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Abstract—A communication model is considered in which the
classic two-user Gaussian interference channel is augmented by
noiseless rate-limited digital conferencing links between the trans-
mitters. We propose a partial zero-forcing precoding strategy
based on a shared-private rate splitting scheme at the transmitter,
in which each transmitter communicates part of its message to
the other transmitter, and subsequently partially pre-subtracts
the interfering signal using a zero-forcing precoder. We prove an
outer bound and show that the proposed strategy is asymptoti-
cally sum-capacity achieving in a very weak interference regime,
where both the signal-to-noise ratio (SNR) and the interference-
to-noise ratio (INR) go to infinity while their ratio in dB scale is
kept fixed. In this case, every cooperation bit results in one-bit
gain in sum capacity. We also consider a different asymptotic
regime where the transmit power constraints and the channel
gains are fixed while the noise powers go down to zero. In
this case, if one compares with the achievable sum rate with
interference treated as noise, one cooperation bit can in fact
result in more than one-bit gain in achievable sum rate.

I. INTRODUCTION

Interference is often the primary limiting factor when mul-
tiple uncoordinated links share a common communication
medium. The largest known achievable rate region for the clas-
sic two-user interference channel is due to Han and Kobayashi
[1], where a common-private rate splitting technique is em-
ployed to enable the receiver to partially decode and subtract
the interfering signal. The Han-Kobayashi scheme has recently
been shown to be within one bit of the capacity region of the
Gaussian interference channel [2].

This paper studies a communication model in which the
classic two-user Gaussian interference channel is augmented
by noiseless rate-limited digital conferencing links between
the transmitters and explores interference mitigation strategies
based on transmitter cooperation. The channel model studied
in this paper is related to a number of well-known problems in
the literature. If the capacity of the digital link is sufficiently
large for each transmitter to describe its entire message to the
other transmitter, the resulting channel is a Gaussian vector
broadcast channel [3]. If the digital link is unidirectional with
sufficiently large capacity, so that one of the transmitters
knows the message of the other completely, we have the
cognitive radio channel [4].

This paper focuses on communication models in which the
conferencing links are rate limited. In this realm, Maric et
al. [5] determined the capacity region in the special case of
strong-interference regime, where both receivers can decode

all messages with no rate penalty. In the weak-interference
regime, Bagheri et al. [6] considered the approximate sum ca-
pacity of a symmetric interference channel for the case where
the digital link between the transmitters is unidirectional. Both
of the above works use the conferencing link to share common
messages at the transmitter. The idea is to allow transmitters to
cooperatively encode the common messages, thereby leading
to an increase in common message rates. Both of these works
rely on the coding strategy outlined in [7] for the multiple-
access channel with conferencing encoders.

This paper considers an alternative idea of allowing trans-
mitters to share private messages. The idea is to mitigate
interference with transmit precoding rather than receiver-based
partial decoding and interference subtraction. Toward this end,
we propose a shared-private rate splitting technique, which
enables each transmitter to communicate its shared message
to the other transmitter, and subsequently to pre-subtract part
of the interfering signal using a zero-forcing scheme, thereby
leading to an increase in private message rates.

The coding strategy considered in this paper is related to that
of [8], [9], where quantizing, dirty-paper coding, beamforming
and time-sharing strategies for transmitter cooperation are dis-
cussed. The main result of this paper is to show that a simple
zero-forcing strategy can be quite effective. In fact, in certain
weak-interference, high signal-to-noise ratio (SNR) and high
interference-to-noise ratio (INR) regime, each cooperation bit
at the transmitter can result in one bit increase in overall sum
rate.

II. SYSTEM MODEL

The Gaussian interference channel with a digital link be-
tween the transmitters is modelled as follows (see Fig. 1):{

Y1 = h11X1 + h21X2 + Z1

Y2 = h12X1 + h22X2 + Z2
(1)

where X1 and X2 are the transmit signals with power con-
straints P1 and P2 respectively, hij represents the channel gain
from transmitter i to receiver j, and Z1, Z2 are independent
additive white Gaussian noises (AWGN) with power N . The
noiseless digital links between the transmitters have fixed
capacities C12 and C21 respectively.

