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Abstract—We construct new families of multi-error-correcting
quantum codes for the amplitude damping channel. Our key
observation is that, with proper encoding, two uses of the
amplitude damping channel simulate a quantum erasure channel.
This allows us to use concatenated codes with quantum erasure-
correcting codes as outer codes for correcting multiple amplitude
damping errors. Our new codes are degenerate stabilizer codes
and have parameters which are better than the amplitude
damping codes obtained by any previously known construction.

Index Terms—Amplitude damping channel, quantum error
correction, concatenated quantum codes, quantum erasure code.

I. I NTRODUCTION

In most of works on quantum error correction, it is assumed
that the errors to be corrected are completely random, with no
knowledge other than that they affect different qubits inde-
pendently [22], [9]. Or, equivalently, this is to assume that the
Pauli-type errorsX = ( 0 1

1 0 ), Y =
(
0 −i
i 0

)
, andZ =

(
1 0
0 −1

)
,

happen with equal probabilitypx = py = pz = p/3. The
quantum channel described by this kind of noise is called
depolarizing channelEDP .

The most general physical operations (or quantum chan-
nels) allowed by quantum mechanics are completely positive,
trace preserving linear maps which can be represented in the
following Kraus decomposition form:

N (ρ) =
∑

k

AkρA
†
k, (1)

whereAk are called Kraus operators of the quantum channel
N and satisfy the completeness condition

∑

k A
†
kAk = 1l. In

this language of quantum channels, the depolarizing channel
EDP with error parameterp acting on any one-qubit quantum
stateρ ∈ C2×2 as

EDP (ρ) = (1− p)ρ+
p

3
(XρX + Y ρY + ZρZ), (2)

so the Kraus operators for the depolarizing channel are the
Pauli matrices together with identity.

However, if further information about an error process is
available, more efficient codes can be designed. Indeed in
many physical systems, the types of noise are likely to be
unbalanced between amplitude (X-type) errors and phase (Z-
type) errors. Recently a lot of attention has been put into

designing codes for this situation and in studying their fault
tolerance properties [1], [7], [8], [15], [23]. All those works
deal with error models which are still described by Kraus
operators that are Pauli matrices (Pauli Kraus operators),but
theX- andY -errors happen with equal probabilitypx = py,
which might be different from the probabilitypz that aZ-
error happens. The quantum channels described by this kind
of noise are called asymmetric channelsEAS acting on any
one-qubit quantum stateρ as

EAS(ρ) = (1 − (2px + pz))ρ

+ px (XρX + Y ρY ) + pzZρZ. (3)

The choicepx = py is related to a physically realistic error
model including amplitude damping (AD) noise and phase
damping noise [22]. The Kraus operators for AD noise with
damping rateγ are

A0 =

(
1 0
0

√
1− γ

)

and A1 =

(
0

√
γ

0 0

)

. (4)

Note that

A1 =

(
0

√
γ

0 0

)

=

√
γ

2
(X + iY ) and

A†
1 =

√
γ

2
(X − iY ) .

Hence the linear span of the operatorsA1 andA†
1 equals the

linear span ofX andY . If the system is at finite temperature,
the Kraus operatorA†

1 will appear in the noise model [22].
Thus, if the code is capable of correctingt X- andt Y -errors,
it can also correctt A1- and t A†

1-errors.
It was observed that when the temperature of a physical

system is zero or very low, the errorA†
1 is actually negligible

[22]. For simplicity, we further ignore the phase damping error
(which is characterized by the Pauli operatorZ). Then the
error model is fully characterized byA0 andA1. In this work,
we will focus on this quantum channel with only amplitude
damping noise, i.e. the AD channelEAD, with only two Kraus
operators given by Eq. (4). The AD channel is the simplest
nonunital channel whose Kraus operators cannot be described
by Pauli operations. The AD channel is a quantum analogue of
the classicalZ-channel which transmits0 faithfully, but maps
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1 to either 0 or 1 [26]. For the AD channel we only need
to deal with the errorA1 (a quantum analogue of the error
1 → 0), but not withA†

1 (a quantum analogue of the error
0 → 1). So asking to be able to correct bothX- andY -errors
is a less efficient way for constructing quantum codes for the
AD channel.

Since the error model is not described by Pauli Kraus
operators, the task of constructing good error-correctingcodes
becomes very challenging. The known techniques dealing with
Pauli errors cannot be applied or result in codes with bad
parameters. Several new techniques for the construction of
codes which are adapted to this type of noise with non-
Pauli Kraus operators, and the AD channel in particular, have
been developed [6], [8], [18], [19], [26]. After years’ effort,
systematic methods for constructing high performance single-
error-correcting codes have been found [18], [26]. However,
all these methods fail to construct good AD codes correcting
multi-errors.

