm[[1[7]. The BWT-based estimator
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was applied in universal entropy estimation by Cai, KulkarnX™ and (x1, x2, . .., x,) asz™. Calligraphic letterst, ), ...
and Verdi [[18], while the CTW-based one was applied idenote alphabets of, Y, ..., and|X| denotes the cardinality
universal erasure entropy estimation by Yu and Vefdl [19].of X. Boldface lettersX, Y, ... denote stochastic processes,
For the problem of estimating directed information, Quinrand throughout this paper, they are finite-alphabet.
Coleman, Kiyavashi, and Hatspoulols[20] developed an esiven a probability lawP, P(z!) = P{X? = 2} denotes
timator to infer causality in an ensemble of neural spikintraine probability mass function (pmf) ak? and P(z;|z"!)
recordings. Assuming a parametric generalized linear Moggnotes the conditional pmf of; given {Xi~! = zi~1} ie.,
and stationary ergodic Markov processes, they establishggh sjight abuse of notation;; here is a dummy variable and
strong consistency results. Compared [to! [20], Zhao, Kinp(z,12i-1) is an element of\(X), the probability simplex
Permuter, and Weissman [21] focused on universal methqgls y  representing the said conditional pmf. Accordingly,
for arbitrary stationary ergodic processes with finite alptt  p(;.| xi-1) denotes the conditional pmP(z;|zi~1) evalu-
and showed theiL, consistencies.. _ated for the random sequencé&~!, which is an M(X)-
As an improvement and extension of [21], the main coRz|ued random vector, whil®(X;|X~1) is the random vari-
tribution of this paper is a general framework for estimatingp|e denoting theX;-th component of?(z;| X*~1). Through-

information measures of stationary ergodic finite-alph@be- ;i this paper]og(-) is base2 andln(-) is basee.
cesses, using “single-letter” information-theoreticdtionals.

Although our methods can be applied in estimating a number
of information measures, for concreteness and relevance to
emerging applications we focus on estimating the directed )
information rate between a pair of jointly stationary erigodA- Directed Information
finite-alphabet processes.
The first proposed estimator is adapted from the universalGiven a pair of random sequenc&$ andY™, thedirected
relative entropy estimator in [15] using the CTW algorithminformationfrom X™ to Y is defined as

and we provide a refined analysis yielding strong consistenc n
results. We further propose three additional estimators in I(X" = Y") 23 I(XLY|Y ) 1)
unified framework, present both weak and strong consistency i=1
results, and establish near-optimal rates of convergenderu =HY"™) —-HY"|X"), @)

mild conditions. We then employ our estimators on both sim- . .

ulated and real data, showing tr):eir effectiveness in méfag;urWh_ere H(Y™||x™) is the causally conditional entropy],

channel delays and causal influences between different pqgjmed as

cesses. In particular, we use these estimators on the dadly s

market data from 1990 to 2011 to observe a significant level

of causal influence from the Dow Jones Industrial Average to ] ]

the Hang Seng Index, but relatively low causal influence faompared to mutual information

the reverse direction. _ _ _ I(X™Y™) = H(Y™) — HY"|X™), (4)
The rest of the paper is organized as follows. Section I

reviews preliminaries on directed information, univensaib- directed information in[(2) has the causally conditionat en

ability assignments, and the context-tree weighting allgor.  tropy in place of the conditional entropy. Thus, unlike mu-

Section IIl presents our proposed estimators and theirchba#ial information, directed information is not symmetri.j

properties. Section 1V is dedicated to performance guaemt /(Y™ — X™) # I(X™ — Y™), in general.

of the proposed estimators, including their consistenai®®  The following notation oftausally conditional pmfaill be

miminax-optimal rates of convergence. Section V shows e¥sed throughout:

perimental results in which we apply the proposed estinsator

H(Y"(|X") &) HYY'™,X7). ®3)

i=1

n

to simulated and real data. Section VI concludes the paper. pla™|y™) = Hp(a?ila?ifl,yi), (5)
The proofs of the main results are given in the Appendices. =1
Il. PRELIMINARIES pa|y" Y = Hp(xi|xi*1,yi*1), (6)
We begin with mathematical definitions of directed in- i=1

formation and causally conditional entropy. We also defiriecan be easily verified that

universal and pointwise universal probability assignraeie n n s el

then introduce the context-tree weighting (CTW) algorithm p(z",y") = p(y" =" )p(a™(ly" ) ™
used in our implementations of the universal estimators thahd that we have theonservation laws

are introduced in the next section.

Throughout the paper, we use uppercase lefers, . . . to I(X™MY") =1(X" = Y") +I(Y" ' = X™),  (8)
denote random variables and lowercase letigis . .. to de- IX™Y") =1 X" = Y™ +I(Y" ! = X™)
note values they assume. By conventiéh= () means thaf\ n . ‘
is a degenerate random variable (unspecified constantidega + Z I(X; Y| X yit, 9)

less of its support. We denote thetuple (X, X, ..., X,,) as i=1



where

IY" = X" =I1(0,Y" ) — X™) (10)
= H(X") - Y HX|XTLY™) (1)
=1

denotes thereverse directed informationOther interesting
properties of directed information can be found [in [3],1[22
23].

The directed information ratg3] between a pair of jointly
stationary finite-alphabet process€sandY is defined as

IX—=Y)2 lim lI(X" —=Y"). (12)
n—oo n
The existence of the limit can be checked [3] as
IX—=Y)= lim lI(X” —Y™) (13)
n—oo n
= lim —(H(Y") - HY"|X™)  (14)

: BN i—1
Jm 5 2 HOAYT
: 1 - i—1 A
= Jim -~ .E_l H(Y;|[Y*"™, X") (15)

—1
7Y—oo

= H(Yo|Y L) — H(Yo|X° ), (16)

where the last equality is obtained via the property of @es
and 16]. Note that the entropy raté(Y) of the process

Y is equal to H(Yp|Y"L). In a similar vein, thecausally
conditional entropy ratas defined as

A(Y[X) 2 Tm H(Y"|X") 17)
=H(Y|X° ., Y 1) (18)

Thus,
I(X = Y) = H(Y) - HY|X). (19)

This identity shows that if we estimaté (Y) and H(Y | X)

Definition 2 (Pointwise universal probability assignment)
A probability assignmen) is said to bepointwise universal

for 2 if
(l log 1
n

— log

Q(X™)

lim sup
n—oo

) <0 P-as.

1
P(Xn) 21)

]for every P € &. A probability assignmeng) is said to be

pointwise universaif it is pointwise universal for the class of
stationary ergodic probability measures.

It is well known that there exist universal and pointwise
universal probability assignments. Ornsteinl[25] corddtrd a
pointwise universal probability assignment, which was-gen
eralized to Polish spaces by Algoét [26]. Morvai, Yakowitz,
and Algoet [27] used universal source codes to induce a
probability assignment and established its universa8tpce
the quantity(1/n)log(1/Q(X™)) is generally unbounded, a
pointwise universal probability assignment is not necelysa
universal. However, if we have a pointwise universal prabab
ity assignment, it is easy to construct a probability agsignt
that is both pointwise universal and universal. (gt(z™) be
a pointwise universal probability assignment afd(z") be
the i.i.d. uniform distribution, then it is easy to verifyah

Q") = anQa(x™) + (1 — an)Q1(2") (22)

Lis both universal and pointwise universal provided that

%ecays subexponentially, for exam
mean and standard martingale arguments; see [24, Chsdis% Y P Y. ple,

= 1/n. For more
ussions on universal probability assignments, see, fo
example,[[28] and the references therein.

C. Context-Tree Weighting

The sequential probability assignment we use in the imple-
mentations of our directed information estimators is the ce
ebrated context-tree weighting (CTW) algorithm by Willems
Shtarkov, and Tjalken_[17]. One of the main advantages of
the CTW algorithm is that its computational complexity is
linear in the block lengtm, and the algorithm provides the

separately and if both estimates converge, we have a conygebability assignments) directly; see [[17] and[[29]. Note

gent estimate of the directed information rate.

B. Universal Probability Assignment

A probability assignment) consists of a set of conditional
pmfs Q(z;|z*~!) for everyzi~!t € X~ andi = 1,2,....
Note that@ induces a probability measure on a random pr
cessX and the pmfR(z™) = Q(z1)Q(x2|z1) - - - Q(wp |2 1)
on X™ for eachn.

Definition 1 (Universal probability assignment) Let &2 be
a class of probability measures. A probability assignnig g
said to beuniversal for the class? if the normalized relative
entropy satisfies

Jim LD(PE")IQ(") =0

for every probability measur® in 2. A probability assign-
ment @) is said to beuniversal (without a qualifier) if it is
universal for the class of stationary probability measures

(20)

that while the original CTW algorithm was tuned for binary
processes, it has been extended for larger alphabets|ind30]
extension that we use in this paper. In our experiments with
simulated data, we assume that the depth of the contextstree i
larger than the memory of the source. This assumption can be
alleviated by the algorithm introduced by Willems [31], whi

O_

we will not implement in this paper.

An example of a context tree of input sequence, with
a binary alphabet is shown in Fig. 1. In general, each node in
the tree corresponds to a context, which is a string of symbol
preceding the symbol that follows. For concreteness, assum
the alphabet is{0,1,...,M — 1}. With a slight abuse of
notation, we uses to represent both a node in the context
tree and a specific context. At every nogewve use a length-
M array (ags,a1,s,---,am—1,s) t0 count the numbers of
different values emitted with context in sequencer™. In
Fig. [, the countgag s, a1 s) are marked near each node
and they are simply numbers of zeros and ones emitted from
nodes.



is the universal probability assignment in the CTW algarith
which will be denoted ag)(z"™) in Section[1ll. We compute
the sequential probability assignments as

ny _ Q@™ PRt
Q) = oG~ R

root In [29, Ch. 5], Willems and Tjalkens introduced a factor

(4,4) B%(z™) at every nodes to simplify the calculation of the
sequential probability assignment, which could also heip u
derstand how the weighted probabilities are updated when th
input sequence™ grows toz"*!. For each node, we define
factor 3%(z") as

(25)

Pl 2 ) (26)
Fig. 1. An illustration of the CTW algorithm wherD = 3 and Hi]\ial Pis(am)
(x—2,2-1,%0,21,...,28) = 00011010010. The count starts at;. For . o )
example, there ar@ zeros andl one with contextl, represented by count ASSumingjs is a context ofz,;,, where0 < j < M —

(3,1) at the node of context in the upper right. 1. Obviously, any other nodés, k # j cannot be a context
of x,41. We expressP: (X, 11 = ¢lz"),¢ = 0,1,..., M —

1 in (33) at the bottom of this page, which shows that the
) sequential probability assignme€X(x.,,11]z™) is a weighted

If 2" containsby zeros,b; ones,b; twos, and so on, the g mmation of the Krichevsky—Trofimov sequential probapili
Krichevsky—Trofimov probability estimate of™ [32], i.e., assignments, i.eP*(X,1 = g|z") at all nodes of the context
P.(2") = P.(bo,b1,...,bp—1) can be computed sequensyee. €

tially. We let P.(0,0,...,0) = 1, and forby > 0,b; > By (23), for any nodes,

0,....bp—1>0,0<7< M —1, we have

Take any sequence® whose alphabet i§0,1,..., M —1}.

