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Abstract— We further study the connection between Algorithmic  entropy with several entropy measures (Shannon, Rényi and
Entropy and Shannon and Renyi Entropies. It is given an example Tsallis).

for which the difference between the expected value of algo-

rithmic entropy and Shannon Entropy meets the known upper- [l. PRELIMINARIES

bound and, for Rényi Entropy, proving that all other values of the | strings used are elements Bf = {0, 1}*. X" denotes the

parameter (o), the same difference can be big. We also prove that . .
for a particular type of distributions Shannon Entropy is able to set of strings of length and|.| denotes the length of a string.

capture the notion of computationally accessible informaon by |t is assumed that all strings are ordered by lexicographic
relating it to time-bounded algorithmic entropy. In order t o better  ordering. Whenr — 1 is written, wherex is a string, it means
study this unexpected relation it is investigated the behawr of the predecessor af in the lexicographic order. The function
the different entropies (Shannon, Renyi and Tsallis) under the log is the functionlog,. The real interval between and b,

distribution based on the time-bounded algorithmic entropy. including a and excludingp is represented b, b)

l. INTRODUCTION A. Algorithmic Information Theory

Algorithmic Entropy, the size of the smallest program theng \we give essential definitions and basic results which will be
erates a string, denoted y(x), is a rigorous measure of theneed in the rest of the paper. A more detailed reference is
amount of information, or randomness, in an individual obje[LV97], The model of computation used is the prefix free
z. Algorithmic entropy and Shannon entropy are conceptualfyiring machine. A set of stringd is prefix-free if no string in
very different, as the former is based on the size of programsis prefix of another string ofi. Notice that Kraft inequality

and the later in probability distributions. Surprisinglyey are, guarantees that for any prefix-free SHZ o—lel « 1.
however, closely related. The expectation of the algorithm -

entropy equals (up to a constant depending on the distituti
the Shannon entropy.

TEA

Definition 1. Let U be a fixed prefix free universal Turing

. . machine. For any stringz € ¥*, the Kolmogorov complexity
Shannon entropy measures the amount of information n algorithmic entropy of is i () = min,{|p| : U(p) = z}.

situations Where unlimited computatiqnal power is avadab For any time constructible, the ¢-time-bounded algorithmic
However this measure does not provide a satisfactory fra"?eeﬁtropy (ort-time-bounded Kolmogorov complexity)o€ ¥*

work for the analysis of public key cipher systems which AR gt (1) — mi . U(p) =  in at mostt ste
based on the limited computational power of the adversary. (x) = miny{lp| : U(p) = & (l]) steps.

The public key and the cipher text together contain all thEhe choice of the universal Turing machine affects the nugni
Shannon information concerning the plaintext, but the idime of a program at most by a logarithmic factor and the
formation is computationally inaccessible. So, we face thProgram length at most a constant number of extra bits.
intriguing qqestion: What is accessible i_nfor_mation? Proposition 2. For all  andy we have:

By considering the pme—boundgd a_Igorlthmlc entropy (kang 1) K(z) < K'(z) < |z| + O(1);

pf the program limited to run in tllme(|:v|?) we can 'Fake 2) K(zly) < K(z)+0(1) and K*(z]y) < K'(z) +O(1);
into account the computational difficulty (time) of extriact

information. Under some computational restrictions on tHeefinition 3. A string z is said algorithmic-random or
distributions we show (Theoref]15) that Shannon entrojfplmogorov-random if (z) > |z|.

equals (up to a constant that depends only on the distrifjutigy simple counting argument shows the existence of

the time-bound algorithmic information. This result paliti algorithmic-random strings of any length.
solves, for this type of distributions, the problem of finglia

measure that captures the notion of computationally aitdess Definition 4. A semi-measure over a spac¢é is a function

information. This result is unexpected since it states fhat f : X — [0,1] such that» _ f(x) < 1. We say that a semi-
the class of probability distribution such that its cumiviat
probability distribution is computable in timgn), the Shan-
non entropy captures the notion of computational difficolty
extracting information within this time bound. The functionm(z) = 275 is a semi-measure which

With this result in mind we further study the relation of thés constructible and dominates any other constructive semi
probability distribution based on time-bounded algorithm measure ([Lev74] and [Gac74]), in the sense that there is

. xeX i . .
measure is a measure if the equality holds. A semi-measure is
called constructive if it is semi-computable from below.
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a constant,, = 25 such that for allz, m(z) > c,u(z). real number. The Tsallis Entropy of order of the random
For this reason, this semi-measure is called universateSirvariable X is defined as:

it is natural to consider time bounds on the Kolmogorov o

complexity we can define a time bounded versiomofz). 1= Z P(z)