In this paper we present a method for finding families of
codes correcting multi-amplitude-damping errors. Our con-
struction is based on the observation that with respect to a
simple encoding two uses of the amplitude damping channel
simulate a quantum erasure channel. This allows us to apply a
concatenated coding scheme with quantum erasure-correcting
codes as outer codes, resulting in codes correcting multi-
amplitude-damping errors. Our new codes are degenerate
stabilizer codes which have better parameters than the codes
given by any previously known construction.

II. CORRECTING AMPLITUDE DAMPING ERRORS

A quantum error-correcting codeQ is a subspace of
(C2)⊗n, the space ofn qubits. For aK-dimensional code
space spanned by the orthonormal set|ψi〉, i = 1, . . . ,K and
a set of errorsE there is a physical operation correcting all
elementsEµ ∈ E if the error correction conditions [3], [16]
are satisfied:

∀ij,µν 〈ψi|E†
µEν |ψj〉 = Cµνδij , (5)

whereCµν depends only onµ andν. If the matrix(Cµν ) has
full rank the code is said to be nondegenerate, otherwise it is
degenerate.

For the AD channel, ifγ is small, we would like to correct
the leading order errors that occur during amplitude damping.
SettingA = X + iY andB = I − Z, we have

A1 =

√
γ

2
A and A0 = I − γ

4
B +O(γ2). (6)

It has been shown that in order to improve the fidelity of
the transmission through an amplitude damping channel from
1 − γ to 1 − γt, it is sufficient to satisfy the error-detection
conditions for2t A-errors andt B-errors [9, Section 8.7]. We
will say that such a code correctst amplitude damping errors
since it improves the fidelity, to leading order, just as much
as a truet-error-correcting code would for the same channel.

Stabilizer codes are a large kind of quantum codes which
contain many good quantum codes [9], [22]. A stabilizer code
with n qubits encodingk qubits is of distanced if all errors of

weight at mostd−1 (i.e., operators acting nontrivially on less
thand individual qubits) can be detected or have no effect on
Q, and we denote the parameters ofQ by [[n, k, d]]. We say
an [[n, k]] stabilizer code is at-code if it correctst AD-errors.
For comparison with stabilizer codes, we say an[[n, k]] t-code
is good if 2t+ 1 > d for the best possible[[n, k, d]] code; or,
n < n′ for the best possible[[n′, k, 2t+ 1]] code; or,k > k′

for the best possible[[n, k′, 2t+ 1]] code.
The first AD code given by Leung et al. [19] is a[[4, 1]]

1-code, i.e., correcting a single AD-error. Basis vectors ofthe
code are

|0〉L =
1√
2
(|0000〉+ |1111〉)

|1〉L =
1√
2
(|0011〉+ |1100〉) . (7)

Using only 4 qubits, this1-code is better than the[[5, 1, 3]]
code, a quantum code correcting an arbitrary single-qubit error
and encoding one qubit using the minimal number of qubits
[3], [17].

Following the work by Leung et al. [19], several construc-
tions for 1-codes have been proposed [8], [9], [18], [26],
including some high performance1-codes. However, very little
is known about good multi-error-correcting AD codes. It turns
out that none of the methods known for constructing good1-
codes can be directly generalized tot-codes witht > 1.

Gottesman [9, Section 8.7] has shown that Shor’s nine-qubit
code [25]

|0〉L =
1

2
√
2
(|000〉+ |111〉)⊗3

|1〉L =
1

2
√
2
(|000〉 − |111〉)⊗3 (8)

can correct two AD-errors, despite the fact that it can correct
only a single general error. It is the best known2-code and
it is better than the[[11, 1, 5]] code [9], the best two-error-
correcting stabilizer code encoding one qubit [10].