1/2 1

Pe(b07b17---,bi—l,bi+1,bi+1,---,bM_1) F; (Xn+1 ZQ|‘T ) > "+ |X|/2 = o+ |X| (27)
A bi+1/2 n ,
£ Thus,Q(xz,11]z™) = 2(1/n), or more precisely,
bo+b1+...+by—1+M/2 (Tnt1l2™) (1/n) 1
P.(bo,b1,...,bi—1,bi,bi01,...,bar—1). 23 " "> 28
X Pe(bo, by 1 +1 M-1) (23) Q(Tnt1|z™) on 1A (28)

We denote the Krichevsky—Trofimov probability estimate of The probability assignmeid® in the CTW algorithm is both
the_M -array counts ats node of sequencer asnp,e (z"). The niversal and pointwise universal for the class of statipna
Welghted PrObab'“th at nodes of sequence™ inthe CTW e gy ciple aperiodic finite-alphabet Markov processes.tke
algorithm is calculated as proof of universality, see [17]. The pointwise universalis

P2 (a) {%Pés(xn) +1 HiAial Pis(z") 0<I(s) <D proved in Lemmdl2 in Appendix A.
w\? = S (T
Pe(z") I(s)=D ” Ill. FOUR ESTIMATORS
(24) In this section, we introduce four estimators of the dirdcte

where the nodés is thei" child of nodes andl(s) is the . : 1 . .
depth of nodes. When we build the context tree from sequenc'tgformatIOn rate/(X — Y) of a pair(X, Y) of jointly sta-

. tionary ergodic processes with finite alphabets. MY, ))
™, we add symbols one by one. In adding symbgoll <t < I .
n, we have to update the coUNt.,., a1y, .. ., arr—1..), the be the set of all probability distributions atix ). Define f to

. - . o be the function that maps a joint prff{(z, y) of a random pair
estimated probability??, and the weighted probability? for . R .
each context of x;. The order of updates is from the contexEX’ Y) to the corresponding conditional entrofy(Y'|.X), i.e.,

of the longest depth (a leaf node) to the root. f(P) & =" P(x,y)log P(y|z), (29)
Let A denote the root node of the context tree, ti){(z™) .y

P’lf)(Xn+1 = qv'rn)

Py (Xny1 = qlz") = Ps (@) (30)
%Pes(XnJrl = van) + % Hi]\io_l PZ;S(XnJrl = q7xn)
= (31)
Pg(xm)
1P (2P (X1 = qla™) + 3PP (Xny1 = qla™) [1[2, ' Pi (")
— (32)
Py (zm)
s(pn 1 .
= MPS(XRH = glz") + —————P7*(X 41 = qlz"), (33)

L+ ps(an) © L4 po(an) ®



whereP(y|x) is the conditional pmfinduced b¥(z,y). Take whereG,, is

@ as a universal probability assignment, either on processes n
with (X x ))-valued components, or witl-valued compo- G,, = Z > Q@ir1,yir1|X',Y")log —.
nents, as will be clear from the context. i=1 (i1,yi41) (G [Y)
(44)
Recall the definition of the directed information from™ It is also worthwhile to note thak, involves an average of
to Y™ z;+1 In the relative entropy term for each which makes it

n _ _ analytically different fromZs.
I(X"—>Y™ = ZI(XZ;YZ-|Y“1) =HY™")-H({Y"|X"), Here is the big picture of the general ideas behind these
i=1 34 estimators. The first estimatal is calculated through the
(34) difference of two terms, each of which takes the form[of (39).
Since the Shannon-McMillan-Breiman theorem guarantees
fl(X” Y™ & Hl(yn) — ﬁl(ynnxn), (35) the asymptotic equipartition property (AEP) of entropyerat
5 m N B il v [24] as well as directed information rate [33], it is natural
X" -Y") S HQ(Y ) — Ha(Y"[IX7), (38) {5 pelieve that/; would converge to the directed information
fxm s ymy & L D Xy |yicl rate. This is indeed .the case, which is proyed in Appendix B.
(X7 =) Z Qi Qi )) The Shannon-McMillan—-Breiman type estimators have been
(37) widely applied in the literature of information-theorefieea-
L& sure estimation, for example, relative entropy estimatign
f4(X” —Y") & = ZD(Q($i+1ayz‘+1|Xi7 YY) Cai, Kulkarni, and Verd{[15], and erasure entropy estiomat
n by Yu and Verd([[19].

we define the four estimators as follows:

i=1

[Q(yir1 Y Qi1 | X", YY), Equation [[3D) can be rewritten in the Cesaro mean form,
(38) l.e.,
where 1 — —logQ(Y"HX" = Zlog Y|Y1 LX) (45)
Hi(Y"|[X™) = — - log QY™ X™), (39)

n and estimatord, through, are derived by changing every

f[z(ynHX”) 2 1 Zf(Q(:viH,yiﬂlXi,Yi)), (40) term in the Cesaro mean to other functionals of probability
ns assignmentg). For concreteness, estimatiruses conditional

entropy as the functional, and estimatdgsand I, use relative

Hy(Y™) & — Z > Qi lY?) 1og a0 |Yl entropy.
i=1 Yit1 Yitt One disadvantage df is that it has a nonzero probability
(41)  of being very large, since it only averages over logarithins o
Hy(Y™) 2 H (Y"™]|0™). (42) estimated conditional probabilities, while the directedor-

mation rate that it estimates is always boundedda})|.

The estimatorl, is the universal directed information esti-
mator introduced in[[21]. Thanks to the use of information-
tIheoret|c functionals to “smooth” the estimate, the abolu
Malue of I,(X™ — Y™) is upper bounded bjog |Y| on any

Recall thatQ(y;|X*,Y*~1) denotes the conditional pmf
Q(y;|zt, y*~1) evaluated for the random sequericé’, Y1),
and Q(Y™||X™) denotes the causally conditional
Q(y™||z™) evaluated fof X™, Y™). Thus, an entropy est|mate

- X ’ . ; D realization, a clear advantage ougr
such asH;(Y"™||X™) is a random variable(since it is a zal vantage ove

function of (", ), as opposed 0 the entropy tems sucg, % SIS, 8 PEE KL B 2 O e
as H(Y™||X™), which are deterministic and depend on th P y 9 d

distribution of (X", Y™). there is insufficient data, or the stationarity assumptien i
violated, I; and I, may generate negative outputs, which is
clearly undesirable. In order to overcome thl§ and I, are
introduced, which take the form of a (random) relative gmyro
and are always nonnegative. Sectlon V-D gives an example
puted fromQ(z;, y:| X*~1, Y*~1), but from running the uni- where I, and I, give negative estimates, which might be
versal probability assignment algorithm again on datasg ggused by the fact that the underlying process (stock market

Yi-1. In the case ofQ(Y;|X?,Yi—1), which is inherent IS not stationary, at least in a short term.

in the computation ofQ(Y™||X™), the estimate is com-

puted from pmfQ(z;, ;| X~1, Y~ 1) via Q(¥;| X1, Yi~1) = IV. PERFORMANCE GUARANTEES

QX Yi|X =Ly =1/, QX wl X1y ). In this section, we establish the consistency of the prapose

estimators, mainly in the almost sure ahg senses. Under

We can express, in another form which might be enlight- some mild conditions, we derive near-optimal rates of conve

ening: gence in the minimax sense. The proofs of the stated results

Iy = G — Hy(Y"|X™), (43) are given in the Appendices.

Note that in [3FV) and [(38) the universal probabil-
ity assignments conditioned on different data are calcu-
lated separately. For examplé)(y;|Y*~!) is not com-



Theorem 1 Let @ be a universal probability assignment andnformation rate if we take procesg = X, so the minimax
(X,Y) be a pair of jointly stationary ergodic finite-alphabetiower bound also applies in the universal entropy estimatio
processes. Then situation. Actually in the proof of propositidd 3, we indeed
.2 un 7 : reduce the general problem to entropy estimation problem to
S L(XT =Y =IX = Y) i L (46) ghaw the minimax lower bound.

Furthermore, ifQ is also a pointwise universal probability proposition 3 Let 22(X,Y) be any class of processes that
assignment, then the limit i@8) holds almost surely as well. includes the class of i.i.d. processes. Then, there exists a

The proof of Theorenfll1 is in AppendiX BFA. IfX,Y) Positive constanCs such that
is a stationary irreducible aperiodic finite-alphabet anrk inf sup E|f—f(X SY)| > Cyn V2, (52)
process, we can say more about the performanck ofing I 2(X,Y)

the probability assignment in the CTW algorithm. .
P Y '9 ! gon where the infimum is over all estimatofs of the directed

Proposition 1 Let Q be the CTW probability assignmentnformation rate based onx", Y").

and let (X,Y) be a jointly stationary irreducible aperiodic . . S ;
finite-alphabet Markov process whose order is bounded byThe proof of Propositiohl3 is in Appendix B-E. Evidently,

the prescribed tree depth in the CTW algorithm, andYet convergence rates better th@in—'/2) is not attainable even

be a stationary irreducible aperiodic finite-alphabet Mavk with respect to the class of i.i.d. sources and thus, a fartio

process with the same order éX,Y). Then there exists a In-our 33“‘”9 of a much Iarggr uncertainty set..
constantC; such that For the third and fourth estimators, we establish the follow

ing consistency results using the CTW algorithm.