This paper considers a general conferencing model between
the transmitters that allows K conferencing rounds. In par-
ticular, the sources 1 and 2 generate random integers W1 ∈
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Fig. 1. Interference channel with partially cooperating transmitters

{1, 2, . . . , 2nR1} and W2 ∈ {1, 2, . . . , 2nR2} respectively, at
the beginning of each block of n channel uses. Each encoder
is completely described by an encoding function and a set of
K information sharing functions {ti,1, ti,2, . . . , ti,K}, i = 1, 2.
Each function ti,k maps the source message Wi and the
sequence of previously received communications from the
other encoder into the kth communication Ti,k, where Ti,k

ranges over a finite alphabet ϑi,k, for k = 1, 2, . . . ,K. Such a
conferencing model was first proposed in [7]. The amount of
information that can be exchanged is bounded by the capacities
of the digital links between the transmitters:

K∑
k=1

log(|ϑi,k|) ≤ nCij . (2)

The encoding function maps the source message Wi

and TK
j = (Tj,1, Tj,2, . . . , Tj,K), the information re-

ceived from the other transmitter, into a codeword xi =
(xi,1, xi,2, . . . , xi,n).

We use the following definitions to simplify the notation:

SNRi =
h2

iiPi

N
INRi =

h2
jiPj

N
νi = 22Cij − 1

γ(x) = 1
2 log(1 + x) hd = h11 × h22 hc = h12 × h21

III. CODING STRATEGY

This paper proposes the following cooperation strategy for
the interference channel with partially cooperating transmit-
ters. We use only a single conferencing round (i.e., K =
1). Each transmitter splits its source messages Wi into a
shared Wi,s ∈ {1, 2, . . . , 2nCij} and a private Wi,p ∈
{1, 2, . . . , 2n(Ri−Cij)} part. We then let each transmitter com-
municate its shared message to the other transmitter over the
digital link. Note that a shared message is only intended to be
communicated to the other transmitter—unlike the common
message, which is decoded and subtracted at the non-intended
receiver.

Since both transmitters know both shared messages, the
overall channel can be viewed as a vector broadcast channel
with shared messages (U1, U2), within an interference channel
with private messages V1 and V2. (See Fig. 2). In addition, this
paper pursues a simple zero-forcing strategy for the broadcast
channel part where the transmitters first encode (U1, U2)
jointly using zero-forcing precoding, while treating (V1, V2)
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Fig. 2. Transmitter Cooperation via private-shared rate splitting

as interference, then encode V1 and V2 individually for their
respective intended receivers. In effect, the broadcast channel
sees the interference channel messages as interference, while
the interference channel does not see the broadcast channel
messages as interference, because they either are zero-forced at
the transmitter or can be decoded-and-subtrcted at the receiver.
More specifically, the transmitted signals are

X1 = U1 − h21

h11
U2 + V1, X2 = U2 − h12

h22
U1 + V2 (3)

where Ui ∼ N (0, Ps,i) is a codeword representing the
shared message Wi,s taken from a Gaussian codebook of size
2nCij , and Vi ∼ N (0, Pp,i) is a codeword representing the
private message Wi,p taken from a Gaussian codebook of size
2n(Ri−Cij).

Because this paper focuses on the zero-forcing strategy only,
we constrain the cooperating digital link rates to be below that
sufficient to achieve the fully cooperative broadcast channel
rate using zero-forcing. More specifically, let RZF denote the
achievable rate region of the same two-user channel with full
transmit cooperation using zero-forcing encoding and under
the same per-antenna power constraints. We assume that

(C12, C21) ∈ RZF . (4)

Beyond this region, the entire RZF is achievable.
Note that this paper is primarily interested in the high

SNR/INR regime, where zero-forcing is near optimal. In the
more general case, beamforming and dirty-paper coding can
be used for the underlying vector broadcast channel to further
improve the achievable rates.

An intuitive understanding of the proposed coding strategy
can be obtained by interpreting it in the context of the deter-
ministic interference channel [10]. Fig. 3 illustrates an example
where the channel is described by the following parameters:
n11 = � 1

2 log(SNR1)� = 3 bits; n22 = � 1
2 log(SNR2)� = 4

bits; n21 = � 1
2 log(INR1)� = 2 bits; n12 = � 1

2 log(INR2)� =
1 bit. When there is no cooperation (Fig. 3(a)), a sum rate
of 4 bits is achieved by transmitting only private bits. Fig.
3(b) demonstrates that when C12 = 1 bit, C21 = 2 bits, the
achievable sum rate in the deterministic interference channel
increases to 7 bits—each cooperation bit improves the sum
rate by one bit.
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Fig. 3. Deterministic Interference channel: (a) No cooperation, private
message only; (b) C12 = 1 bit, C21 = 2 bits. Transmitter 1 shares bit
a3. Transmitter 2 shares bits b3 and b4.

