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Abstract—We construct new families of multi-error-correcting  designing codes for this situation and in studying theidtfau
quantum codes for the amplitude damping channel. Our key tolerance properties [1].[7][8]115][[23]. All those ws

observation is that, with proper encoding, two uses of the gag| with error models which are still described by Kraus
amplitude damping channel simulate a quantum erasure chanel.

This allows us to use concatenated codes with quantum erases operators that are Pauli matri(?es (Pauli Kraus _qperatbw;),
correcting codes as outer codes for correcting multiple amiiude ~ the X- andY'-errors happen with equal probability. = p,,
damping errors. Our new codes are degenerate stabilizer ces which might be different from the probability, that a Z-

and have parameters which are better than the amplitude error happens. The quantum channels described by this kind

damping codes obtain_ed by any p_reviously known constructio. of noise are called asymmetric channélgs acting on any
Index Terms—Amplitude damping channel, quantum error .
one-qubit quantum state as

correction, concatenated quantum codes, quantum erasureode.

SAS(p) = (1 - (2pm +Pz))P
|. INTRODUCTION + . (XpX +YpY) +p.ZpZ. 3)

In most of works on quantum error correction, it is assumekhe choicep, = p, is related to a physically realistic error
that the errors to be corrected are completely random, vath model including amplitude damping (AD) noise and phase
knowledge other than that they affect different qubits indelamping noise[[22]. The Kraus operators for AD noise with
pendently[[22],[[9]. Or, equivalently, this is to assumetttiee damping ratey are
Pauli-type errorsX = (91), v = (9 3), andZ = (§ ),

happen with equal probability, = p, = p. = p/3. The Ay = (1 0 > and A4, = <0 ‘ﬁ) .4
qguantum channel described by this kind of noise is called 0 vi-v 0 0
depolarizing channefp p. Note that
The most general physical operations (or quantum chan- 0 7 V7 .
nels) allowed by quantum mechanics are completely positive A= (0 \{)_> R (X +4Y) and
trace preserving linear maps which can be represented in the NG
following Kraus decomposition form: AI =3 (X —1iY).
N(p) = Z AkpAL, (1) Hence the linear span of the operato¥s and AI equals the
k linear span ofX andY'. If the system is at finite temperature,

where A, are called Kraus operators of the quantum channile Kraus operatoﬂ{ will appear in the noise model[22].
N and satisfy the completeness conditipr), ALAk = 1. In Thus, if the code is capable of correcting(- andt¢ Y-errors,
this language of quantum channels, the depolarizing chanitecan also correct A;- andt¢ A{-errors.
Epp With error parametep acting on any one-qubit quantum |t was observed that when the temperature of a physical
statep € C**? as system is zero or very low, the errdr{ is actually negligible
P [22]. For simplicity, we further ignore the phase dampinger
Epp(p) =1 —plp+ §(XpX +YpY +2Zp2), (2 (which is characterized by the Pauli operaté)y. Then the
so the Kraus operators for the depolarizing channel are thgor model is fully characterized by, and A;. In this work,
Pauli matrices together with identity. we will focus on this quantum channel with only amplitude
However, if further information about an error process idamping noise, i.e. the AD channgl p, with only two Kraus
available, more efficient codes can be designed. Indeedoiperators given by Eq[](4). The AD channel is the simplest
many physical systems, the types of noise are likely to m®nunital channel whose Kraus operators cannot be dedcribe
unbalanced between amplitud&-type) errors and phase’{ by Pauli operations. The AD channel is a quantum analogue of
type) errors. Recently a lot of attention has been put intbe classicalZ-channel which transmit$ faithfully, but maps
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1 to either0 or 1 [26]. For the AD channel we only needweight at most —1 (i.e., operators acting nontrivially on less

to deal with the errord; (a quantum analogue of the erroithand individual qubits) can be detected or have no effect on

1 — 0), but not with AI (a quantum analogue of the errorQ, and we denote the parameters@ty [[n, k, d]]. We say

0 — 1). So asking to be able to correct bath andY-errors an[[n, k]] stabilizer code is &-code if it corrects AD-errors.

is a less efficient way for constructing quantum codes for tl®r comparison with stabilizer codes, we say{fan k|| ¢-code

