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Abstract—Recent work [1][2] has shown that properly designed protograph-based LDPC codes may have minimum distance 
linearly increasing with block length.  This notion rests on ensemble arguments over all possible expansions of the base protograph.  
When implementation complexity is considered, the expansion is typically chosen to be quite orderly.  For example, protograph 
expansion by cyclically shifting connections creates a quasi-cyclic (QC) code.  Other recent work [3] has provided upper bounds on the 
minimum distance of QC codes.  In this paper, these bounds are expanded upon to cover puncturing and tightened in several specific 
cases.  We then evaluate our upper bounds for the most prominent protograph code thus far, one proposed for deep-space usage in the 
CCSDS experimental standard [4], the code known as AR4JA. 

I. INTRODUCTION 

An important class of modern codes, the Low Density Parity Check (LDPC) codes, had their start in the seminal work by R. 

Gallager [5] in 1963.  Properly designed, LDPC codes exhibit very low SNR thresholds in their error rate performance.  

However there has been a tradeoff evident between SNR threshold and error floor performance.  An early technique to lower 

error floors in LDPC was to reduce the number of small cycles in the graph and “neighborhood” optimize short loop 

multiplicities [6].  Similarly, the ACE algorithm [7] for placing edges in a graph-based code brings down the error floor 

substantially by preventing small cycles from clustering on low degree variables.  

However, one important component limiting the error floor of any code is the minimum distance, and work on designing 

LDPC codes for large minimum distance has been limited.  The minimum distance is also important in understanding the 

likelihood of undetectable error patterns which are critical to limit in certain applications such as data storage.  

Code ensembles based on protographs with certain properties have been shown to achieve a minimum distance linearly 

increasing with block length [1][2] – a powerful feature for floor performance.  These protographs together with the ACE 

algorithm have been used to design LDPC codes for deep-space usage in the CCSDS experimental standard [4].  The standard’s 

codes, as specified, also fall into the class of Quasi-Cyclic (QC) codes.  A separate body of work on QC LDPC codes exists, 

including recent work on distance upper bounds [3].  We attempt to bring these works together by extending the bounds to 

punctured LDPC codes and tightening the bounds where possible. 

II. PROTOGRAPHS & AR4JA 

Protographs were introduced as a way to impart structure to the inter-connectivity of graph-based codes [8].  Protographs 

themselves are a subset of the multi-edge type graphs introduced in [9]. 

A protograph is a Tanner graph with a relatively small number of nodes, except parallel edges are permitted.  A protograph, G 

= (V,C,E), consists of a set of variable nodes V, a set of check nodes C, and a set of edges E.  Each edge, e  E, connects a 

variable node, ve  V, to a check node, ce  C.  A useful refinement is to allow the variable node set V to contain untransmitted 

or punctured variables.   
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Figure 1.  Simple protograph and corresponding protomatrix. 

A simple protograph is shown in Fig. 1 with three variable nodes, two check nodes, and five edges.  The accompanying 

protomatrix in Fig. 1 fully describes the graph.  The labeling of the protograph indicates node types.  All copies of check node A, 

are termed “type A” check nodes.  Similarly, all copies of variable node 1, are termed “type 1” variable nodes. 

The derived graph is created by replicating the protograph many times and interconnecting the copies.  The protograph code 

is defined by the resulting derived graph.  The interconnection process proceeds by treating each set of edge copies as an edge 

set, and swapping connections only within each edge set.  This rule prevents nodes changing degree and maintains the graph’s 

connectivity by node type. 

The main advantages of protographs are that degree one variable nodes and untransmitted (“punctured”) variable nodes may 

be introduced in a structured way.  Interestingly, the optimization of irregular LDPC codes by density evolution does not allow 

for degree one variable nodes, but produces a significant number of degree two nodes.  An additional advantage of protographs is 

that decoder hardware should be less complex due to the local structure. 

The parity check matrix corresponding to a possible derived graph after making N = 3 copies of the protograph of Fig. 1 is 

shown below.  When divided into 3×3 submatrices, the correspondence back to the protomatrix, A, of Fig. 1 is evident.  