IV. CHARACTERIZATION OF COOPERATION GAIN

A. Achievable Rate

The overall achievable rates of the proposed partial zero-
forcing scheme can be computed by summing the rates of
the respective shared messages and the private messages. The
rates of the shared messages are fixed by the capacities of
the conferencing links. To compute the private message rates,
we first compute the shared and private message powers. The
zero-forcing precoding structure of the broadcast channel gives⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
C12 ≤ γ

(
(1 − hc/hd)2h2

11Ps,1

N + h2
11Pp,1 + h2

21Pp,2

)

C21 ≤ γ

(
(1 − hc/hd)2h2

22Ps,2

N + h2
22Pp,2 + h2

12Pp,1

)
.

(5)

Further, the power constraints at the transmitters give{
Ps,1 + (h2

21/h2
11)Ps,2 + Pp,1 ≤ P1

(h2
12/h2

22)Ps,1 + Ps,2 + Pp,2 ≤ P2.
(6)

Setting the inequality constraints as equalities, we have a
system of four linear equations in four unknowns, namely
Ps,1, Ps,2, Pp,1 and Pp,2. After some algebra, we obtain the
following expressions for the power of the private messages
at the transmitters

Pp,1 =
1
Δ

[
(h2

cν1 + h2
dν2 + (hd − hc)2)P1

−(ν1 + ν2)h2
21h

2
22P2 − N(h2

22ν1 + h2
21ν2)

−Nν1ν2(h2
22 − h2

21)
(

hd + hc

hd − hc

)] (7)

where

Δ = (hd − hc)2 + (h2
d + h2

c)(ν2 + ν1) + (hd + hc)2ν1ν2

and Pp,2 is obtained by swapping the indices 1 and 2 in (7).
The total achievable rate to receiver i is then given by

Ri = γ

(
h2

iiPp,i

N + h2
jiPp,j

)
+ Cij . (8)

Note that the condition (4) ensures that Pp,1 and Pp,2 are non-
negative.

B. Low-Noise Regime

It is instructive to investigate the rate improvement due to
the proposed cooperation strategy in the asymptotic low-noise
regime with N → 0 while fixing transmit power and channel
gains. Interestingly, if we compare with a baseline case where
interference is always treated as noise, the improvement in sum
rate due to one bit of transmitter cooperation can be more than
one bit.

For an interference channel with no transmit cooperation, if
we always treat interference as noise, the asymptotic achiev-
able rates as N → 0 are

R1 = γ
(SNR1

INR1

)
, R2 = γ

(SNR2

INR2

)
(9)

Theorem 1: For the interference channel in which the trans-
mitters partially cooperate over digital links of fixed capacities
C12 and C21 satisfying (4), the following rate pair is achiev-
able asymptotically as N → 0

R1 = γ

(
Γ

SNR1

INR1

)
+ C12

R2 = γ

(
1
Γ

SNR2

INR2

)
+ C21

(10)

where

Γ =
h2

cν1 + h2
dν2 + (hd − hc)2 − (ν1 + ν2)h2

21h
2
22P2/P1

h2
dν1 + h2

cν2 + (hd − hc)2 − (ν1 + ν2)h2
12h

2
11P1/P2

.

(11)
Proof: Substituting the expressions (7) for Pp,1 and Pp,2

in (8), and taking the limit as N → 0, we get (10).
The improvement in sum rate due to rate-limited transmit-

ter cooperation can be more than or less than one-bit-per-
cooperation-bit as compared to (9) depending on the channel
parameters. For example, consider channel parameters h11 =
1, h12 = 0.45, h21 = 0.65, h22 = 1; SNR1 = SNR2 = 40 dB,
INR1 = 36.3 dB, INR2 = 33 dB; C12 = 1 bit, C21 = 2 bits. The
rate pair (0.875, 1.285) is achievable treating interference as
noise if there is no cooperation between the transmitters. The
rate pair (3.11, 2.38) is achievable using the coding strategy
outlined above. In this case, an exchange of 3 bits between
the transmitters results in an improvement of 3.33 bits in the
sum rate.