7 n ny _ 7 —-1/2
E ‘Il(X YY) - IX = Y)’ < Cin logn,  (47) Theorem 3 Let @@ be the probability assignment in the CTW

and Ve > 0, P-a.s. algorithm. If (X,Y) is a jointly stationary irreducible ape-
) B riodic finite-alphabet Markov process whose order does not
‘11 (X" =Y") - I(X— Y)‘ = o(n~/?(logn)***°). exceed the prescribed tree depth in the CTW algorithm, and
(48) Y is also a stationary irreducible aperiodic finite-alphabet

The proof of Propositiofil1 is in Appendix BB Markov process with the same order @,Y), then
We can establish similar consistency results for the second lim I3(X"™ — Y") =I(X —Y) P-as.andinL;.
estimatorl, in (@8). oo (53)

Theorem 2 Let @ be a universal probability assignment, andrheorem 4 Let Q be the probability assignment in the CTW
finite-alphabet proces¢X.,Y) be jointly stationary ergodic. zgorithm. If (X,Y) is a jointly stationary irreducible ape-

Then riodic finite-alphabet Markov process whose order does not
lim jQ(Xn —Y") =I(X > Y)in L. (49) exc_eed the presgribed t_ree depth in the_ C'_I'W_ a_lgorithm, and
n—roo Y is also a stationary irreducible aperiodic finite-alphabet

The proof of Theorer]2 is in Appendix BI-C. As was théMlarkov process with the same order @X,Y), then
case forly, |f thg p.ro_cess(X,Y) is a jointly stationary irre- lim f4(X” SY" = I(X>Y) P-as.and inL..
ducible aperiodic finite-alphabet Markov process, we can sa =
more about the performance éf using the CTW algorithm (54)

as follows: The proofs of Theorerfil3 and Theorémh 4 are in Appen-

Proposition 2 Let Q be the probability assignment in thedices[B-F and B-G.
CTW algorithm. If(X,Y) is a jointly stationary irreducible Remark 1 The properties of the CTW probability assignment
aperiodic finite-alphabet Markov process whose order das nye use in the proofs of Theorelm 3 and Theoigm 4 are not

exceed the prescribed tree depth in the CTW algorithm, aggly universality and pointwise universality, but also Ew
Y is also a stationary irreducible aperiodic finite-alphabebhoundedness (recall Section II-C).

Markov process with the same order Y), then . . .
P e, Y) Remark 2 Note that the assumption théX,Y) is a jointly

nli_)n; L(X"-Y") =I(X—Y) P-as. andinL, stationary irreducible aperiodic finite-alphabet Markougess
(50) does not implyY also has these properties. Suppose that
and there exists a constaft, such that X is a Markov process of orden, Y is a hidden Markov
. _ process whose internal processXs then it is obvious that
E|L(X" = Y") — (X = Y)| < Con™/*(logn)*/>. joint process(X,Y) is Markov with orderm, butY is not a
(51) Markov process. In applications, it is sensible to assuraé th
The proof of Propositiofi]2 is in AppendiXBID. a proces¥ can be approximated by Markov processes better

r1%nd better as the Markov order increases, i.e., there exists

We also investigate the minimax lower bound of estimati
r&onstantsﬁ’ > 0,0 < p <1, such that

directed information rate, and show the rates of converge
for the first two estimators are optimal within a logarithmic

—1 7
factor. Note that entropy rate is a special case of directed 0< H(Zl|2Z) - H(Z) <

3 (55)



It deserves mentioning that the exponentially fast coreiecg Markov processes that are passed through simple channels
in (589) can be satisfied under mild conditions. For examplsich as discrete memory channels (DMC), or channels with
as shown in Birch[[34], letG be a Markov process with intersymbol interference. We compare the performanceseof t
strictly positive transition probabilities, and,, = ¢(G,), estimators to each other, as well as the ground truth, whieh w
then [55) holds. For more on this “exponential forgettingére able to analytically compute. We also extend the prapose
property, please refer to Gland and Mevell[35] and Hochwatdethods to estimation of directed information with delayl a
and Jelenkovic[[36]. to estimation of mutual information. Further, we show howe on
use the directed information estimator to detect deflay o
ﬂ@annel, and to detect the “causal influence” of one sequence
on another. Finally, we apply our estimators on real stock
PROPERTIES OF TLAHE"F;(EP'OSE S TIVATORS market data to detect the causal influence that exists batwee
the Chinese and the US stock markets.

The properties established for the proposed estimators §
summarized in Tablg I.

Support Rates of convergence
L (—00,00) O(n='?logn)
Iy | [=log|Y],log V]| | O(n=/2(logn)*/?) A. Stationary Hidden Markov Processes
13 [Oa OO) -
Let X be a binary symmetric first order Markov process
Iy [0, 00) - with transition probabilityp, i.e. P(X,, # X,—1|Xn-1) =

p. Let Y be the output of a binary symmetric channel with
crossover probability, corresponding to the input proceXs

V. ALGORITHMS AND NUMERICAL EXAMPLES as depicted in Fid.]2.
In this section, we use the context-tree weighting (CTW)
algorithm as the universal probability assignment to dbecr X = {X;}7 — (v}
the corresponding directed information estimation altyons ————= BSCf) |——=

and perform experiments on simulated as well as real dag. Th
CTW algorithm [17] has a linear computational complexity iffig. 2. Sectio V-A setupX is a binary first order Markov process with
the block lengthn, and it provides the probability aSS|gnmentra”5'“°” probabilityp, andY is the output of a binary symmetric channel

Q directly. A brief introduction on how the CTW works can With crossover probability: corresponding to the inpux.

be found in Sectiofi TI-C.

For simplicity and concreteness, we explicitly describe th We use the four algorithms presented to estimate the di-
algorithm for computingl,. The algorithms for the other rected information raté(Y — X) for the case wherg = 0.3
estimators are identical, except for the update rule, wischand ¢ = 0.2. The depth of the context tree is set to be
given, respectively, by (35) t§ (B8). The simulation was performed three times. The results are
_ shown in Fig[B. As the data length grows, the estimated value
Algorithm 1 Universal estimator/, based on the CTW approaches the true value for all four algorithms.
algorithm

Fix block lengthn and context tree depth.

A LY" — X" L™ - X"
for i <1, n do 02: 003;
z; = (x;,y;) > Make a super symbol with alphabel os 03
size |X||Y| 0.25 0.25
end for 02 02
fori<—D+1,n+1do O;)li Ooli
Gather the context! ;, for the ith symbolz;. 005 005
Update the context tree1 for every possible value;of w0’ 10° N 10* 10° 10° 10° . 10° 10°
The estimated pmf)(z;|Z*~') is obtained along the way. . . s "
Gather the conte(zxzyl f())r the ith symboly;. L" = X" v = X7)
Update the context tree for every possible valug,of | 003:
The estimated pmf)(y;|Y*~") is obtained along the way. os 03
Updatels asly < I + f(Q(as,y:| X1, Y1) — oz 025
F(Q(y;|Y*~1)) where f(-) is defined in [ZZB). o o
end for o o
12 — I2/(” — ) 0.05 0.05
10° 10° 10* 10° 10° 10° 10* 10°
n n

We now present the performance of the estimators on )
synthetic and real data. The synthetic data is generateg usiig- 3. Estimation off (Y — X): The straight line is the analytical value.



The true value can be simply computed analytically as for d > D', (Y, — X"~%) = H(X"~%). Therefore, we
n n n o can use the shifted directed informatidéy? , — X"~ %) to

I(Y" - X") = H(X") — HX"™|Y™) (56)  actimateD’. d+l

Fig. B depictsl>(Y},, — X"~%) wheren = 10° for
the setting in Fig[J4, where the input is a binary stationary
n Markov process of order one and the channel is given by
— ZH(XiIXiq) — H(X:i|X;_1,Y;) (58) (€1). The delay of the channel)’, is equal to 2. We use

; 1 to estimate the shifted directed information (all algarith
e > perform similarly for this case) where the tree depth of the

= zn: H(X;| XY - H(X;| XYY (57)

Hy(p) — (pe + pé)Hy < CTW algorithm is set to be 6. The result in Fig. 5 shows that

i=1 pe+pe for d < D', I}(Yd’;l — X"~4) is very close to zero and for
— (pe + pe) H, < De > 7 (59) d> D', I}(Ydﬂl — Xn=4) is significantly larger than zero.
De + pée

where [58) follows from the Markov property of the input I (Yd"+1 — Xn—d)

process and the memorylessness of the channel aridlin (59), 0.5 ‘ ‘

andp denotesl — p. o

One can note from Figl3 that the sample pathsiof 041

and I, indeed appear to be smoother, as one might expect

from that fact that they use the entropy and relative entropy 03

functionals on the pmf estimat@(xz;,y;|Y*~t, X~ 1). The

first estimator is apparently the least smooth, since it tises 0.2

probability assignments evaluated on the sample path,sand i

highly sensitive to its idiosyncrasies. 01

B. Channel Delay Estimation via Shifted Directed Inforroati (—)4 -2 0 2 4

Assume a setting similar to that in Sectlon V-A, a stationary
process that passes through a channel, but now there exisi & The value offa (Y, — X"~4) wheren = 105 for the setting
delay in the entrance of the input to the channel, as depici@gicted in Figlh withD’ = 2. Whend < 2, (Y, = Xnd) s very
in Flg [4. close to zero and fod > 2, 12(Y T X" ) is significantly larger than

zero.
X0, X1, Yo Y
— D’ units delay wit C*r}]agmng'ry%

Fig. 4. Using the shifted directed information estimationfind the delay There is an extensive literature on detecting and measuring
D' causal influence. See, for example,|[37] for a recent survey
of some of the common tools and approaches in biomedical
informatics. One particularly celebrated tool, in both tlie
sciences and economics, for assessing whether and to what
extent one time series influences another is the Granger
causality test [9]. The idea is to mod¥l first as a univariate
IV, — X" & Z H(X;| XY — H(X,| X1, Y&+, autoregressive time series with error correction té&fm

C. Causal Influence Measurement

Our goal is to find the delayD’. We use the shifted
directed |nformat|0nI(Yd’}H — X"~4) to estimateD’, where
1Y}, — X" %) is defined as

d+1
(60) NV 4
To illustrate the idea, supposK is a binary stationary Yi= Zﬁjyh] + Vi (62)
=

process, and we define the binary proc¥sss follows _ o o _
and then model it again using as causal side information:

Yi=Xi_p+X;_p_1+ W, (61)
where W; ~ Bernouli¢) and addition in[{6l1) is modulo 2. Y= [bYioj + X+ Vi (63)
The goal is to find the delay)’ from the observations of j=1

the procel'ssey and X. Note that the mutual information ith v, as the new error correction term. The Granger causality
rate hm ~=I(Y™; X™) is not influenced byD’. However, the
A

is defined as ar(Vy)
n—d Vi i
shn‘ted directed information ratéim LIy, — X7 Gx_y 2 log

is highly influenced byD’. Assuming that there is no feedback, var(Vi)
for d < D' we have the Markov chaubf“r1 — X! - X, and the bigger it is, the more inclined the practitioner is to
due to [B1), and thereforg(Y , — X"~ d) = 0. However, assert thaK is causally influencing'. It is a simple exercise
ford > D', I(Y},, — Xn"=4) > (. For instance, in the to verify that when the process pair is jointly Gauss—Markov
channel example[(61), it¥; = 0 with probability 1 then with evolution that obeys botli (62) and {63) wijth= oo, the

(64)



Granger causality coincides with the directed informatiate information that the forward link exists if and only f{f X™ —
(up to a multiplicative constant) [23]. Y™) > 0 and the backward link exists if and only if
In this section, we implement our universal estimators dfY"~! — X™) > 0. More generally, the directed information
directed information to infer causal influences in more gehe I(X™ — Y ™) quantifies how muckK influencesy, while the
scenarios, where the Gauss—Markov modeling assumptitirected information in the reverse directiéfy”~! — X™)
inherent in Granger causality fails to adequately captbee tquantifies how muclY influencesX. The mutual information,
nature of the data. which is the sum of those two directed informations, (§é§ (8)
One philosophical basis for causal analysis is that wheuantifies the mutual influence of the two sequences. There-
we measure causal influence between two proce3§emnd fore, using the directed information measures, it is natiora
Y, there is an underlying assumption th%éf happens earlier adopt terminology as follows:
thany; for every(X;,Y;). Under this assumption, we say two , Case AI(X™ - Y™) > I(Y" ! — X", we say that
jointly distributed processeX andY induce a forward chan- X causesy.
nel P(y;|2*,y'~") and a backward channél(z;[«'~',5*%), . case B:I(X" — Y™) < I(Y"~! — X™), we say that
as depicted in Fid.]6, wherX is the input process. In this Y causesX.
section we present the use of directed information, reverse, Case C:I(X™ — Y") ~ I(Y""! — X") > 0, we say
directed information, and mutual information to measure th that the processes are mutua”y Causing each other.

causal influence between two processes. . Case D:I(X™;Y") = 0, we say that the processes are
independent of each other.
forward channel To illustrate this idea, consider proces®€sandY gener-
X; i i1 Y; ated by the system that is depicted in [Elg. 7, where the fatwar
1 P p i , K3 B} .
(il ™) channel is a BSG) and the backward channel is a BSK(

where0 < a < 1 and0 < 8 < 1. Intuitively, if o is much

backward channel less thans, then the procesX is influencingY, and if « is

Y, much larger thars, the proces¥ is influencingX. If o« andf
P(ai|2i 1, ) ‘7’_ Delay have similar values then the processes mutually influence ea
' ’ other, and finally if they are both equal %othen the processes

are independent of each other. Note that the information-
Fig. 6. Modeling any two processes using forward chadh@};|z*,4* ")  theoretic measures can be analytically calculated ab i+ (65
and backward channdf(z;|" ", y" ). @7), and indeed i7(X" — Y™) > I(Y"~' — X™), then
a < f and vice versa. Hence the intuition regarding which
process influences the other is consistent with cases Aghrou
L BSC() Yi D presented above.

LIX" 5 V") = Hy(oB +88) ~ Hio)  (69)

Y, where the term& and 3 denotel —a and1 — 3 respectively.
BSC() |-«—| Delay Similarly, we have

%I(Y”*l — X" = Hy(aB +apB) — Hy(B)  (66)

Fig. 7. Simulation of a sequence of random variab{es;,Y;}; > 1

according to the relation shown in the scheme. Namely,s the output and
of a binary symmetric channel with parameterand inputX; and X is the

output of a binary symmetric channel with parameteand inputY;_;. The (Y™ X") = QHb(aB +aB) — Hy(B) — Hp(a). (67)
initial random variableX; is assumed to be distributed Bernot%lu. n

Since the normalized reverse directed information is mgthi

Definition 3 (Existence of a channel)We say that the for- Put the normalized directed information between anothér pa
ward channel does not exist B(y:|z,y~ 1) = P(y;]y'~") of processes, where one is shifted, the estimafgr$o I,
3 ) - 3

for i > 1 and similarly the backward channel does not exiS@n Pe easily adapted to this situation, and the convergence
if Plzs]zi—L,y' 1) = Plas|ai—2) for i > 1. theorems (Theoreﬁ_l through Theoriem 4) apply also (with the
) _ ) appropriate translations) to the reverse directed inftiona
We interpret the existence of the forward link as that thejnaly, the normalized mutual information can be estirdate
sequenceY is “influenced” or “caused” by the procesS. once we have the normalized directed information and the

Similarly, the existence of the backward link is interpte®  normalized reverse directed information simply by summing
that X is “influenced” or “caused” by the sequende. We inem.

would like to answer the following two questions: Fig. @ depicts the estimated and analytical information-
1) Does the forward channel exist? theoretic measureg /(X" — Y™), L1(y"~! — X"), and
2) Does the backward channel exist? LI(X™;Y™) for the casex = 0.1 and 8 = 0.2. One can note

Directed information can naturally answer these questiorikat with just a few hundreds of samples, directed inforomati
It is straightforward to note from the definition of directecand reverse directed information start strongly indigatinat
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Alg. 1 Alg. 2

0s 0s We denote byX; andY; the (quantized ternary valued)
0s 0s I(X™y™) change in the HSI and the DJIA in day respectively, and
Ol A o4 1"y estimate the normalized mutual informatigd (X™; Y™), the
- - ’ normalized directed informatiodI(X” — Y™), and the
o o vn'sxm  normalized reverse directed informatign/ (Y"1 — X™),
o - - -0 - - - ! using all four algorithms. Fid._10 plots our estimates ofsthe
n information-theoretic measures.

05 Alg. 3 06 Alg. 4 Evidently, the reverse directed information is much higher
0s 0s I(xm™ym than the directed information; hence there is a significant
o o 1x"5y") - causal influence by the DJIA on the HSI, and a low influence
- - in the reverse direction. In other words, between 1990 and
o1 o1 1o iexmy 2011, it was the Chinese market that was influenced by the
o — — - o — ~ - ! US market rather than the other way around.

n n It is also worth noting that estimatofs and I, do generate

Fig. 8. The information-theoretic measurésI(X” —Y"), 1I(Y” T negative outputs as shown in F@] 10. It may be caused by

X™), and L1(X";Y") evaluated using the four algorithms. The data waYarious reasons, such as data insufficiency and non-saaitipn
generated 'according to the setting in Fiy. 7 where= 0.1 and 8 = 0.2.  of procesgX, Y). In such cases of insufficient data, we would

The straight black line is the analytical value given byl ¢(@&J) and the blue prefer estlmatorsig andI4 since they are always nonnegative,
lines are the estimated values. . . > g .
which can be sensibly interpreted in practice.

a < B, in other words X influencesY more than the other Alg. 1 Alg. 2

way around. 0.2 — (X" Y")/n 02 — (X" Y")/n
I(X™ = Y™)/n —I(X™" = Y")/n
[(yn—lﬁxn)/ ((yn—lﬁxn>/

0.15 0.15

D. Causal Influence in Stock Markets
Here we use the historic data of the Hang Seng Index (H< ™

and the Dow Jones Index (DJIA) between 1990 and 200o.0s oos@
to compute the directed information rate between these t | N ] 0

0.1

indexes. The data of those two indexes are presented in F 2000 2005 2010 2000 2005 2010
on a daily time scale. year year
Alg. 3 Alg. 4
4 (XY™ ) — (XY™
x 10 02 71(()(" — Y)'/:)L/n 02 7I(<X” — }2/"7;/”
[(Yn—l — X")/'L [(Yn—l - X")/ h
0.15 0.15
0.1 0.1
0.05 0.05
0 0
2000 2005 2010 2000 2005 2010
year year
Fig. 10. Estimates of information-theoretic measures betwHSI denoted
by X, and DJI denoted by . It is clear that the reverse directed information
is much higher than the directed information, hence it is att causally
influences HSI rather than the other way around.

O L L L L
1990 1995 2000 2005 2010

year
Fig. 9. The Hang Seng Index (HSI) and the Dow Jones Indusisiatage VI. CONCLUDING REMARKS
(DJIA) between 1990 and 2011. The goal is to determine whiclex is . . .
causally influencing the other. We have presented four approaches to estimating the di-

rected information rate between a pair of jointly statignar

There is no time overlap between the stock market in Homggodic finite-alphabet processes. Weak and strong censist
Kong and that in New York, that is, when the stock market iresults have been established for all four estimators, écipe
Hong Kong is open, the stock market in New York is closedenses of varying strengths. For two of these estimators
and vice versa. Therefore the causal influence between the established convergence rates that are optimal to within
markets is well defined. Since the value of the stock markegarithmic factors. The other two have their own merits,
is continuous, we discretize it into three valued;, 0, and1. such as nonnegativty on every sample path. Experiments
Value —1 means that the stock market went down in one dayn simulated and real data substantiate the potential of the
by more than 0.8%, value means that the stock market wenproposed approaches in practice and the efficacy of directed
up in one day by more than 0.8%, and valumeans that the information estimation as a tool for detecting and quairtiy
absolute change is less than 0.8%. causality and delay.
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n 1=1
APPENDIXA Lemma 6 (Breiman’s generalized ergodic theorem[[38])
SOME KEY LEMMAS Let X be a stationary ergodic process. Ifim g;(X) =
— 00

Here is the roadmap of the Appendices. In Appendix A(X) P-a.s. andE[sup |gx|] < oo, then
we list some key lemmas without proofs, and in Appendix B k

we prove the main theorems and propositions in Se¢fidn V. R 3
Appendix C provides the proofs of the lemmas in Appendix A. Jm_ — > g (THX)) =Eg(X) P-as. (75)
The first lemma is on the asymptotic equipartition property k=1

(AEP) for causally conditional entropy rate. It was provad iwhereT'(-) is the shift operator which increases the index by
[33] that the AEP for causally conditional entropy rate I®oldl, and7* increases the index by k.