- . . N T,(P)= —2=
Definition 5. The ¢-time bounded universal distribution, de- a—1

noted bym’ is m ( ) = c27%(), wherec is a fixed constant ¢ Algorithmic Information vs. Entropy Information

such thatz =L Given the conceptual differences in the definition of Algo-
ren” rithmic Information Theory and Information Theory, it is
In [LV97], Claim 7.6.1, the authors prove that'(") dominates surprising that under some weak restrictions on the distith
every distributionu such thatu*, the cumulative probability of the strings, they are closely related, in the sense that th
distribution of i, is computable in time(-). expectation of the algorithmic entropy equals the entropy o

Theorem 6. If ;* is computable in time(n) then there the distribution up to a constant that depends only on that

exists a constant such that, for allz € ¥*, m™ ) (z) > distribution.

2= K" (). Theorem 11. Let P(z) be a recursive probability distribution.
Then:

B. Entropies 0< Z P(z)K (z) — H(P) < K(P)

We consider several types of entropies. Shannon informatio
theory was introduced in 1948 by C.E. Shannon [Sha4
Information theory quantifies the uncertainty about theiltes
of an experiment. It is based on the concept of entropy whi
measures the number of bits necessary to describe an outcome H(P) < Z P(2)K (z
from an ensemble.

roof. (Sketch, see [LV97] for details) The first inequality fol-
ws directly from the well known Noiseless Coding Theorem,
gplat for this distributions, states

Definition 7 (Shannon Entropy [Sha48]Let X be a finite Sincem is universal,P(z) < 2X(")m(z), for all z, which is
or infinitely countable set and leX be a random variable equivalent tolog P(z) < K(P) — K( ). Thus, we have:

taking values inX’ with distribution P. TheShannon Entropy
of random variableX is given by > P — H(P) =) (P(x)(K(x) + log P(x)))

-3 P(a)log P(x <D (P@)(K(2) + K(P) = K(v))) = K(P) [
reX x
IIl. ALGORITHMIC ENTROPY VS. ENTROPY. HOW CLOSE?

The REé t lizati f Sh t
e Renyi entropy is a generalization o annon en rol:)C)allven the surprising relationship between algorithmicepy

Formally the Rényi entropy is defined as follows:

and entropy, in this section we investigate how close they
Definition 8 (Rényi Entropy [Ren61])Let X’ be a finite or are. We study also the relation between algorithmic entropy
infinitely countable set and lef’ be a random variable taking and Rényi entropy. In particular, we will find the values
values inX’ with distribution P and leta # 1 be a positive of o for which the same relation as in Theoréml 11 holds
real number. The &yi Entropy of ordera of the random for the Rényi entropy. We also prove that for a particular

variable X is defined as: type of distributions, entropy is able to capture the notdn
computationally accessible information.
o First we show that the intervd0, K'(P)] of the inequalities
H,(P) = 1 P . o ’
(P) ©8 (;{ (@) ) of Theoren{ 1L is tight:

Proposition 12. There exist distribution®, with K (P) large
such that:

Definition 9 (Min-Entropy). Let X be a finite or infinitely 1) ZP(I)K(I) — H(P)=K(P)-0(1).

countable set and leK be a random variable taking values

in A with distribution P. We define the Min-Entropy d@f by: ~ 2) Y _ P(z)K(z) — H(P) = O(1).

It can be shown thatim1 H,(X)=H(X).
a—

Heo(P) = — log max P(x). Proof. 1) Fix 29 € X". Consider the following probability
distribution:
It is easy to see thali(P) = lim H,(P). TR
e Po(z) = { (1) I(:tfferwcigsoe
Definition 10 (Tsallis Entropy [Ts88]) Let X' be a finite or
infinitely countable set and leX’ be a random variable taking Notice that describing the distribution is equivalent to

values inX’ with distribution P and leta # 1 be a positive describery. So,K(P,) = K(zo) + O(1). On the other



hand,}" P, (z)K(z) — H(P,) = K(z
Kolmogorov-random ther (P,,) ~ n.
2) Lety be a string of lengt such thatk (y) = n—0(1)

and consider the following probability distribution over

0). So, if ty) is

X ]
0.y if z =1
P,(z) = 1-0y ifx=ux
0 otherwise

where 0.y represent the real number between 0 and 1
which binary representation ig. Notice that we can
chooser andx; such thatK (xz¢) = K(x1) < ¢ where
¢ is a constant that does not dependron
Thus we have:

a) K(P,) = n, since describing?, is equivalent to

describe:z:o, a:l andy;
b) Y Pu(x = (0.y)K (z0) + (1 — 0.y) K (1)