It is interesting to note that the1-code given by Eq. (7) can
be rewritten in another basis as

|+〉L =
1√
2
(|0〉L + |1〉L) =

1

2
(|00〉+ |11〉)⊗2

|−〉L =
1√
2
(|0〉L − |1〉L) =

1

2
(|00〉 − |11〉)⊗2

, (9)

which is of a similar form as Eq. (8).
Therefore, we can generalize the constructions of Eqs. (9)

and (8) tot-codes with basis

|0〉L = 2−
t+1

2

(

|0 . . . 0〉
︸ ︷︷ ︸

t+1

+ |1 . . . 1〉
︸ ︷︷ ︸

t+1

)⊗(t+1)

|1〉L = 2−
t+1

2

(

|0 . . . 0〉
︸ ︷︷ ︸

t+1

− |1 . . . 1〉
︸ ︷︷ ︸

t+1

)⊗(t+1)

. (10)

However, these[[n2, 1, n]] so-called Bacon-Shor code [2], [25]
correctingt = n − 1 AD-errors scale badly whenn is large.
For instance, there exists a[[25, 1, 9]] code and a[[29, 1, 11]]
code [10].



Note that these[[n2, 1]] codes are of Calderbank-Shor-
Steane (CSS) type [5], [27]. They are also degenerate: for
instance, aZ-error acting on the first qubit or the second qubit
has the same effect on the code.

In general, CSS codes can be used to construct codes for
the AD channel [9, Section 8.7]:

Proposition 1 An [[n, k]] CSS code of X-distance 2t+1 and
Z-distance t+ 1 is an [[n, k]] t-code.

In the first column of Table I we provide bounds on the
lengthn of codes for the AD channel encoding one or two
qubits derived from CSS codes with givenZ- andX-distances
t + 1 and 2t + 1, respectively. The lower bounds have been
derived using linear programming techniques [24]. The upper
bound is based on CSS codes constructed from the database
of best known linear codes [4], [10].

In the fifth column we give upper and lower bounds on the
lengthn′ such that an[[n′, k, t + 1]] code may exist. In the
last column, we list the bounds on the length oft-code from
Theorem 1. The data for columnsn′ and 2m is taken from
[10]).

n k t+ 1 2t+ 1 n′ 2m
12–13 1 3 5 11 10
19–20 1 4 7 17 20
25–30 1 5 9 23–25 22
33–41 1 6 11 29 32
39–54 1 7 13 35–43 34
47–70 1 8 15 41–53 44–48
53–79 1 9 17 47–61 46–50
–89 1 10 19 53–81 56
–105 1 11 21 59–85 58
14–17 2 3 5 14 16
20–27 2 4 7 20–23 20
27–37 2 5 9 26–27 28
34–45 2 6 11 32–41 32
41–62 2 7 13 38–51 40–46
–71 2 8 15 44–59 44–52
–87 2 9 17 50–78 52–54
–102 2 10 19 56–83 56–56
–110 2 11 21 62–104 64–82

TABLE I
BOUNDS ON THE LENGTHn OF AN [[n,1]] t-CODE DERIVED FROMCSS

CODES, TOGETHER WITH THE BOUNDS ON THE LENGTHn′ OF A

STABILIZER CODE [[n′, 1, 2t+ 1]] AND THE LENGTH 2m OF AN [[2m, 1]]
t-CODE FROMTHEOREM 1.

It can be seen from Table I that the construction of AD codes
based on CSS codes unlikely gives good AD codes. But as it
is unknown whether these bounds forn andn′ given in this
table can be achieved, we do not have the definite answer.
This problem will be addressed in future research.

III. AD CODE BASED ON QUANTUM ERASURE CODES

As discussed in Sec. II, no good method is known for
constructing good multi-error-correcting AD codes. In this
section we provide a construction which systematically gives
high performancet-codes with t > 1. The construction
uses concatenated quantum codes with an inner and an outer
quantum code. After decoding the inner quantum code, the

effective channel is a quantum erasure channel. We start by
proving the following lemma.

Lemma 1 Using the quantum dual-rail codeQi which en-
codes a single qubit into two qubits, given by

|0〉L = |01〉, |1〉L = |10〉, (11)

two uses of the AD channel simulate a quantum erasure
channel.

Proof: For any stateρ of the codeQ1, we observe that

E⊗2
AD(ρ) = (1− γ)ρ+ γ(|00〉〈00|). (12)

The state|00〉 is orthogonal to the codeQ1. Using a measure-
ment that either projects onQ1 or its orthogonal complement,
it can be detected whether an AD error occurred or not. Hence
we obtain a quantum erasure channel with erasure symbol
|00〉.

Remark 1 It can easily be shown that with respect to the
dual-rail code {01, 10}, two uses of the Z-channel simulate
a classical erasure channel with erasure symbol 00 (see, e.g.
[21]). Lemma 1 is a quantum analogue of this fact, yet Lemma
1 is nontrivial due to the Kraus operator A0, which introduces
some relative phase error between |0〉 and |1〉 that has no
classical analogue.