'2 the almost su”revsensie. Hﬁre we prove that Itth0|de n thleHere we paraphrase a result from1[30] on the redundancy
1 sense as well. We also show convergence rates for joinfly =\ < "~ probability assignment.

stationary irreducible aperiodic Markov processes.
Lemma 7 ([30]) Let @ be the CTW probability assignment

and let X be a stationary finite-alphabet Markov process
whose order is bounded by the prescribed tree depth of the
CTW algorithm. Then there exist constants, Cs such that

the pointwise redundancy is bounded as

Lemma 1 Let (X,Y) be a jointly stationary ergodic finite-
alphabet process. Then,

1 — .
lim ——log P(Y"||X™) = H(Y||X) P-a.s.and inL;.
n—oo N

(68)
In addition, if (X,Y) is irreducible aperiodic Markov, then

1 1
— <
max <log D) log P(x")) < Cslogn+Cs (76)

where C5 > 0,Cs depend on nothing but the parameters
specifying the procesX. In particular, taking expectation over

the inequality with respect t@, the redundancy is bounded
as

E —llogP(Y"HX")—H(YHX) =O0(n"Y%logn) (69)
n
and for everye > 0,
1 _
=~ log P(Y"|[X™) — H(Y|X)
=o(n"?(logn)®/?*¢) P-as. (70)

D(P(z™)||Q(a™)) < Cslogn + Ce. (77)

Remark 3 The constants’;, Cs can be specified once the
The next lemma shows that the conditional probability irparameters of procesX are given. For example, see [30],

duced by the CTW algorithm converges to the true probabilityhere

of a Markov process if the CTW depth is sufficiently large. o (v —1)|S]

Lemma 2 Let @ be the CTW probability assignment and let ° 2 (78)
X be a stationary irreducible aperiodic finite-alphabet Mark Cs = (v =18 log 1 1S (L n 1Og7) __t
process whose order is bounded by the prescribed tree depth 2 S| y—1 y—-1
of the CTW algorithm. Then, (79)

lim Q(zni1]|X™) — P(zni1|X") =0 P-as. (71) Here~ is the size of alphabet, in this case= | X|. |S| is the
n—+00 number of states in the Markov process, given Markov order
Lemma 3 ([21, Lemma 1]) For anye > 0, there exists(. > m, |S| < |X|™.
0 such that for allP and Q in M(X,)):

APPENDIX B
[f(P) = JQ) < e+ Ke|lP = Qlln, (72) PROOFS OFTHEOREMS AND PROPOSITIONS
where || - [|; is thel; norm (viewingP and @ as |X||Y|-  For brevity, in the sequel we denofé (Y| X") by H,,
dimensional simplex vectors), arfdis defined in[{29). Hy(Y™|X™) by Ho, I;(X™ — Y™) by I;,i =1,2,3, 4.
Lemma 4 Let P,Q be two probability mass functions in
M(X,Y), denoted = ||P — Q|1 If < 1/2, we have A. Proof of Theoreril1
|X| || Briefly speaking, we need to show estimaf@rconverges

[f(P) = f(Q)] < 201log —=, (73) to the corresponding directed information ratéX — Y)
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for any jointly stationary ergodic proce$éX,Y). Sincel; is  Q(y;|z%,y"~1)}. We boundC,, from (I12) to [I2D), where
defined in [3b) asi, (Y™) — Hy(Y™||X™), if we can show
the corresponding convergence properties Fbf(Y || X"),
then we have the desired convergence properties aince  « (113) follows by the log-sum inequality [24, Theorem
Hi(Y™) = Hi(Y™)0). 2.7.1], _

GivenQ is a universal probability assignment, first we show (L12) follows sinceva: > —1,log(1 + z) < z/In(2),
I, converges inL;. Then we show giverQ is a pointwise (113) follows sincefz| > T,
universal probability assignment, also converges almost * (118) follows by Scheffe’s theorer |42, Lemma 2.1],
surely. &%; ;o::ows Ey :DthkerS m_;acw?}ty [42, Lemma 2.5],

ollows by the concavity of/",

1) L convergenceWe decompose « (I19) follows by data-processing inequality [24, Theorem
H, —H(Y|X)=C, + D,, (80) 2.8.1],
« (120) follows by the chain rule for relative entropy, the

concavity of,/-, and data-processing inequality.

where ]
C, =Hy + —log P(Y"||X™) (81)
n

D, = 1 log P(Y™[| X™) — FI(Y||X). (82)  Combining [89) and{120), we have
n

1
According to Lemm4]1 shown in Appendix A, we kna, E|Cu| < =D(P(z",y")[Q(@", y"))
converges to zero il;. Now we deal withC,,. Pinsker [[39] 5
proved the existence of a universal constént 0 such that _c n+l_gn+l n+l g+l
\ m VPPEE QG ) o

b < D(PlQ) + T VD), (90)
(83) by definition of universal probability assignment, we shG

Barron [40] simplified Pinsker’s argument and proved that ttconverges to zero if;. Since

constantl’ = /2 is best possible when natural logarithms are

used in the definition oD(P||Q). Here we follow Barron’s

DPIQ) < Ep{ o83

E|H, — H(Y|X)| <E|C,| +E|Dn| -0 n— oo, (91)

arguments to boundl|C,, | with C,, defined in [(8IL). we knowI; converges td(X = Y)in L.
Denote the sef(2",y") : P(y™||z™) < Q(y"||z™)} asB,,
we have 2) Almost sure convergenceConsider the probability of
E|C,| = Z P yn)l log P(y™||=™) the following event
n k) n n R 1
(@™ ym)E(XXY)™\B,, ;( |Q(y) ") Ane ={(@",y") : Hi < ——log P(y"[[2") — ¢}, (92)
+ > Py )ﬁlogW (84) we have
(I",y")EBn -
nll v P(A,.) = P(z",y" 93
_]EPlOgP(Y ||X)} (An,e) (Hz)éA (", y") (93)
ne S rerele e
1 |an = y ") Py
+2 > P(a",y")- log 75{871:';; (85) (@ e A .
(et < > QWlEM2 e PE Myt (95)
Define C, £ E{%log %}, Co 2 (@ ym) EAn
)| pn __ o—ne n n ni,,n—1
Y (en e, P, y") 3 log Bt we bound - Z)A Q" =" P"[ly" ") (96)
I",y" c o

r i yi—1 e
= I T
- e where the first inequality is because of the definition of
1 P X\ YN iy il even A, ., and the last step follows from the fact that for
> E|E|log QY[ X7, Y1) XY any two conditional distributions of the for@(y"||z") and
S g7) P"ly™"), we haveQ(y"[lz") P(z"[ly" ") = Q(a",y")

- . } where(@ is a joint distribution. As
1 ZE £l P(Y;, X;| X1 v

< Z o . . Xi—l’Yi—l 00
“hag | oW EIET LY S P(Anl) < o0, (98)
(88) n=1
1 n m n n by the Borel-Cantelli Lemma, we have
= —D(P@",y")|Q@"y")). ©9)

. . - 1 n n
Then, vi, defineC; 2 Ci(wi,y'~Y) = {y; : Plyslat,yi=t) < 1 Hi= (_EIOgP(Y I1x )) 2 0. P-as. (99)
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In order to get an inequality with the reverse direction,tevri which implies the convergence of to I(X —Y) also holds

H, — (-1 log P(Y™||X™)) explicitly as almost surely.
H + = logP(Y"HX”)
ni yn B. Proof of Propositiof i1
S gp(y ) (100) - |
n - QIY™"|X") For similar reasons as shown in the proof of Theofém 1,
Py, X 1 P(X"|y"1) here it suffices to show the convergence properties ofFor

Sl S et oY i Salti | S A
QY™ Xm)  n B Q(xn|yr1)’

by the definition of pointwise universalit{/](2), we know

= 1 log (101)
n

convenience, we restate some arguments shown in the proof
of TheorenTlL. We decompogé, — H(Y||X) as

— H, — H(Y||X) = Cyp, + D, (107)
: Py, X") ! ’
lim sup —log ———-—+- <0, P-as. 102
e gQ(Y",X") - (102) where
with a similar argument used for showirlg 199), we show Cp=H, + - log PY™|X™) (108)
, P(X"|yn1) _
| ——log ———+ < P-a.s. 103 E— X" —
s e gy =0 Pas (109) Dy =~ log POCX7) - H(YIX), (109
then we have and we restate[@O)
lim sup H; — <—llogP(Y”|X")> <0. P-as. (104) E|C,| < D "NQ™,y™))
n— o0 n
Combining [104) with[(99), / \/D Pz, g [ Q2 1, yn+ 1)) /.
lim H, — (-llogP(YﬂX")) =0. P-as. (105) (110)
n—oo n
By Lemmall shown in Appendix A, 1) L, convergence ratesiWe apply Lemmal7 in Appendix
. A. Plugging [77) of Lemm&]7 in (110), we have

Combining [II1) with theL; convergence rates ob,,

Ly i i - at,y !
Co<id X Py X Pty los o ) (112)
i=1 (at,yio1) vieC;
QY € Cila',y* )
<_ -1 - T
B Z Z) P ey o8 B e Cala, ) .
1 & 1 o o
< — . et 01y - et i—1
—HZ: 12;1)]3 H(Q)(Q(Yzeczl:v,y ) — P(Y; € Cilz*,y* ™)) (114)
1 @& 1 o o
< = P }/l . i, 1—1 _P}/’L : i o,i—1 115
<2 Z) QY E Gty - P(Y: € Glat )| (115)
= 11 y1 1
1 ¢ 1 . .
S—Z > P@Ly ) Y Pl v — Quilat, )| (116)
2n “— ) In(2) »
=1 (zi,yi-1 i
2 o o
S, Z >. P \/—m( )D( (ilet, y =D Qyil=*, y'=1) (117)
=1 11 i— 1)
aS 2HZ\/ \/]ED (yi | X%, YD) [|Q(ya| X7, YT (118)
= 2nZ m \/ D(P(yi, 22| X7, Y ") Qys, miga [ X7, Y7 (119)
aig) VPP @y IRy /n, (120)

21n
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shown in Lemma]l in Appendix A, we have Putting [13%) and the almost sure convergence ratds,of
- — shown in Lemmall in Appendix A together, we kndw > 0,
Bl - A(Y|X)| <EC,[+E|D,|  (121) allin App 0