 

The AR4JA protograph [1] for code rate ½ is shown in Fig. 2, following the convention of showing transmitted variables as 

solid circles and the untransmitted variable as an outlined circle.  The protograph of the rate-½ code is extended to rate-2/3 by 

adding two degree-four variable nodes.  The corresponding protomatrices are shown in (1) and (2), respectively.  The variables 

have been numbered in the figure to correspond to columns of the protomatrix from left-to-right.  The AR4JA family of 

protographs continues to increase the offered code rate options by adding more pairs of degree-four variables connected to just 

two of the check nodes.  In all cases, it is the variables corresponding to the right-most column of the protomatrix that are 

punctured (not transmitted), i.e., those variables of degree six. 
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Figure 2.  AR4JA Protograph, rate ½.  The transmitted variables are shown as solid circles, the untransmitted variable as an outlined circle. 
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Techniques for calculating the asymptotic ensemble weight enumerators for protograph-based codes have been presented 

[1][2][10].  From the derived expression of the weight spectrum, the typical minimum distance ratio, δmin, can be found, if it 

exists.  With high probability the minimum distance of most codes in the ensemble increases linearly with n with proportionality 

constant δmin.  The conditions for a protograph-based LDPC code to meet δmin, > 0 are presented in [2].  The AR4JA rate-½ 

protomatrix of (1) is found to have δmin, = 0.015 [1][2]. 

III. QC EXPANSION 

A quasi-cyclic (QC) code is a linear block code having the property that applying identical circular shifts to every length-N 

subblock of a codeword yields a codeword.  If there is just a single subblock, the code is also a classic cyclic block code. 

A QC LDPC code of length n = L N can be described by a m × n scalar parity-check matrix,  with m = J N.  The 

code can also be described in polynomial form, since there exists an isomorphism between the ring of N × N circulant matrices 

and the ring of polynomials of degree less than N, 

2 ,m nH 

2[ ] / 1Nx x  .  Addition and multiplication of the polynomials in the ring 

happens in the usual way, modulo xN-1.  (All the rings in this work are commutative rings containing a multiplicative identity 

element.)  A right circulant matrix is a square matrix with each successive row right-shifted circularly one position relative to the 

row above.  Hence, circulant matrices can be completely described by a single row or column.  We will use the mapping 

convention of taking the matrix’s first column terms top to bottom as polynomial coefficients of increasing order [3].  A 

polynomial of 1 must correspond to the N × N identity matrix, which is right circulant.  A few examples of the isomorphism for 

N = 3 are shown below. 
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This isomorphism requires that care be taken when representing multiplication of a circulant matrix, M, by a vector, v = (v0, 

v1, … vN–1).  We can associate the polynomial, M(x), with the matrix using the technique just described, and associate v(x) = 

v0+v1x+…vN–1x
N–1 with the vector.  The representation of multiplying the circulant matrix from the right with the vector is 

defined simply as M(x) v(x) mod (xN–1).  While not used in this paper, please note that multiplying the circulant matrix from the 

left with the vector in this notation, must be represented by polynomials as xN M(x–1) v(x) mod (xN–1). 

A permutation matrix (not necessarily circulant) is a square matrix of ones and zeros, such that sum of each row and each 

column is one.  A cyclic permutation matrix is both a permutation matrix and a circulant matrix, described above.  As cyclic 

permutation matrices in the ring  are isomorphic to monomials in the ring 2
N N 2[ ] / 1Nx x  , they are both units (invertible 

elements) in their respective rings.  Other elements are not necessarily invertible. 

As we are interested in the connection between protographs and QC LDPC codes, we focus on parity-check matrices, H, that 



   

are in J × L block matrix form, described by circulant sub-matrices, each N × N.  Let 
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Further, we will be interested in the weight of each polynomial of ( )xH  (or equivalently, submatrix of H ).  We’ll start by 

defining the weight of each polynomial,  ,wt ( )j ih x , as the number of non-zero coefficients in   Now we’re ready to 

define the J × L weight matrix as,  

, ( ).j ih x
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A connection back to protographs can be seen here as the resulting QC LDPC weight matrix, above, corresponds directly to 

the protomatrix of a protograph — one that has been expanded with circulant matrices.  

Just as the matrices used to describe QC codes are convenient in polynomial form, so are the resulting vectors.  Let 

polynomial 2( ) [ ] / 1Nc x x x   have weight,  wt ( ) ,c x  equal to the number of non-zero coefficients.  Define a vector of 

length-L polynomials ( )x c  2[ ] / 1
L

Nx x   to be, 

  0 1 1( ) ( ), ( ), , ( )Lx c x c x c xc  . 