AD channel. is good if2t + 1 > d for the best possiblén, &, d]] code; or,
Since the error model is not described by Pauli Kraus < n’ for the best possiblgn’, k, 2t + 1]] code; or,k > &’

operators, the task of constructing good error-correatoips for the best possiblgn, &/, 2t + 1]] code.

becomes very challenging. The known techniques dealirty wit The first AD code given by Leung et al.[19] is[gt, 1]]

Pauli errors cannot be applied or result in codes with bddcode, i.e., correcting a single AD-error. Basis vectorshef

parameters. Several new techniques for the constructioncofde are

codes which are adapted to this type of noise with non- 1

Pauli Kraus operators, and the AD channel in particularehav 0)L = 7 (/0000) + [1111))

been developed 6] 8] [18][ [19][ [26]. After years’ effp 1

systematic methods for constructing high performancelsing 1) = 7 (|0011) + [1100)) . (7)

ing only 4 qubits, thisl-code is better than thg5s, 1, 3]
de, a quantum code correcting an arbitrary single-quist e
nd encoding one qubit using the minimal number of qubits

error-correcting codes have been fouhd![1B].| [26]. However
all these methods fail to construct good AD codes correctifiijg5
multi-errors. c
In this paper we present a method for finding families
codes correcting multi-amplitude-damping errors. Our-cofi™’ 7.

struction is based on the observation that with respect to_a':OIIOWIng the work by Leung et al[T19], several construc-

simple encoding two uses of the amplitude damping chanrﬁ'&ns for 1-codes have been proposdd [d]] [ALJ[18].][26],

simulate a quantum erasure channel. This allows us to applf%umng some high performandecodes. However, very little

concatenated coding scheme with quantum erasure—cmgec? t?ﬁvﬁn about fgg]od mLJtIr?-(ejrr(i(r-corre;:tlng ADt coctzl_es. "gf:(;
codes as outer codes, resulting in codes correcting muffiet that none of the methods known for constructing g

%es can be directly generalizediteodes witht > 1.

amplitude-damping errors. Our new codes are degener%\? . - .
stabilizer codes which have better parameters than thescode ottesmar{[9, Section 8.7] has shown that Shor's nine-qubit

given by any previously known construction. code [25]
1
Il. CORRECTING AMPLITUDE DAMPING ERRORS 0)r = Wi (1000 + |111))®*
A quantum error-correcting codé) is a subspace of 1 23
(C?)®", the space ofn qubits. For aK-dimensional code L = 3 (1000) — [111)) (8)

space spanned by the _orthonorr_nal s€b, i = l,...,K gnd can correct two AD-errors, despite the fact that it can adrre
a set of errorst” there is a physical operation correcting all v 4 single general error. It is the best knogstode and
eIemen_tsE# € & if the error correction condition$ I3]LI16] it g petter than thd[11,1,5]] code [9], the best two-error-
are satisfied: correcting stabilizer code encoding one qubit| [10].

Vijw (Wil El E, ;) = Coubij, (5) It is interesting to note that the-code given by Eq[{7) can

whereC,,,, depends only o andv. If the matrix(C,,,) has be rewritten in another basis as

full rank the code is said to be nondegenerate, otherwise it i I+)L = 1 (10) + 1)) = 1 (|00Y + |11>)®2
degenerate. V2 2
For the AD channel, ify is small, we would like to correct 1 1 ®2
. : P TS ) , V. =—=(0)z — [1)z) = = (J00) — |11))®*, (9
the leading order errors that occur during amplitude dampin =)e V2 (1002 = 1)) 2 (/00) —[11)) ©)
SettingA = X +4iY and B =1 — Z, we have which is of a similar form as Eq[]8).

e ~ Therefore, we can generalize the constructions of Eqs. (9)
A = 7A and Ay =1- Bt O(?). (6) and [8) tot-codes with basis

It has been shown that in order to improve the fidelity of i ®(t+1)

the transmission through an amplitude damping channel from 0)r =27 (|0 0+ L 1>)

1 —vto1—~% itis sufficient to satisfy the error-detection t+1 t+1

conditions for2¢t A-errors andt B-errors [9, Section 8.7]. We ) P (|O 0) - |1 1>)®(t+1) (10)
: : : L = . — . .

will say that such a code correatamplitude damping errors . A ,

since it improves the fidelity, to leading order, just as much t+1 t+1

as a truet-error-correcting code would for the same channeHowever, thesén?, 1, n]] so-called Bacon-Shor code [2], [25]
Stabilizer codes are a large kind of quantum codes whicbrrectingt = n — 1 AD-errors scale badly when is large.

contain many good quantum codgs [9],1[22]. A stabilizer codeor instance, there exists[R5, 1, 9]] code and {[29, 1, 11]]

with n qubits encodind: qubits is of distancd if all errors of code [10].