Define

f(P1, P2,H, C12, C21) =
(
Γ − 1

)SNR1

INR1
+
( 1

Γ
− 1
)SNR2

INR2
(12)

we can obtain an asymptotic gain of more than one-bit-per-
bit if f > 0. Although f is a messy function of the channel
parameters, there are simple cases in which the gain can be
easily characterized.

Consider first the symmetric interference channel. Let δ
denote the improvement in sum rate obtained asymptotically



over (9) as N → 0, and let C12 = C21 = C. We have

δ = γ
(
ΓSNR

INR

)
+ γ
(

1
Γ

SNR
INR

)
+ 2C − 2γ

(
SNR
INR

)
= 1

2 log

(
1 +

(
Γ + 1

Γ

)
SNR
INR + SNR

INR

2

1 + 2SNR
INR + SNR

INR

2

)
+ 2C

≥ 2C

(13)

Thus, 2C cooperation bits result in more than 2C bits im-
provement in sum rate for the symmetric channel.

The second case is the high signal-to-interference-and-noise
(SINR) regime. Here, the sum-rate improvement is

δ = γ
(
ΓSNR1

INR1

)
+ γ
(

1
Γ

SNR2

INR2

)
+ C12 + C21

−γ
(

SNR1

INR1

)
− γ
(

SNR2

INR2

)
≈ 1

2 log
(
ΓSNR1

INR1

)
+ 1

2 log
(

1
Γ

SNR2

INR2

)
+ C12 + C21

− 1
2 log

(
SNR1

INR1

)
− 1

2 log
(

SNR2

INR2

)
= C12 + C21

(14)

Thus, every cooperation bit results in one bit improvement in
sum rate in the high SINR regime.

V. ASYMPTOTIC SUM CAPACITY IN THE VERY WEAK

INTERFERENCE REGIME

The main caveat of the results in the previous section is that
the rate improvement is computed against a baseline case when
interference is treated as noise. Treating interference as noise
is not always optimal, particularly in the low-noise regime.
As N → 0, considerable rate gain can be obtained with a
Han-Kobayashi strategy that includes common messages.

In this section, instead of letting N → 0, we investigate a
different asymptotic regime, where both SNR and INR go to
infinity while their ratio in dB scale is kept fixed. In a very
weak interference regime, we show that every cooperation bit
yields exactly one bit improvement in sum rate asymptotically.

A. Sum Capacity Upper Bound

Theorem 2: The achievable sum rate in the interference
channel wherein the transmitters partially cooperate over dig-
ital links of fixed capacities C12 and C21 is bounded by

R1 + R2 ≤ min
{

Rbc, γ
(
INR1 +

SNR1

1 + INR2

)
+ γ
(
INR2 +

SNR2

1 + INR1

)
+ C12 + C21

}
(15)

where Rbc is the sum capacity of a Gaussian vector broadcast
channel with a two-antenna transmitter and two single-antenna
receivers [3, Thm. 1].

Proof: Consider a genie-aided channel in which signals
S1 = h12X1 +Z2 and S2 = h21X2 +Z1 are available as side-
information to receivers 1 and 2 respectively. We derive an
upper bound for the sum capacity of this genie-aided channel.

Let C1 and C2 be two (2nR1 , n), (2nR2 , n) codes such that
P

(n)
e,1 , P

(n)
e,2 → 0, where P

(n)
e,i = Pr({Ŵi �= Wi}). By Fano’s

inequality, for n sufficiently large
1
n

H(Wi|Y n
i ) ≤ 1

n
+ RiP

(n)
e,i < ε. (16)

Since conditioning cannot increase entropy, we have

H(Wi|Y n
i , Sn

i , TK
j ) < nε (17)

where Sn
i is the information provided to receiver i by the

genie, and TK
j is the information provided to transmitter i

from transmitter j during the conference. Now,

n(R1 + R2)
= H(W1) + H(W2)
= I(W1;Y n

1 , Sn
1 , TK

2 ) + H(W1|Y n
1 , Sn

1 , TK
2 )

+I(W2;Y n
2 , Sn

2 , TK
1 ) + H(W2|Y n

2 , Sn
2 , TK

1 )
(a)