Lemma 1 allows us to use quantum erasure-correcting codes
as outer codes for correcting multiple amplitude damping
errors. It is known that an[[m, k, d]] quantum code corrects
d − 1 erasure errors [9], [11], [22]. Our main result is given
by the following theorem.

Theorem 1 If there exists an [[m, k, d]] quantum code, then
there is a [[2m, k]] code correcting t = d − 1 amplitude
damping errors.

Proof: Let Q be the concatenated code with the inner
codeQ1 given Eq. (11) and the outer codeQ2 with parameters
[[m, k, d]]. The codeQ2 correctsd − 1 erasure errors. A
single AD-error on each block of the inner code creates an
erasure error for the outer code. The position of the error
is indicated by the erasure state|00〉. Hence the outer codes
takes care ofd− 1 AD-errors acting on different blocks. Two
errors acting on the same block annihilate the state, such that
the quantum error correction condition given by Eq. (5) is
naturally satisfied. HenceQ is a [[2m, k]] AD code correcting
t = d− 1 amplitude damping errors.

Remark 2 It is interesting to compare our construction with
the corresponding classical case, where concatenation with the
dual-rail code {01, 10} as inner code and an [m, k, d] erasure-
correcting code as outer code yields an [2m, k] (d − 1)-
code for the Z-channel. However, this (d − 1)-code is in
general not good because simply repeating each codeword
of an [m, k, d] classical code will straightforwardly give a
[2m, k, 2d] code correcting d − 1 arbitrary errors. In the



quantum case, however, the existence of an [[m, k, d]] stabilizer
code does not necessarily lead to a [[2m, k, 2d]] stabilizer
code.

In Table II, we compare thet-codes from our construction
with the known upper and lower bounds on the minimum
distance of stabilizer codes from [10]. We fix the number of
logical qubitsk and the numbert of correctable AD-errors
within the rangek = 1, . . . , 6 and t = 1, . . . , 10. The length
n = 2m of the code is derived from the shortest known
stabilizer code with parameters[[m, k, t+1]] from [10]. Hence
the first three columns gives the parameters of each line in
the table corresponds to an[[n, k]] t-code. The fourth column
provides2t+ 1, which is the distance that is required for an
[[n, k]] code to be capable to correctt arbitrary errors. The last
column gives the lower and upper bounds on the distanced of
a [[n, k, d]] stabilizer code from [10]. Hence allt-codes with
2t+ 1 > d are better than the stabilizer codes with the same
length and dimension. With the exception of small parameters,
many of our codes outperform the known—or even the best
possible—corresponding stabilizer codes correctingt arbitrary
errors. Note that any improvement of the lower bound on the
distanced of a stabilizer code implies some improvement for
t-codes as well.

Note that all thet-codes listed in the table are degenerate
stabilizer codes obtained by concatenation of a stabilizercode
as outer code and the quantum dual-rail codeQ1 given by Eq.
(11) as inner code. In order to compute the stabilizer of the
concatenated code, note that the inner codeQ1 is stabilized by
−ZZ, and has logical operators̄X = XX and Z̄ = ZI. As
an example, we compute the stabilizer for the[[10, 1]] 2-code.

Example 1 A [[10, 1]] 2-code can be derived from the
[[5, 1, 3]] code with stabilizer generated by:

g1 = X Z Z X I
g2 = I X Z Z X
g3 = X I X Z Z
g4 = Z X I X Z

(13)

The stabilizer of the [[10, 1]] 2-code is obtained by replacing
the operators in Eq. (13) by the logical operators of Q1 and
adding the stabilizer for each block of the inner code:

g′1 = X X Z I Z I X X I I
g′2 = I I X X Z I Z I X X
g′3 = X X I I X X Z I Z I
g′4 = Z I X X I I X X Z I

g′5 = −Z Z I I I I I I I I
g′6 = −I I Z Z I I I I I I
g′7 = −I I I I Z Z I I I I
g′8 = −I I I I I I Z Z I I
g′9 = −I I I I I I I I Z Z

(14)

As a degenerate stabilizer code, this code has parameters
[[10, 1, 4]]. As a 2-code, this code is not as good as Shor’s nine-
qubit code given in Eq. (8), but still better than the shortest

stabilizer code [[11, 1, 5]] encoding one qubit and correcting
two arbitrary errors.

However, the[[22, 1]] 4-code given in Table II is better than
the [[25, 1]] 4-code given in Eq. (10), the degenerate[[25, 1, 9]]
code constructed from concatenating two[[5, 1, 3]] codes, and
even the putative stabilizer code[[22, 1, 8]].