O M logm),  (122) DX YM=I(X 5 Y) = o(n V2 (logn)?/* ). P-as.

then we know the convergence rates in Proposltion 1 hold @s Proof of Theorerf]2

follows It suffices to show the convergence propertiestbf We

E|L(X" > Y") —I(X = Y)|=0n"?logn). (123) decompose

2) Almost sure convergence rate¥/e look at the almost Hy(Y"|X™) — H(Y||X) = Ay + By, (139)
sure convergence rates ¢6f, (I08) at first. We know the \ynere
probability of eventA,, . defined in [9R) is bounded as Lo
P(An,e) S 27716. (124) An = E Z f(P(Ik+1,yk+1|Xk, Yk)) - H(YHX) (136)
k=1
For any fixedd’ > 6 > 0, takinge = n~'*9 in (@2), we see . 13 A
An. is equal to the set By = H(Y"|X") - — > F(P(hsr, yea | X5, V).

k=1

{(@,y™) 0t <H1 + Liog P(y”|x”)> < -—n* 1 (137)
n

(125) Define g,(X,Y) £ f(P(z1,:X°,.Y%,) for a jointly

Note that stationary and ergodic proce&X,Y). Note that, by martin-
= b gale convergence [41};(X,Y) — ¢(X,Y), P-a.s. where
Z;P(A"’f) = ;2 < 00 (126) 9(X,Y) = f(P(z1,y1]X°%,Y°,)). Noting further that

) Eg(X,Y) = H(Y||X) andVk, g; are bounded, we can apply
By the Borel-Cantelli lemma, sino~° goes to zero a8 —+ Lemmal® in Appendix A and get the following result:

oo, we proved that ) i
lim A, =0 P-a.s.andinl;. (138)

, o 1 n—o00
. . 1—§ n n
lim inf n (Hl T log P(y" ||z )> 20 P-as. (127) Then we deal withB, defined in [(I317) from[(185) td (162),
. . ... where fixing an arbitrary > 0,
In order to get an inequality of the reverse direction, . .
dividing (T03) b?/n‘”‘s' wg havg o ([@I57) follows by Lemmal3 in Appendix A,
' « (I58) follow by Pinsker’s inequality,

= (m n 1 1ng(yn|Xn)> (128) « (@59) and[(T6N1) follow by the concavity_ af-,
n « ([162) follows by the chain rule for relative entropy.
-y (1, P X" We continue to bound
VA e o ; -
nomQOT, 1 lim B [71,(y")| X") - H(Y[X)| (139)
1-6' 1 1 P(Xn”Yn_ ) 129 oo
-n o 08 QXn|[yn1) ) (129) < nh_}rr;OIE |A,| + nh_)rI;OE | B (140)
By the pointwise redundancy of the CTW algorithm restated = 1Lm E|B,| (141)
in LemmalY in Appendix A, we know e o)
n
, 1 P(Y™ X™) <e+ lim K, D (Pt yntH)[|Q(an 1t ynth))
1 1 <1 P-as. 130 n—00 n
TP ogn B QY X7 = as (130) (142)

then we have =€ (143)
Jim supn! <l log P(Yn,X”)> <0 P-as. (131 where [141) fqllpyvs by[(138)[(1#2) follows bﬂ_j62m43)
noC QY™ X" follows by Definition[1. Now we can use the arbitrariness of

For the second term on the right hand side[of{129), followirfgto complete the proof.
similar argument applied to shoWw_(127), we know

n—r oo

D. Proof of Propositio R

(1 P(x"|yn-t A
lim sup —n! % <_ log %) <0 P-as. (132) It suffices to show the convergence propertiesfof
noee " Q™| ) 1) Almost sure convergencéor stationary ergodic process
From [131) and[(132), we obtain (X,Y), let
limsupn'~% (fll + 1 log P(Y"HX")) <0 P-as. 9k(X,Y) = f(Q(z0, 90| X 1)) (144)
noee " (133) 9(X,Y) = f(Plao, ol X3, Y ), (145)
Combining [12V) and (133) together, we knsW/ > 0, by Lemmal2 in Appendix A,
lim H; + 1 log P(Y"||X™) = o(n ')  P-as. (134) klim g:(X,Y) —g(X,Y)=0 P-as. (146)
n—o00 n —00
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SinceE[sup |gx|] < log|Y|, by Lemmd® in Appendix A, in LemmalT in Appendix A, i.e.[{17) intd_(183), then have
k
Lo E|B,| = O(n"'/2(logn)*?). (151)
. k - . A~ o p—
i ng(T (X,Y)) = lim Hy=H(Y|X), (147) Combining [I51) with[{150), we proved Proposition 2.
k

=1

which justifies the almost sure convergencerbf. N
i E. Proof of Proposition 13
2) L, convergence ratesFor convenience, we restate the . o
definitions of 4,, and B,, as follows We rephrase a general lemma showing minimax lower

bounds:

1< _
An =~ > F(P(@rgr, v | XF,YF) = H(Y|X) (148) Lemma 8 ([42, Theorem 2.2, Page 90]Let F be a class
k=1 of models, and suppose we have observatigndistributed
- &k according to Py,f € F. Let d(f,f) be the performance
;ﬂp(mk“’yk“w V). measure of the estimatgf(Z) relative to the true modef.
=! (149) Assume alsal(-, -) is a semi-distance, i.e., it satisfies

Letting Vi be f(P(reer.yeet X5 Y5) ~ H(YIX), Vbe 5 o) Z gl =%

log |YV|, and applying LemmAl5 in Appendix A, we know 3) d(f,g) < d(h, f)+ d(h,g).
E|A,| < VEAZ = O(n~1/?). (150) Let fo, f1 € F satisfyd(fo, f1) > 25 > 0, wheres is fixed.

SN

B, = Hy(Y"| X™) —

Then we bound|B,| from (I78) to [18B). Then
infsuPdA, > s) > inf max P,.dA, ) > s

o ([@80) is an application of Lemmh] 2 and Lemrba 4 7§ feg s(dlf, ) 2 o) f g€{0.1} (A 1) 2 <)
in Appendix A. Indeed, Lemmdl2 guarantees that (152)
when n — oo, the ¢; norm of the difference of 1

. > = — .

P('rk+1ayk+1|XkaYk) andQ(Ik+17yk+l|Xk7Yk)_ will — 4 exp( D(Pf] HPfO)) (153)
be small enough so that Lemriia 4 can be applied. In this proof,F in Lemma[8 is taken to be?(X,Y). De-

. @81)_ follows by Pinsker's inequality and the fact thaf,iq the binary entropy &, (p) — —plog p—(1—p) log(1—p)
function ¢ log(1/¢) is increasing for small. and the class of i.i.d. processes.&t). Since

« (I82) and [(188) are by the concavity ftlog(1/v/t)
and the chain rule for relative entropy. Hj(p) = log 1 _p7 (154)

p

Because of the monotonicity aftlog(1/v/#) whent ~ 0, and H/(p) is decreasing in intervdl/s, 3/8], we know
we can plug in the redundancy bounds of the CTW algorithm

E[B,|=E % 2": (FQ@ryr, yrsr | X5, YF)) = F(P(@ryr, gy | XF, Yk)))‘ (155)
k=1

< %Ezn: | F(Q@hi1, yea | XF,YF)) = f(P(@rir, yria [ X, YY) (156)
k=1

< % z": E (€ + KllQ(@hs1, yrra| X5, Y®) = P(arir, yesr [ X5, Y)|1) (157)

k=1

< XS B [\ 2 @)D (Pl gt K5 Y@t s X 19| 0 (18)
k=1

< % 2": \/2 I2)E [D (P(zt1, Ye1 | X5, YF)|Q(zrt1, Y1 | XF,YF))] + € (159)
k=1

=e+ % z": \/2 In2)ED (P41, Y1 [ XF, Y F)|Q(Th1, Yot 1 | XF, YF)) (160)

k=1
<e+ K. %(2) X $ zn:ED (P(@ht1, Y1 [ X P YR Qg 1, Y1 [ XF,YF)) (161)
k=1
21n(2)

=e+ K. D (P4t yrth]|Q(antt, yn ) (162)
n
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Lemma 9 Vp,q € [2/8,3/8], we have Y) based on X7, YY), d(x,y) = |z — y|, we have

|Hy(p) — Hy(q)| = log(5/3)[p — al- (163)  d(Hy(qo), Ho(q1)) = 1og(5/3)la0 — a1| = log(5/3)/v/n.
) . (169)
We also ﬁhowfa lemma bounding the divergence betwe?Hen we takes = log(5/3)/(2/n) to satisfy the assumption
two Bernoulli pmfs. of Lemma[8. For brevity, here we denatéX — Y) as/. By

Lemma 10 Let P and Q be Bernoulli pmfs with parame- Lemma[8,

ters, respectively, 1/2-and 1/2q. If |p|,|q|] < 1/4, then s . -
’ fsup Pp(d(I,,I) > s) > inf Py (d(I,, Hy(q;)) >
D(P|Q) < 8(p — q)2. infsup 1 (d(In, I) > 8) inf_max, 1, (d(In, Hy(q5)) = 5)