Note that these[n?,1]] codes are of Calderbank-Shoreffective channel is a quantum erasure channel. We start by

Steane (CSS) type [[5][_[27]. They are also degenerate: fmmoving the following lemma.
instance, &-error acting on the first qubit or the second qubit
has the same effect on the code. Lemma 1 Using the quantum dual-rail codeQ; which en-
In general, CSS codes can be used to construct codesdades a single qubit into two qubits, given by

the AD channel([9, Section 8.7]:

[0y, =|01), 1)L =|10), (11)
Proposition 1 An [[n, k]] CSS code of X-distance 2t + 1 and two uses of the AD channel smulate a quantum erasure
Z-distance t + 1 is an [[n, k]] t-code. channel.

In the first column of Tablél| we provide bounds on the  Proof: For any statey of the codeQ,, we observe that
lengthn of codes for the AD channel encoding one or two 2
qubits derived from CSS codes with givéa and X -distances Exp(p) = (1 —7)p+~(]00)(00]). (12)
t + 1 and 2t + 1, respectively. The lower bounds have beeifihe statd00) is orthogonal to the cod@;. Using a measure-

derived using linear programming techniques| [24]. The uppment that either projects o@; or its orthogonal complement,
bound is based on CSS codes constructed from the datalbitsan be detected whether an AD error occurred or not. Hence

of best known linear code5|[4], [1L0].

we obtain a quantum erasure channel with erasure symbol

In the fifth column we give upper and lower bounds on th@0). |
lengthn” such that ar[»’, k,t 4+ 1]] code may exist. In the
last column, we list the bounds on the lengthtafode from Remark 1 It can easily be shown that with respect to the
Theoren(]L. The data for columng and 2m is taken from dual-rail code {01, 10}, two uses of the Z-channel simulate

[10]).

n k t+1 2t+1 n’/ 2m
12-13 1 3 5 11 10
19-20 1 4 7 17 20
25-30 1 5 9 23-25 22
3341 1 6 11 29 32
39-54 1 7 13 35-43 34
47-70 1 8 15 41-53 44-48
53-79 1 9 17 47-61 46-50

-89 1 10 19 53-81 56
-105 1 11 21 59-85 58
14-17 2 3 5 14 16
20-27 2 4 7 20-23 20
27-37 2 5 9 26-27 28
34-45 2 6 11 32-41 32
41-62 2 7 13 38-51 40-46

-71 2 8 15 44-59 44-52

-87 2 9 17 50-78 52-54
-102 2 10 19 56-83 56-56
-110 2 11 21 62-104 64-82

TABLE |
BOUNDS ON THE LENGTHn OF AN [[n, 1]] t-CODE DERIVED FROMCSS
CODES, TOGETHER WITH THE BOUNDS ON THE LENGTH? OF A
STABILIZER CODE([[n’, 1, 2t + 1]] AND THE LENGTH 2m OF AN [[2m, 1]]
t-CODE FROMTHEOREM[

a classical erasure channel with erasure symbol 00 (see, e.g.
[21]). Lemma[lis a quantum anal ogue of this fact, yet Lemma
[@is nontrivial due to the Kraus operator A, which introduces
some relative phase error between |0) and |1) that has no
classical analogue.

Lemmdl allows us to use quantum erasure-correcting codes
as outer codes for correcting multiple amplitude damping
errors. It is known that arf[m, k, d]] quantum code corrects
d — 1 erasure errors [9]/111]/T22]. Our main result is given
by the following theorem.

Theorem 1 If there exists an [[m, k, d]] quantum code, then
there is a [[2m, k]] code correcting ¢ = d — 1 amplitude
damping errors.