From the last column in Table I we see that, with the
exception when both parameterst andk are small, the codes
from our construction are better than thet-codes derived from
CSS codes.

IV. POSSIBLE GENERALIZATIONS

One possible generalization of our construction is to chose
a different inner code. For instance, we can take the inner code
as the following quantum codeQ′

1 which encodes one qutrit
into three qubits:

|0〉L = |001〉, |1〉L = |010〉, |2〉L = |100〉. (15)

For any stateρ of the codeQ′
1, we observe that

E⊗3
AD(ρ) = (1− γ)ρ+ γ(|000〉〈000|), (16)

hence the effective channel is a qutrit quantum erasure channel
where the state|000〉 indicates an erasure.

Since the inner codeQ′
1 is of dimension3, the outer code

Q′
2 must be chosen from quantum codes constructed for qutrits

rather than qubits, i.e.Q′
2 is a subspace of(C3)⊗m. Using a

[[m, k, d]]3 quantum codeQ′
2 (where the subscript3 indicates

that this is a qutrit code), the concatenated codeQ with inner
codeQ1 and outer codeQ2 is an AD code correctingt = d−1
AD errors, with length3m and encoding a space of dimension
3k. In general, quantum code of lengthn and dimensionK is
denoted by((n,K)), so this construction yields a((3m, 3k))
(d− 1)-code.

For instance, an[[8, 2, 4]]3 outer code (see [14], [20]) gives
a ((24, 9)) AD code correcting3 AD errors. This is better
than the parameters[[24, 3, 7–8]] of a stabilizer code (cf. [10]),
but worse than the[[24, 4]] 3-code given in Table II. It is
not yet clear whether this or other generalizations based on
concatenation using codes for the erasure channel yield better
AD codes than those obtained from the quantum dual-rail
codes.

V. CONCLUSIONS

We have constructed families of good multi-error-correcting
quantum codes for the amplitude damping channel based
on code concatenation and quantum erasure-correcting codes.
As the rate of our codes can never exceed the rate1/2
of the inner code, other methods—possibly generalized con-
catenation of quantum codes [12], [13]—have to be used in
order to construct high-rate AD codes. However, our method
provides the first systematic construction for good multi-error-
correcting AD codes. We hope that our method shade lights on
constructing good quantum codes adapted for other non-Pauli
channels beyond the AD channel, and further understanding on
the role that degenerate codes play in quantum coding theory.



n k t 2t+ 1 d

8 1 1 3 3
10 1 2 5 4
20 1 3 7 7
22 1 4 9 7–8
32 1 5 11 11
34 1 6 13 11–12
48 1 7 15 13–17
50 1 8 17 13–17
56 1 9 19 15–19
58 1 10 21 15–20
8 2 1 3 3
16 2 2 5 6
20 2 3 7 6–7
28 2 4 9 10
32 2 5 11 10–11
46 2 6 13 12–16
52 2 7 15 14–18
54 2 8 17 14–18
56 2 9 19 14–19
82 2 10 21 18–28

n k t 2t + 1 d

12 3 1 3 4
16 3 2 5 5
24 3 3 7 7–8
30 3 4 9 9–10
40 3 5 11 10–13
48 3 6 13 11–16
52 3 7 15 13–17
54 3 8 17 13–18
72 3 9 19 15–24
82 3 10 21 18–27
12 4 1 3 4
20 4 2 5 6
24 4 3 7 6–8
32 4 4 9 8–10
40 4 5 11 10–13
50 4 6 13 12–16
52 4 7 15 12–17
70 4 8 17 15–23
80 4 9 19 16–26
96 4 10 21 18–31

n k t 2t + 1 d

16 5 1 3 4–5
22 5 2 5 6–7
28 5 3 7 7–9
36 5 4 9 8–11
42 5 5 11 9–13
50 5 6 13 11–16
60 5 7 15 13–19
78 5 8 17 15–25
86 5 9 19 18–28
98 5 10 21 19–32
16 6 1 3 4
24 6 2 5 6–7
28 6 3 7 6–8
36 6 4 9 8–11
48 6 5 11 10–15
58 6 6 13 12–19
64 6 7 15 14–21
84 6 8 17 17–27
92 6 9 19 18–29
104 6 10 21 19–33

TABLE II
COMPARISON OF OUR[[n, k]] t-CODES AND THE BOUNDS ON THE MINIMUM DISTANCEd OF A STABILIZER CODE[[n, k, d]].
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