SO.yxc—l—(l—O.y)xc-c'
c) H(P,) = —0.ylog0.y—(1—0.y)log(1—0.y) <
Thus>_ P, (z)K(x) — H(P,) < c << K(P,) ~ n.
O

Now we address the question if the same relations as in
TheorenIlL holds for the Rényi entropy. We show, in fact,
the Shannon entropy is the “smallest” entropy that veriBsth
properties.

Since, for every) < e < 1,

Hoo < Hlfs(X) < H(X) < H1+5(X) < HO(X)

it follows that

o;;Z;HmK@yJLgﬁ€%Kun

In the next result we show that the inequalities above are, in
general, false for different values of

Theorem 13. For every A > 0 and o« > 1 there exists a
recursive distributionP such,

1) Y P@)K(z) — Ho(P) > (K(P))*

2) i P(z)K(x

The proof of this Theorem is similar to the proof of the
following Corollary:

— H.(P)> K(P)+A

Corollary 14. There exists a recursive probability distribution
P such that:

1) Y P@)K(z)
2) > P@)K(x) -

Proof. For € {0,1}", consider the following probability
distribution:

— H,(P) > K(P), wherea > 1;

H,(P) <0, wherea < 1.

if z=0"
if z=12",2" €{0,1}"!
0 otherwise

It is clear that this distribution is recursive.
1) First observe that

}:P

Notice also that'(P,,) = O(logn).
We want to prove that, for every > 1,

(Fno)(Vn > n9) Y Pu(x)K(z) — Ha(Pn) > K(Py)

Fix o such thate — 1 = —rrs.

1
_J%z;&@)

1 1 1
_ 1 _ on=— 1 -
1—a(%<w4_ X2m>

1
— (n—1)a n—1y _ )
T—a (log(Q +2") —na

H,(P,) =

Now we calculatelog (2"~ D +
notation consider:

{iZ

+ 27171)

2n=1). To simplify

n—1

1+, with e > 0
Thus,

(n—1)a _ lOg (2m(1+5) + 2m) _
~ log (2 (2% + 1))
=1z +log (2*¢ + 1)

Considerd = ze. It is clear that

log (2

20 —e29 — 14 1n2.-5+

(In2)2 - §2
5 +
then,

m2)? - §2
?+1=2+mz&+£3%——+

and hence,
In2)? - 62
log(2° + 1) = log 2—1—1112.54_% 4
B
Notice thatlim g = 0.
a—1
1
log2+8) =—In(2+p)
11112 5
ma" e w )
=1 _
+ 2In2 8In2



2)

If instead of considering<(P) and K (z) in the inequalities
of Theoreni Ill we use the time bounded version and imposiﬁ
some computational restrictions on the distributions weiob ¢;|1ows.

Then, Theorem 15. Let P be a probability distribution such tha*,

(In2)2 - 82 the cumulative probability distribution dP, is computable in
log(2+1In2-§+ +-0) = time t(n). Then:
2 3
1l e, 25 (27 0< 3" P(e)K™™ — H(P) < K")(P)
28 8 32 -
So we have: Proof. The first inequality follows directly from Theoreml11
e B ze 2 ., and from the fact that(z) > K (z).
log(2™ +1) =14 o + —=(xe)" + By TheorenT, ifP is a probability distribution such that*
which means, is computable in time&(n), then for allz € X"
nt(n) < gnt(n)
x+log(2“+1):x+1+%€+1%2(x5)2+... E"™"(2) +log P(z) < K™(P)
Then, summing over alt we get

Thus

Ho(Py) = ——(log(2"™"* +2"™1) = na)

> P(a)(K™M (z) +log P(x)) < Y P(x) K™ (P)

n—1_ ln_2(n 1) a—1)—--- which is equivalent to

2 8
nt(n) _ < nt(n)
Notice that the rest of elements in the series expansion ;P(I)K (z) - H(P) < K (P) O

= n —

ci(n—13(a—=1)*+ca(n—1)"(@—=1)3+--- ,c1,c2 € R This result partially solves, for this type of distributmrthe