LemmalID can be verified as follows: . (170)
1/2 — 1/2 4+ > = —D(Py, || Py,))- 171
DIPIQ) = (1/2 = p)log {5 =2 + (1/2-+ p)log 13 -2 > cep(=D(Py|IPL). (A7)
(164) Then we boundD(Py, || Py, ):
—p P, (X1, 1)
=(1/2—p)l 1 D(Py,||Ps,) = nEy, [log =———1—= 172
(/2= ptog (14 42 ) (PalPe) = s o 2GR ar2)
— 2
+(1/2+p)log (1 + P4 > (165) < 8n(g0 — q1) (173)
/244 —3. (174)
1 q—p P—q
< —((1/2— 1/2
= ) (( / p)1/2_q+( / +p)1/2+q) Thus we have 1
(166) inf sup Py(d(L,, 1) > 5) > 2%, (175)
_ 1 (-9 (167) In Mo 4
~ In(2)1/4 — ¢2 Using Markov’s inequality,
2 A A
<8(p-4a)7, (168) inf sup E|L, —I| > infsupE|l, — I (176)
where the first inequality holds becauseg(l + z) < T ZY) {" Mo 1 1
z/1In(2),Vx > —1, and the second inequality holds because > e Ps=—e ®log(5/3)—=. (177)
<1/4 4 8 vn
gl < 1/4. N
Taking the observations model &, - Bern(q), ¥; =
X;, then we havel(X — Y) = H(X). Assuming under
model fo,q = qo = 1/4}, under modelf;, ¢ = ¢1 = 1/4+
1/4/n, andn > 64. Let I, be an arbitrary estimator df X —
1 n
E[Bn| =E |~ > (FQ@rir, yna X5, YF)) = F(P(wri1, e | X5, YH))) (178)
k=1
1 n
< EEZ |f(Q(Ik+1ayk+1|Xk7 Yk)) - f(P(Ik+17yk+1|Xk7 Yk))‘ (179)
k=1
1 n
< E]EZ2|\P(Ik+1,yk+1|Xk,Yk) — Q(xrt1, e [ X*,YF) L
k=1
Eaird
% lo 180
B TP Gner, pnt X5 V) — Qanrr, gent X VR, (189
1 n
< EE;2\/21H(2)D(P($I€+1,yk+1|Xk7Yk)|Q($k+1ayk+l|XkaYk))
x log |11V (181)
\/2 ln(z)D(P('rk+1ayk+1|XkaYk)”Q(IkJrlvykJrﬂXkaYk))
1 n
<= ; 2\/2 In(2)ED(P(k+1, Yr+1|XF, YP)Q(@pt1, Y1 | XF, YF))
x log 1] (182)
V2)ED(P (s 1, Yrr1| X5, YE)[Q(2rp 1, yrega [ XF, YVE))
< 2/ 2R DGy QG g ) i log Gt (189

V2In@2)D(Pnt ym Qe L,y 1)) /n
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F. Proof of Theorer]3 probability assignment is lower boundéd](27);

We decompose « ([210) follows by Pinsker’s inequality,
« ([211) follows by data-processing inequality,
X Y1) « ([212) follows by the chain rule of relative entropy and
ZZQ il ) Og Qy |Yl ) concavity of/-.

11y1

1 After applying Lemma7 in Appendix A, we knowk,
- — ZZQ yi| XY 1og T converges to zero ih.;. By Birkhoff’s ergodic theorem, we
Qs X7, Y1) know the convergence &, is also in L, which completes
(184) the proof of L; convergence.

11%

Following the proof of almost sure and convergence off, G. Proof of Theorerfil4

in that of Propositioi 12, we can show that the second term

on the right hand side of {IB4) convergesHgY ||X) almost We decomposd;

surely and inL; under the conditions of Theorelmh 3. Denote I =G, — Ho, (191)

the first term on the right hand size @84) as L _ _ o ) )
where H; is the estimator foiH (Y || X) in Iz, G, is defined

ZZQ il X4, Y log —— e IYZ o (89) as

=1 vy; 1 - ; ;
Gp=— Q(xit1,Yit1| X", Y") log ————~.
Then it suffices to show the almost sure alidconvergence n ; (I-HX;M) (@ e )log Qi [Y?)
of F,, to H(Y). Decomposer,, — H(Y) as . (192)

Since G, is in similar form asF,,, we can follow cor-
responding steps in the proof of Theorém 3 to establish
where Theoren{# analogously.

F,—H(Y) =R, + Sy,

1 — .
== PuilX Y log P(y:[Y' 1) APPENDIXC
" PROOFS OFTECHNICAL LEMMAS

A. Proof of Lemmall
1) General stationary ergodic processeBhe convergence
holds almost surely by the Shannon—-McMillan—Breiman the-

1 < . i — .

S, = —= ZZP(%|XW’ Ylog P(y;|Yi~Y) — H(Y). oOrem for causally conditional entropy rate (see, for exampl
n [33]). We now prove the AEP also holds in;.

(187) Denote

i=1 y;

- % DD QX Y T log Quil YY) (186)

=1 y;

=1 y;

1) Almost sure convergenceExpressR,, as =" | Z;, A, = ! log P(Y™]| X™) (193)
where 1
P L B, =——logP(Y"| X", X°_,Y° ) (194)
==> QXY ) log Qyi[ V') n

+ ) Pyl XY ) log P(yi|[ Y1), (188) where P(Y"|| X", X° Y ) = [[, P(V;|X? V' h).
Yi Our goal is to show thaE|A,, — H(Y||X)| converges to zero

According to Lemma&l2 in Appendix A, the CTW probabilitywhenn — ooc.
assignments@ (y;| X*, Y1) and Q(y;|Y*~!) both converge  Note that

almost surely to the true probability’(y;| X¢, Y¢~!) and 1 S

P(y;|Y~1). Therefore, EAn = — Y H|Y XY, (196)

Then we know the Cesaro mean{df;}? , also convergesto By stationarity of(X,Y) and conditioning reduces entropy,

zero almost surely, i.e., we know H(Y;|Y*~1 X% is a nonnegative, nonincreasing

1 sequence in, and further, it converges tél (Y| X). Since

lim R, = lim — ZZi =0 P-as. (190) EA, is the Cesaro mean of sequendd (Y;|Y"~', X*)}1,
nree nee i it follows thatEA,, converges tad (Y||X) asn — oo. Thus,

Now we show.sS,, converges to zero almost surely, which is lim EC, = 0. (198)

implied by Birkhoff's ergodic theorem. n—+oo

2) L, convergence:We expressR,, in another form in We have
(208), and boundE|R,,| from (208) to [2IR), where — -
« The first part of [[209) is derived bj/{B3), and the second E[An — H(Y|X)| = E|A, —EB,| (199)
part of [209) is implied by the fact that the CTW < E[Cp| + E|By — EBu|. (200)
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By Birkhoff’s ergodic theoremi| B, —EB,,| converges to zero fact that1 — F,,(z) = P(C, > z). Let B(X°_,Y° ) &
whenn — oo. It now suffices to show thaﬂ1m E|Cy] = 0. {(z",y"): P(a™,y"|X°,Y°, ) > 0}, we have[(235), then

Denote the CDF of random variab(g, asF ( ), then we by Markov's inequality, we have
have n|| xn
oo P(PYn )g)”()o()yo >t> ti (203)
E|C, | = —EC, + 2/ 2dFy(2), (201) (Y7X7 X200, Y200)
0 for arbitrary positivet,,.
=-EC, + 2/0 P(Cy > x)dx, (202)  Takingt, = 2", 2 > 0, we have

where the second step follows by integration by parts and the 1 PY"IX™) —nx
P (o8 pryan x_ v 27) <277 @09
1 ¢ P(yilYi’l)
- i XZ YZ 1 i
o= 2 L P QYT
l - i yri—1 Jyvi vi—1 Jyvi—1
+ngz (ys| X1, Y1) = Qi X, Y1) log Qi Y1), (205)
1 i i PlylY'™)
ERng— E Py X8, Y1) log =2 —<
- i yi—1 Nyvi yi—1 1yi—1
+n E Z (i X5,V = Qusl X, Y1) log Q(us[Y' ™) (206)
<li Zpyp(z yi- l)lgp(yilyzi_l)
T n& " ! QY1)
1< o o .
+ =Y B (PElX YT = Qi X Y'T) log Q(uiy ) (207)
=1 Yi
RS Py|Y'™)
<= Py Y1) [log =2 —~
S0 2B | L P flos g,
1 - 7 i— [ i—
t - Zlog |Y1 y |P(yil X, Y1) = Quil X7, Y1) (208)
1 n
SEZ< D(P(y:[ Y™ H[QyslY'™) A @ \/ED (Wi YD Q(ya| Y~ 1)))
=1
l < . Jvi vi—1y Jyvi vi—1
+nZ:]E log(2i + |V]) Z|P g XYY — Qu X, YY) (209)
1 S 1—1 1— 1 1 1
ng ED(P(y:|Y* ) Qui|Y \/ED (Y= Q(yi Y1)
=1
1 n
+ = log(2i + (V) V2I(ED(P(y:] X7, Y= [Quil X7, Y1) (210)
=1
1 & . .
= EZ(ED(P(%IY”)IIQ(%IW Y A @ \/ED (i Y =D Q(ya Y~ 1)))
=1
1 & — —
+ﬁzlog(2l+|y| )V/2I(2)ED (P (2, ys| X7, Y= 1)[|Q (i, ys X7, Y= 1)) (211)
=1
1 n n 2 D(PyM)IQy™)
< —D(P(y")Qy ))+\/1n(2) -
+log(2n + |y|)\/2ln(2)D(P(I";1y")|Q(:c”,y"))7 (212)
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Equivalently, and bound the three terms on the right hand side[of](221)
P(Cp, >x) <277 (213) separately.
Plugging [Z21B) into[(202), we have

E|Cn| = —EC, + 2/ P(C,, > x)dx (214)
0

2
~EC, + ") (215)
By (L98), we know For the first term, by Lemm@ 5 in Appendix A witK «
lim E|Cp| = 0. 16) (X,Y), Vi< g/ — H*, andV « L, we have
n—oo n 2
By (200), we know the AEP for causally conditional entropy E Z L_ [l =omL?) (222)
holds in L. 7 '

2) Irreducible aperiodic Markov processesiVe express For the second term, consider
—Llog P(Y"||X") — H(Y|X) as

n 2
1 1 & E <Z giL/ - HL/> < n? maxIE(giL/ - HL/)Q. (223)
_ = n ny __ Y - £ i
—log P(Y"[|X™) IX) = — Zj (217) =
- Define
where _ _
; ST Ei e = {(&}_pn,Yi—m) : K < —log P(yila}_,9i~p) < K+1},
Z; = —log P(YVi|X[_,,,, Y,5,) = H(Y|X),  (218) (224)
andm is the order of the Markov proce$X,Y). Let we have
—log P(Yi| X!, Yi7}) (219) Elgf —H") <E(¢}) (225)
and denoté&g; by H. Here H does not depend onsince the Z / (log P Y|Xl Wyz 1))2dﬂ
Markov process is stationary. K=L
We decompose’; as . (226)
Zi = (gF - HL) (gF' — HY), (220) < 3T I +1)22 K (227)
K=L
where g = g;1(j,, <1}, 97 = gi = gf, H" = Egf, and —o(r*27h), (228)