Proof: Let Q be the concatenated code with the inner
codeQ; given Eq.[(I1) and the outer cod® with parameters
[[m,k,d]]. The codeQs correctsd — 1 erasure errors. A
single AD-error on each block of the inner code creates an
erasure error for the outer code. The position of the error
is indicated by the erasure stdt#)). Hence the outer codes
takes care ofl — 1 AD-errors acting on different blocks. Two

It can be seen from TaHlE | that the construction of AD cod&Tors acting on the same block annihilate the state, siuath th
based on CSS codes unlikely gives good AD codes. But adlleé guantum error correction condition given by Ed. (5) is

is unknown whether these bounds forandn’ given in this

naturally satisfied. Henc@ is a[[2m, k]| AD code correcting

table can be achieved, we do not have the definite answer ¢ — 1 amplitude damping errors. u

This problem will be addressed in future research.

IIl. AD CODE BASED ON QUANTUM ERASURE CODES

Remark 2 It is interesting to compare our construction with
the corresponding classical case, where concatenation with the

As discussed in Se]ll, no good method is known fafual-rail code {01, 10} asinner code and an [m, k, d| erasure-
constructing good multi-error-correcting AD codes. Insthicorrecting code as outer code yields an [2m, k] (d — 1)-
section we provide a construction which systematicallyegiv code for the Z-channel. However, this (d — 1)-code is in
high performancet-codes witht > 1. The construction general not good because simply repeating each codeword
uses concatenated quantum codes with an inner and an oafean [m, k,d] classical code will straightforwardly give a
quantum code. After decoding the inner quantum code, tfgn, k,2d] code correcting d — 1 arbitrary errors. In the



quantum case, however, the existence of an [[m, k, d]] stabilizer  stabilizer code [[11, 1, 5]] encoding one qubit and correcting
code does not necessarily lead to a [[2m, k,2d]] stabilizer two arbitrary errors.

code.
However, the[[22,1]] 4-code given in Tabl&ll is better than

In Table[Il, we compare thé-codes from our construction the [[25, 1]] 4-code given in Eq[(10), the degener§fs, 1, 9]]
with the known upper and lower bounds on the minimur@ode constructed from concatenating tjf@ 1, 3]] codes, and
distance of stabilizer codes from ]10]. We fix the number afven the putative stabilizer cod2, 1, §]].
logical qubitsk and the numbet of correctable AD-errors From the last column in Tablg | we see that, with the
within the rangek = 1,...,6 andt = 1,...,10. The length exception when both parameteérand i are small, the codes
n = 2m of the code is derived from the shortest knowfrom our construction are better than thheodes derived from
stabilizer code with parametelfsn, &, ¢+ 1]] from [10]. Hence CSS codes.
the first three columns gives the parameters of each line in
the table corresponds to &m, k]| ¢t-code. The fourth column IV. POSSIBLE GENERALIZATIONS
provides2t 4 1, which is the distance that is required for an One possible generalization of our construction is to chose
[[n, k]] code to be capable to correcarbitrary errors. The last a different inner code. For instance, we can take the innée co
column gives the lower and upper bounds on the distdnufe as the following quantum cod@; which encodes one qutrit
a [[n, k, d]] stabilizer code from[[10]. Hence aftcodes with into three qubits:
2t + 1 > d are better than the stabilizer codes with the same
length and dimension. With the exception of small paranseter ~ 10)2 = [001), 1), = [010),  [2)L = [100). (15)
many of our codes outperform the known—or even the bestFor any state of the codeQ/, we observe that
possible—corresponding stabilizer codes correctiaghitrary

. ®3 _
errors. Note that any improvement of the lower bound on the Exp(p) = (1 —7)p+~(]000)(000]), (16)
distanced of a stabilizer code implies some improvement fonence the effective channel is a qutrit quantum erasurenghan
t-codes as well. where the staté000) indicates an erasure.

Note that all thet-codes listed in the table are degenerate Since the inner cod€@) is of dimension3, the outer code
stabilizer codes obtained by concatenation of a stabiinede Qf must be chosen from quantum codes constructed for qutrits
as outer code and the quantum dual-rail c@egiven by Eq. rather than qubits, i.eQ) is a subspace ofC3)®™. Using a
(I1) as inner code. In order to compute the stabilizer of then, k, d]]s quantum code’, (where the subscrifi indicates
concatenated code, note that the inner c@des stabilized by that this is a qutrit code), the concatenated c@eith inner
— 77, and has logical operatot¥ = XX andZ = ZI. As codeQ; and outer cod®, is an AD code correcting= d—1
an example, we compute the stabilizer for {fi#, 1]] 2-code. AD errors, with lengtt8m and encoding a space of dimension

3*. In general, quantum code of lengthand dimensionk is
denoted by((n, K)), so this construction yields @3m, 3%))

Example 1 A [[10,1] 2-code can be derived from the (d —1)-code.