≤ I(W1;Y n
1 , Sn

1 , TK
2 ) + I(W2;Y n

2 , Sn
2 , TK

1 ) + 2nε
= I(W1;TK

2 ) + I(W1;Y n
1 , Sn

1 |TK
2 )

+I(W2;TK
1 ) + I(W2;Y n

2 , Sn
2 |TK

1 ) + 2nε
= H(TK

2 ) − H(TK
2 |W1) + I(W1;Sn

1 |TK
2 )

+I(W1;Y n
1 |TK

2 , Sn
1 ) + H(TK

1 ) − H(TK
1 |W2)

+I(W2;Sn
2 |TK

1 ) + I(W2;Y n
2 |TK

1 , Sn
2 ) + 2nε

(b)

≤ H(TK
2 ) + h(Sn

1 |TK
2 ) − h(Sn

1 |TK
2 ,W1) + h(Y n

1 |TK
2 , Sn

1 )
−h(Y n

1 |TK
2 , Sn

1 ,W1) + H(TK
1 ) + h(Sn

2 |TK
1 )

−h(Sn
2 |TK

1 ,W2) + h(Y n
2 |TK

1 , Sn
2 )

−h(Y n
2 |TK

1 , Sn
2 ,W2) + 2nε

(c)

≤ H(TK
2 ) + h(Sn

1 |TK
2 ) − h(Sn

1 |Xn
1 ) + h(Y n

1 |TK
2 , Sn

1 )
−h(Y n

1 |Xn
1 , Sn

1 ) + H(TK
1 ) + h(Sn

2 |TK
1 ) − h(Sn

2 |Xn
2 )

+h(Y n
2 |TK

1 , Sn
2 ) − h(Y n

2 |Xn
2 , Sn

2 ) + 2nε
= H(TK

2 ) + h(Sn
1 |TK

2 ) − h(Zn
2 ) + h(Y n

1 |TK
2 , Sn

1 )
−h(Sn

2 ) + H(TK
1 ) + h(Sn

2 |TK
1 ) − h(Zn

1 )
+h(Y n

2 |TK
1 , Sn

2 ) − h(Sn
1 ) + 2nε

(d)

≤ h(Y n
1 |Sn

1 ) + h(Y n
2 |Sn

2 ) − h(Zn
1 ) − h(Zn

2 )
+n(C12 + C21) + 2nε

(e)

≤ n
(
γ
(
INR1 +

SNR1

1 + INR2

)
+γ
(
INR2 +

SNR2

1 + INR1

)
+ C12 + C21 + 2ε

)
where

(a) follows from Fano’s inequality (17);
(b) is due to H(TK

j |Wi) ≥ 0;
(c) follows from the fact that the encoding function is a

mapping from (Wi, T
K
j ) to Xn

i , so Sn
i −Xn

i −(Wi, T
K
j )

forms a Markov chain;
(d) is due to h(Sn

i |TK
j ) − h(Sn

i ) ≤ 0, h(Y n
i |TK

j , Sn
i ) ≤

h(Y n
i |Sn

i ), and H(TK
i ) ≤ nCij ;

(e) follows from [2, Thm. 1]

B. Asymptotic Sum Capacity

We now characterize the asymptotic sum capacity of
a Gaussian interference channel with transmitter coop-
eration link capacities C12 and C21 in the limit as
SNR1, INR1,SNR2, INR2 → ∞ while their log ratios

α1 =
log(INR1)
log(SNR1)

α2 =
log(INR2)
log(SNR2)



are kept constant. Denote the asymptotic sum capacity as
C∞

sum(C12, C21). A fundamental result in [2] is that in the very
weak interference regime, defined by α1 ≤ 1

2 and α2 ≤ 1
2 ,

C∞
sum(0, 0) ≈ 1 − α1

2
log
(
SNR1

)
+

1 − α2

2
log
(
SNR2

)
(18)

where f(x) ≈ g(x) denotes lim f(x) − g(x) = 0.
Theorem 3: In the very weak interference regime where

α1 ≤ 1
2 and α2 ≤ 1

2 , every transmit cooperation bit im-
proves the asymptotic sum capacity by exactly one bit as
SNR1, INR1,SNR2, INR2 → ∞ while α1 and α2 are kept
fixed. More precisely, assuming C12, C21 satisfy (4), then

C∞
sum(C12, C21) = C∞

sum(0, 0) + C12 + C21.