In an error-correcting code context one will note that the equivalent condition of  (with elements in ) is 

 (with elements in 

T H c 0T

T

2

( ) ( )Tx x H c 0 2 [ ] / 1Nx x  ). 

IV. QC EXPANSION MIN. DISTANCE BOUNDS 

In this section we extend the Hamming distance upper bounds of [3] to punctured versions of quasi-cyclic LDPC codes.   

We will use the shorthand notation of [L], to indicate the set of L consecutive integers, {0,1,2,…,L–1}.  We will use the 

common backslash notation to exclude a member from a set.  For example, the set  contains all the elements of  except 

element i.  Additionally, a subscript will appear on matrices to indicate a submatrix of just the indicated columns — so that  

\ i 

A



   

is a submatrix of  containing just the columns in the set  . A

We use the permanent operation on square matrices throughout the remainder of this paper, denoted, perm(B).  The permanent 

is similar to the determinant of linear algebra, but without the (±1) multiplicative term.  The permanent of a J × J matrix, B = 

[bj,i], is defined to be 

 , ( )
[ ]

perm( j j
j J

b 
 

) B  (3) 

where the summation is over all J! permutations of the set [J].  The function ( )j  denotes a permutation of the set [J].  When 

the field is of characteristic two, perm(B) = det(B) as addition and subtraction are interchangeable in GF(2m). 

We are interested only in puncturing patterns that maintain the quasi-cyclic property and preserve the dimensionality of the 

code (i.e., information bits per block).  By puncturing whole columns of the polynomial parity check matrix, ( )xH , we maintain 

the quasi-cyclic property.  Care must be taken throughout this work that puncturing does not reduce the dimensionality of the 

code. 

We begin with an un-punctured code, ¸ based upon  ( )xH .  Next, we define a new code, , by designating a set of 

columns, denoted  of 



, ( )xH  to be punctured.  The columns in  are a subset of the L columns, , [ ]L , and of size such 

that some redundancy remains intact, J .   

Lemma 1.  Let  be a punctured QC code created by puncturing variables of code , which is defined by the polynomial 

parity check matrix 



2( ) [ ] / 1
J L

Nx x x


 

H .  The variables in code  corresponding to columns of ( )xH  contained in set 

 , are punctured.  Let  be an arbitrary size-(J+1) subset of [L].  Let the length-L vector, , [ ]L ( )xc  = 

 0 1), ( ),...,c x c x  1 )x( , with  ( )c x   2[ ] / 1 ,Nx x(Lc     be defined by: 
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Then ( )xc is codeword of the punctured code . � 

Proof: This follows from keeping ( )xH  unchanged between   and  , applying Lemma 6 of [3] for the un-punctured code 

, and following our choice of the puncturing pattern to create   . ■ 

 

Theorem 1.  Let � be a punctured QC code created by puncturing variables of code  with polynomial parity-check matrix 

2( ) [ ] / 1
J L

x x


   H  Nx  while maintaining the dimensionality and let  wt ( )xA H .  Let the set , , specify the 

columns of H(x) that correspond to the punctured variables.  Then the minimum Hamming distance of � can be upper bounded 

as follows 

[ ]L


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Proof:  Our proof is lengthy and largely parallels the proofs of Theorems 7 & 8 of [3], while accounting for puncturing. ■ 

 

V. NEW TIGHTER BOUNDS ON MINIMUM DISTANCE 

Examining the rate-2/3 AR4JA protomatrix (2), we see cases where the selection of four columns of the weight matrix will 

produce an  matrix containing an all-zero row on top.  This particular selection of  produces the all-zero codeword by the 

codeword construction of Lemma 1.  The contributions of this specific  set to the upper bound of Theorem 1 will be nil.  We 

can improve those bounds by finding non-zero codewords after row elimination. 

A

A

Lemma 2.  Let  be a punctured QC code created by puncturing variables of code , defined by the polynomial parity check 

matrix 


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Then ( )xc is codeword of the punctured code,  . 

Proof: We break the proof into two parts. 

Case 1: If  (the code is un-punctured), it can be shown that the vector { } � ( )xc  multiplied by the several pieces of the 

parity check matrix yields zeros and therefore the vector ( )xc  must be a codeword in the code.   