([5,1,3]] code with stabilizer generated by: For instance, aii8, 2, 4]]; outer code (se¢ [14]. [20]) gives
a ((24,9)) AD code correcting3 AD errors. This is better
g = XZZX1 than the parameteff4, 3, 7-8]] of a stabilizer code (cf[10]),
g = 1 XZZX (13) but worse than th€[24,4]] 3-code given in Tablél. It is
g9 = X1 XZZ not yet clear whether this or other generalizations based on
g = ZX1XZ concatenation using codes for the erasure channel yietdrbet

The stabilizer of the [[10, 1] 2-code is obtained by replacing AD codes than those obtained from the quantum dual-rail
the operators in Eq. (I3) by the logical operators of Q; and codes.

adding the stabilizer for each block of the inner code:
V. CONCLUSIONS

/

9} = XX 21 21 XX I1 We have constructed families of good multi-error-cormegti

g% - rxx zrnrzrrXxx guantum codes for the amplitude damping channel based
g? = XX I XXz Z1 on code concatenation and quantum erasure-correcting.code
9 = ZI XX I I XX ZI As the rate of our codes can never exceed the idt

95 = —ZzZ 11 I1 11 I1I (14)  of the inner code, other methods—possibly generalized con-
96 = 11 Z2Z 11 I1 I1 catenation of quantum codes [12], [13]—have to be used in
g9 = 11 Il zZ I1 I1 order to construct high-rate AD codes. However, our method
g9 = —I11 11 11 ZZ I1 provides the first systematic construction for good muitoe

g = 11 11 11 11 ZZ correcting AD codes. We hope that our method shade lights on

As a degenerate stabilizer code, this code has parameters constructing good quantum codes adapted for other non-Paul
[[10,1, 4]]. Asa 2-code, thiscodeis not asgood as Shor’snine-  channels beyond the AD channel, and further understanding o
qubit code given in Eq. (), but till better than the shortest  the role that degenerate codes play in guantum coding theory



n k t 2t +1 d n k t 2t +1 d n kot 2t +1 d

8 1 1 3 3 12 3 1 3 4 16 5 1 3 4-5
100 1 2 5 4 16 3 2 5 5 22 5 2 5 6-7
20 1 3 7 7 24 3 3 7 7-8 28 5 3 7 7-9
22 1 4 9 7-8 30 3 4 9 9-10 36 5 4 9 8-11
32 1 5 11 11 40 3 5 11 10-13 42 5 5 11 9-13
34 1 6 13 11-12 48 3 6 13 11-16 50 5 6 13 11-16
48 1 7 15 13-17 52 3 7 15 13-17 60 5 7 15 13-19
50 1 8 17 13-17 54 3 8 17 13-18 78 5 8 17 15-25
5 1 9 19 15-19 72 3 9 19 15-24 86 5 9 19 18-28
58 1 10 21 15-20 82 3 10 21 18-27 98 5 10 21 19-32
8 2 1 3 3 12 4 1 3 4 16 6 1 3 4
6 2 2 5 6 20 4 2 5 6 24 6 2 5 6-7
20 2 3 7 6-7 24 4 3 7 6-8 28 6 3 7 6-8
28 2 4 9 10 32 4 4 9 8-10 36 6 4 9 8-11
32 2 5 11 10-11 40 4 5 11 10-13 48 6 5 11 10-15
46 2 6 13 12-16 50 4 6 13 12-16 58 6 6 13 12-19
52 2 7 15 14-18 52 4 7 15 12-17 64 6 7 15 14-21
54 2 8 17 14-18 70 4 8 17 15-23 84 6 8 17 17-27
56 2 9 19 14-19 80 4 9 19 16-26 92 6 9 19 18-29
82 2 10 21 18-28 9% 4 10 21 18-31 104 6 10 21 19-33

TABLE Il

COMPARISON OF OUR[[n, k]| t-CODES AND THE BOUNDS ON THE MINIMUM DISTANCEd OF A STABILIZER CODE([n, k, d]].
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