Proof: The achievability follows from the achievable rate
computation in Section IV. From (7), we have

h2
11Pp,1

N
=

1
Δ
[(

h2
cν1 + h2

dν2 + (hd − hc)2
)
SNR1

−(ν1 + ν2)h2
dINR1 + λ1

]
h2

21Pp,2

N
=

1
Δ
[(

h2
cν2 + h2

dν1 + (hd − hc)2
)
INR1

−(ν1 + ν2)h2
cSNR1 + λ2

]
(19)

where λ1 , λ2 and Δ are terms that will eventually vanish in
subsequent calculations as SNRi, INRi → ∞. Now, since α1

and α2 are fixed,

INR1 = SNR1
α1 INR2 = SNR2

α2 . (20)

Substituting (19) and (20) in (8), we get

R1 = γ

⎛
⎜⎜⎝

[h2
cν1 + h2

dν2 + (hd − hc)2]SNR1

−(ν1 + ν2)h2
dSNR1

α1 + λ1

[h2
cν2 + h2

dν1 + (hd − hc)2]SNR1
α1

−(ν1 + ν2)h2
cSNR1 + λ2 + Δ

⎞
⎟⎟⎠+ C12

≈ γ
(
Γ1SNR1−α1

1

)
+ C12, as SNR1 → ∞

(21)
where

Γ1 =
h2

cν1 + h2
dν2 + (hd − hc)2 − (ν1 + ν2)h2

dSNRα1−1
1

h2
cν2 + h2

dν1 + (hd − hc)2 − (ν1 + ν2)h2
cSNR1−α1

1
(22)

Similarly,

R2 ≈ γ
(
Γ2SNR1−α2

2

)
+ C21, as SNR2 → ∞ (23)

where

Γ2 =
h2

cν2 + h2
dν1 + (hd − hc)2 − (ν1 + ν2)h2

dSNRα2−1
2

h2
cν1 + h2

dν2 + (hd − hc)2 − (ν1 + ν2)h2
cSNR1−α2

2
(24)

It is easily verified that h2
cSNR1−α2

2 = h2
dSNRα1−1

1 . It immedi-
ately follows that Γ1Γ2 = 1. Therefore, as SNR1,SNR2 → ∞,
we have

R1 + R2 ≈ γ
(
Γ1SNR1−α1

1

)
+ γ
(
Γ2SNR1−α2

2

)
+ C12 + C21

≈ 1
2 log

(
Γ1SNR1−α1

1

)
+ 1

2 log
(
Γ2SNR1−α2

2

)
+ C12 + C21

=
1 − α1

2
log
(
SNR1

)
+

1 − α2

2
log
(
SNR2

)
+ C12 + C21

(25)

The converse follows from the outer bound in Theorem 2:

R1 + R2 ≤ γ
(
INR1 +

SNR1

1 + INR2

)
+γ
(
INR2 +

SNR2

1 + INR1

)
+ C12 + C21

< 1
2 log

(SNR1

INR1

)
+ 1

2 log
( INR1

SNR1
+

INR2
1

SNR1
+

INR1

INR2

)
+ 1

2 log
(SNR2

INR2

)
+ 1

2 log
( INR2

SNR2
+

INR2
2

SNR2
+

INR2

INR1

)
+C12 + C21

=
1 − α1

2
log
(
SNR1

)
+

1 − α2

2
log
(
SNR2

)
+ C12 + C21

+ 1
2 log

(
SNRα1−1

1 + SNR2α1−1
1 +
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INR2

)
+ 1

2 log
(
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2 +

INR2

INR1

)
(26)

The sum of the last two terms vanishes as SNR1,SNR2 → ∞
for α1, α2 < 1/2. This completes the proof.

VI. CONCLUDING REMARKS

This paper explores the use of cooperation link at the
transmitters for interference mitigation. We propose a zero-
forcing strategy which pre-subtracts part of the interfering
signal. This strategy is particularly effective in high SNR/INR
regimes—it gives one bit of sum-capacity improvement for
every cooperation bit in a very weak interference regime; it can
yield more than one-bit-per-cooperation-bit when compared
with the case where interference is treated as noise.
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