Case 2: If the code is punctured, this lemma follows from keeping ( )xH unchanged, applying this lemma for the un-punctured 

case, and then following our choice of puncturing pattern. ■ 

 

Not only does Lemma 2 help remove single all-zero rows, it helps us produce lower weight codewords in a case such as 

below. 
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First, performing single row removal on (7) (noting that the  perm ( ) 0x H  as required for ) generates the all-zero 

codeword or the codeword segment 

| | 1
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However, looking deeper, Lemma 2 will let us delete two specific rows,  0,1 , when the column set is  0,1  

producing the obvious codeword segment .
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Proof: Omitted. ■ 

 

Below is an example of a weight matrix that will show the benefit of Theorem 2. 
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Using  above, treating it as un-punctured, Theorem 1 produces a minimum distance upper bound of 30, while Theorem 2 

produces distance bound of just 10.  The reason is that Theorem 1 produces zero distances several times when  contains an 

all-zero row and the bound is only computed when the relatively strong contributions of the 3’s in the top row are present.  

Theorem 2 will remove the top row in one of its calculations and reveal some weaker codeword structure. 

A
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VI. EXPANSION OF AR4JA 

A direct QC expansion of the AR4JA protograph shown in Fig. 2 will create a QC LDPC code.  Applying the AR4JA 

protomatrices of (1) & (2) to the bounds given by Theorems 1 & 2 leads to computed upper bounds on the minimum Hamming 

distance of 10 for all rates, independent of block length.  As a Hamming distance of 10 is rather limited for the long block 

lengths desired, a more involved expansion process is of interest. 



   

The AR4JA codes defined in the experimental CCSDS standard [4] use a two step expansion process.  After a first cyclic 

expansion by a factor of 4, a new larger type-I weight matrix is obtained as shown in (10) for rate-½.  A type-I weight matrix is 

one that contains only ones and zeros – meaning that the associated protograph has no parallel edges.   

According to the CCSDS standard, the matrix (10) is expanded in a second step cyclic expansion to create the three block 

lengths, corresponding to k=1024, 4 096, and 16 384 information bits, QC LDPC code.  In this final expansion, the scalar parity 

check matrix, H, is created by replacing each 1 entry of (10) by a cyclic permutation submatrix selected by a variation on the 

ACE algorithm.  These codes are QC with a subblock size equal to the second step expansion factor.  In other words, the two-

step process is not equivalent to any single step cyclic expansion.  With this in mind, the new protomatrices such as (10) should 

be used to compute the QC distance upper bounds described here for proper application to the CCSDS AR4JA codes.  Those 

results are shown in Table I.  Also a measure of the complexity of completely evaluating Theorem 1 is shown in the Table I.  

TABLE I 
MINIMUM DISTANCE OF CCSDS AR4JA PROTOMATRICES STAGE 2 

1

L

J 
 
 
   Code Rate

Upper Bound by 
Theorems 1 & 2a 

r =1/2 66 ~7.8×104 

r =2/3 58 ~3.7×108 

r =4/5 56b ~5.2×1010 
aRow removal of up to 2 rows computed. 

bComputations are not exhaustive due to complexity.

 

A = 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1
1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1
0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 1
0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 1
0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0
1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 1 0 0 0
0 1 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0
0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 1 0
0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 1  

(10)

 

VII. CONCLUSION 

This work has extended the distance bounds of [3] to punctured QC LDPC codes (as required to analyze AR4JA).  We have 

also tightened those distance bounds in several cases that are relevant to protomatrices that contain many zeros per row. 

Next we evaluated the minimum distance upper bounds for the AR4JA codes as specified in CCSDS’s experimental standard 

for deep space, by using the protomatrices.  We’ve shown that the 2-step expansion approach was critical for achieving 

reasonably high minimum distance for these codes in QC LDPC form.  We’ve shown that the minimum Hamming distance of 

the standardized AR4JA codes do not grow linearly in block length as is the case for the ensemble of AR4JA codes[1][2].  In the 

ensemble AR4JA analyses, the ensemble of all possible expansions of the base protograph was considered and not the limited 

number of expansions available when limited to cyclic matrices.  While, not linear in block length, the minimum distance at rate-

½ is likely high enough for practical purposes.  The comparison of the presented Hamming distance measures versus the block 

length, for rate-½ AR4JA, can be summarized in Fig. 3.  Also in Fig. 3, we show the smallest results found using search 

techniques on the completely expanded CCSDS rate ½ codes. 



   

The bounds developed here and [3] are useful tools in validating future QC LDPC code designs both punctured and un-

punctured. 

 
Figure 3.  Distance vs. Block Length for rate 1/2 AR4JA. 
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