. . L 1 problem of finding a measure that captures the notion of com-
can be ignored in the limit since — 1 = 7-—pyr- putationally accessible information. This is an importapén
So, for alln = no: problem with applications and consequences in cryptograph

n+1 In2
Ho(Pr) = —5———5 (- 1) IV. ON THE ENTROPY OF THE TIMEBOUNDED
_ ALGORITHMIC UNIVERSAL DISTRIBUTION
Itis known thatlim H,(P,) = H(FP,). In fact, we have : . o
a1 02 We now focus our attention on the universal distributios. It

Ho(Pp) = H(P,) — %= (no —1)°%. main drawback is the fact that it is not computable. In order
Now, the first item of the Theorem is proved by contrag make it computable, one can impose restrictions on the
diction. Assume by contradiction that time that a program can use to produce a string obtaining the

time-bounded universal distributiomn( (z) = 25" (®)). We
investigate the behavior of the different entropies unthés t
distribution. The proof of the following Theorem uses some

> Pu(2)K(x) — Ho(Py) < clogn,with ¢ € R

i.e., for alln > ng ideas from [KT].
ZPn(x)K(x) — H(P,) + ln?2(71 —1)%2 < clogn  Theorem 16. The Shannon entropy of the distributian’
x diverges.

Since,ZPn(x)K(x) — H(P,) > 0, we would have Proof. If « > 2 then f(z) = 227" is a decreasing function.

s x o _ Let A be the set of strings such thatlog m’(z) > 2. Since

% (n—1)"2 < clogn, which is impossible for ath > ¢ js computableA is recursively enumerable. Notice also

no. So, we conclude that that A is infinite and contains arbitrarily large Kolmogorov-
random strings.

Po(z)K(x) — Hy(Pyp) > clogn.
; ( ( ( s Z —m'(z)logm‘(z) > Z —m’(z)logm‘(x)

. . reX* z€A
Ar?alogous to the _p{oof of the previous item, but now _ Z CQfKt(I)(Kt(x) “loge)
f|X|nga—1:W. O zEA
n— : t t
= —clogc Z 9~ K@) ¢ Z Kt(z)27 K@
z€A z€A

g if we prove thaty  K*(2)27%"(*) diverges the result
T€EA

a similar result. Notice that for the class of distributiams Aggyme, by contradiction, thaE Kt(x)TKt(m) < d for

the following Theorem the entropy equals (up to a constant)
the time-bounded algorithmic entropy.

z€A
L 1 ¢ .
somed € R. Then, considering(z) = EKt(:c)TK @) if



s € A andr(x) = 0 otherwise, we conclude thatis a semi- If we prove that the serlesz: “lel+eyi+e converges, then

measure. Thus, there exists a constarguch that, for alk, . zED
r(z) < ¢m(z). Hence, forz € A, we have the Rényi entropy of order + ¢ of m’ also converges.
éKt(x)2—Kt(m) < /9 K@) Z (2~ lelreylte = Z Z (27 mte)l+e
rEX* n=1zecxn

Z Z g—n—netctce

So, Ki(z) < (d2K'@-K@) This is a contradiction

since A contains Kolmogorov - random strings of arbitrar- n=lzexn

ily large size. The contradiction results from assuming tha _ Z2n « 9—n—ne y gctes
3" K'(x)27K"@ converges. SoH (m?) diverges. 0

zeA — gotee Z g—ne

Now we show that, similarly to the behavior of entropy of -

universal distribution7,, (m") < o iff @ > 1 and H,(m?') < = 20T x 57 <>

oo iff oo < 1. First obverse that we have the following ordering _ o _
relationship between these two entropies for all probighiliNow, assume thatr < 1. Since the Rényi entropy is non

distribution P: increasing witha, for any distributionP we haveH(P) <
1 _ H,(P). So, in particular,H(m?) < H,(m?'). As H(m?)
) fa>1Ta(P) < a—1 + Ha(P); diverges we conclude that the Rényi entropy of ordet 1
2) fa <1, Ta(P)> 1 + H.(P): for the time bounded universal distribution diverges. [
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Theorem 18. The Renyi entropy of ordery of time bounded
universal distribution converges fat < 1 and diverges if
a>1.

Proof. Considero = 1+¢, wheres > 0. Since for allz € X*,
K'(z) < |z| + ¢ then2-lelte < 9-K'(®)  Since f(y) =
y**e increases in0, 1], it is also true that for alke € %*,
(27 lel+e)ite < (2-K'(2))1+< S0, summing up over alt €
>* and applying— log we conclude that

logz 2K ””) e < —1051;2(2_”'“)1*'8
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