HY =EgF = H(Y|X) — H-. We expand
where the last inequality is an inequality developed by MeMi

n n 2 n 2 7 . . .
E <Z Zi) _E (Z P HL> +E (Z giL/ _ HL/> lan [43], and the last _step could be.lntumv.ely understoodes
=1 i=1 ]

the terms decay rapidly, the sum is dominated by the largest

n 121 term, hence the order. Now we have
+2E<Zg£—HL> <Zgl n 2
i=1 E F_HY ) =omAL*2h). 229
2b1) <;g ) ( ) (229)
pY"IX™) el (Y"HX" 0
8 [P(wan, X v 2B P x| e Ve (230)
P(v”l\x”) 0
=E : P(z",y"X° YO (231)
sy P KT FO A Y2
z™y™)eB(X2 YO )
=E S PO PE X YO )} (232)
L(@,ym)eB(X0 Y0 )
< D P PE" Iy (233)
(z™,y™)
= Z P(z"™,y™) (234)
(z™,y™)

-1 (235)
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For the third term, we apply the Cauchy—Schwarz inequalitygach the root node and obtainP,) (X, .1 = g|z"). Thus,
P)(X,41 = gz™) is a weighted sum of*(X,,; = q|z"),

2R <Z gk — HL> (Z gl — HL’> (236) Wheres is any node in the updating path.
i=1 i=1

Let {s — A} denote the set of nodes in the path frero
A. The weight associated witR? (X,,1 = ¢|z™) is

1

n 2 n
§2\IE<ZQZL_HL> \IE(Z%/—H”)Q (237)
ey i—1 RO | B T 1 (248)

= 0(n3/2L227L/2) (238) ue{s—A}
wheres is an internal node in the updating path. The weight
associated withP?(X,,11 = ¢|2™), wherewv is the leaf node

Summing the three terms together and taking- 2 logn,
we have

n 2 in the updating path, is
E|> Z| =0(n(logn)?) (239) 1 "
i=1 H W (249)
and thus ue{fu=Aiv}

n

. %

i=1

(240) The convergence properties Bf\ (X, = ¢q|X™) depends
on the limiting behavior of3*(X™) at every node along the

- D) updating path. I& is an internal node in the tree representation

E Z 7 of the source, we actually havan,, ., 5°(X™) = 0 almost

\ p surely. This fact was stated in [15, Lemma 4]. Here, we restat

(241) this fact and give a proof for stationary irreducible apdito
— O(n-1/2 finite-alphabet Markov processes.
=0(n logn).

(242) Lemma 12 Let s be an internal node in the tree representa-
Now we deal with the almost sure convergence rates @n of the source. Then
AEP of causally conditional entropy rate. We restate the-Ga ] o on
Koksma theoreni [44] as follows: Jim 5°(X™) =0 P-as. (250)

Lemma 11 (Gil-Koksma theorem) Let (2, F,P) be a
probability space and letZ,,),>1 be a sequence of random
variables belonging td.?, p > 1, such that

1 _
E‘——logP(Y"HX”) - H(Y||X)‘ ~E
n

S

<

S|

Proof: It suffices to show

peX™)

lim ——— 2 _ =0 P-as. (251)
n—oo 35( X" 1
E|Zuiir + Zasso + -+ Zarenl? = O(W(n))  (243) oo (XM +
. . _ ) We have
uniformly in M, whereW¥(n)/n is a nondecreasing sequence. B5(xX™)
Then for every > 0, —_ (252)
Zy(w) + Zz(w) + -+ + Zp(w) _P(X™) (253)
= o((U(n)(logn)PT+)s) P-as. (244)  2P5(X™)
P3(X"
The bound in [[239) indicates that if we takk(n) = < M_el# (254)
n(logn)? andp = 2 in the Gal-Koksma theorem, then for 1lizo P’ (X™)
everye > 0, QM—P:(XR) (255)
C I P

1 7 — €
——log P(Y"|X") = H(Y|X) = o{n~"/*(logn)*/***)

M-—1
(245) =2Mexp {n : (ni log P/ (X™) — ni log T] PéS(X”)> } ;
_ s S i=0
P-a.s. (246) (256)

B. Proof of Lemma]2 wheren, denotes the number of symbols ¥ with context

s, and the inequalities follow from applying_(24) repeatedly
Here sinces is an internal node of the tree, without loss of
generality, we can assume offsprings ©fdo not all have
the same conditional distribution. If it were violated, wanc
simply iterate the inequalities obtain above till we reabh t
leaf nodes of the tree, after which we can apply the same
P’(Xpi1 = qlz") = PY(Xpy1 = q|z™). (247) arguments that will be shown later.

Denote the alphabet siz&’| as M. We examine the updat-
ing computation ofPA (X, 1 = qlz™), ¢ =0,1,...,M — 1.
For an internal node in the updating path, ifjs is in the
updating path, we havd (B3). For the leaf noden the
updating path,

The computation ofP) (X, 1 = ¢|z") starts from a leaf It was shown in[[32] that the Krichevsky—Trofimov prob-
and is repeated recursively along the updating path, umil wbility estimate of sequenc&™, i.e., P.(X"), satisfies the
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following bound: path:

X" P2 (Xnt1 = ¢l X™), 267
10gPe(Xn) Z N(a|X") 1Og N(CL|X”) q| ZU} +1 Q| ) ( )
" acXx K K wherew, are given in [(Z]S) and_(Z2#9). Lemrha]12 implies
M—1logn C that for s an internal node of the tree representationXof
< +—, (257)
2 n n ws — 0. Hence

where N(a|X") denotes the number of symbal in the ;, Qg|X™) — Z Wy PS(Xni1 = q|X") =0 P-as.
sequenceX™, and C is a constant depending only on ther—o < loal mode

alphabet sizeVl. (268)
For leaf nodes, by the property of Krichevsky—Trofimov
probability estimate, we know

n lim PJ(X,+1 =q|X") — P(¢|X"™) =0, (269)
where P(¢|X™) is the true conditional probability. Thus we
wherexr(-) is the stationary distribution &X. Equation[[258) have

Under the assumption of Lemnha 2, Markov proc&sss
ergodic, hence

lim
n—o00 n

implies that N N
Q(n41|X™) = P(zn41]|X™)
. log P.(X™) A
hﬁrn — = —H(7). (259) = Py (zp41]X") — P(xp41|X™) (270)
—0 P-as. (271)
Applying the same argument té log P$(X™), we have
lim —1ogP5(X") = —H(m,), (260)
n—00 g

wherer, is the stationary conditional distribution conditionedC. Proof of Lemma&l3
on contexts. Analogously, for nodés, we have
) 1 is/vmy Fix € > 0. Since M (X,)) is bounded and closed(-) is
i s log P*(X™) = —H (mis), (261)  yniformly continuous. Thus there exists such that f(P) —
f(@) < eif |P—Q]:1 < 6. Furthermore,f(-) is bounded

th
us Vi bY fmax = log |X| + log|Y|. Therefore, we have
S n 1 1S n
im n— log P7(X™) — o log [T P*(X™) If(P) = f(Q)] < elyp—q|l,<s.} + fmax1l{|P—q|,>5.}
=0 (272)
( prl 7Tzs ) ; (262) <e+ fmaxHP ; QHl (273)
1€ €
wherep; = P(context isis|context iss). It is obvious that =e+ K| P —Ql, (274)
— Zpﬂh‘s- (263) where K, = fmax/§€.
ieX
By the strict concavity of entropy functional and the fact
that the offsprings ok do not all have the same conditional
distribution, we know D. Proof of Lemmal4
M-1
1 .
lim —1ogP5(X”) — —log [ P*(Xx") <0, (264)  Since
e s s o H(Y|X)=H(X,Y) - H(X), (275)
which implies we can boundf(P) — f(Q)| as
im XD pas. (265)  |f(P) - £(Q)

noeo fo(XM) +1 = |Hp(X,Y) — Hp(X) — Ho(X,Y) + Ho(X)|  (276)

hence
lim /BS(Xn):O P-a.s. (266) < |HP(X7Y)_HQ(X7Y)|+|HP(X)_HQ(X)|' (277)
e Now, by [45, Lemma 2.7], we have
holds.
- |Hp(X,Y) — Ho(X,Y)| < 910g| ”y' (278)
We knowQ(q|X") = PM X1 = ¢ X™) can be expre§sed |Hp(X) — Ho(X)| < 0 log m7 (279)
as a weighted sum d??(X,,1; = ¢|X™) for s in the updating Ox



wheref = ||Pxy — Qxy|l1 andfx = ||Px — Qx||1. Since

0= > [Py -Qy) (280) M
reEX,yey

= Y IP(,y) - Qx,y)| (281) [
zeX yey

[3]

> 1> P(x,y) — Qx,y) (282)
zeX |yey

=Y |P(z) - Q(x)] (283) DI

reX [6]

— 0y, (289)

we have 21
F(P) = /(Q)] < 20log == (285) [g]

E. Proof of Lemm&l5

We first define thea-mixing coefficient of a stationary
process.

El

[10]
Definition 4 (a-mixing coefficient) For a stationary process

X adapted to the filtratio.,, ), the a-mixing coefficient |,
is defined as

a(n) £ sup |[P(AN B) — P(A)P(B)], (286) [12]

where the supremum is over all € 7°__ and B € F2°. [13]

According to [46], if X is a stationary irreducible aperiodic
Markov processq(n) tends to zero exponentially fast in
i.e., there existC; > 0 andCg > 0 such that

a(n) < Cre™%m,

We boundE ((1/n) 327, V;)? as follows:

2
1< 1 < y 2
ISV = LEVE+ 5
=1 =1

vz o2

[14]

287)

[16]

Y. EViV; (289)

1<i<j<n

> EVY,
1<i<j<n
where [[28D) holds becaudé, Vi is uniformly bounded by
constantV.

By Billingsley’s inequality [47, Corollary 1.1], taking to
account thaEV; = 0, Vi, we know the following bound holds:

[17]

(18]

IN

n n?2

(289)

[19]

[20]

[21]
[BViV;| = [Cov(Vi, V)| < 4V2a(ji — j). (290)
Plugging [29D) into[(289), we have [22]
1 P v s -
E EZVZ St Z a(li—j)  (291)
i=1 1<i<j<n [24]
2 2 n—1
<L B0 S ke o) P
n n
k=1 [26]
V2 807V2€CS
AT A 27
ey prGm } X (293) [27]
Thus, we show Lemmdl]5 holds witl0y = 1 +

(28]

8CeCs /(es —1)2.
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