
ar
X

iv
:1

00
1.

41
20

v1
  [

cs
.IT

]  
23

 J
an

 2
01

0

Sum-Capacity and the Unique Separability of the
Parallel Gaussian MAC-Z-BC Network

Viveck R. Cadambe, Syed A. Jafar
Electrical Engineering and Computer Science

University of California Irvine,
Irvine, California, 92697, USA

Email: vcadambe@uci.edu, syed@uci.edu

Abstract—It is known that the capacity of parallel (e.g., multi-
carrier) Gaussian point-to-point, multiple access and broadcast
channels can be achieved by separate encoding for each sub-
channel (carrier) subject to a power allocation across carriers.
Recent results have shown that parallel interference channels are
not separable, i.e., joint coding is needed to achieve capacity in
general. This work studies the separability, from a sum-capacity
perspective, of single hop Gaussian interference networkswith
independent messages and arbitrary number of transmittersand
receivers. The main result is that the only network that is always
(for all values of channel coefficients) separable from a sum-
capacity perspective is the MAC-Z-BC network, i.e., a network
where a MAC component and a BC component are linked by
a Z component. The sum capacity of this network is explicitly
characterized.

I. I NTRODUCTION

Wireless networks are often associated with channel states
that are time-varying/frequency-selective. These networks are
equivalently described as parallel (i.e. multi-carrier) Gaussian
networks. Theseparability of a parallel Gaussian network
implies that the network capacity can be achieved by us-
ing separate coding/decoding over each carrier (i.e. parallel
component), so that the capacity can be expressed as a sum
of the capacities of the individual sub-channels, subject to
optimum power allocation. For instance, it is well known that
parallel Gaussian point to point channels are separable, with
the optimal power allocation across the carriers found using
the water-filling algorithm. Similarly, the parallel multiple
access (MAC) and broadcast (BC) networks are known to be
separable. An important consequence of this separability is that
it greatly simplifies the problem of its capacity characterization
of parallel channels because for a separable network it suffices
to study the network in a fixed channel state. Specifically,
the capacities of ergodic fading Gaussian point to point,
multiple access and broadcast networks are the averages of
the capacities achieved over each channel fading state, subject
to the optimum power allocation.

Unlike parallel Gaussian point to point, MAC and BC
networks, it has been discovered recently, in references [1], [2]
that parallel Gaussian interference networks are not separable,
i.e., parallel interference channels in general needjoint coding
over the carriers to achieve capacity. Thus, for these networks
the capacity characterization for a fixed channel state does
not provide a direct extension to the capacity of parallel, e.g.,
time-varying/frequency-selective scenarios. In particular, the
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Fig. 1. A MAC-Z-BC network withS = 4 transmitters andD = 3 receivers

ergodic capacity of interference networks can be much higher
than the average of the capacity expressions for each fixed
channel state, even with the best power allocation across states
[2], [3].

Beyond the special cases identified above, i.e., the Gaussian
MAC, BC, and interference networks, for the vast major-
ity of Gaussian networks the separability properties have
not been determined. As the focus of research in network
information theory advances through increasingly complex
network topologies, the separability properties of these net-
works will be the key to their capacity characterizations in
the presence of fading. It is this endeavor - the study of
separability properties of more complex (albeit single-hop)
Gaussian wireless networks - that is the focus of this paper.
Our main result can be summarized as follows.The only
distributed1 single-hop wireless network, which is separable
from a sum-capacity perspective, is the MAC-Z-BC network
(Fig. 1, defined formally later).The separability of point-to-
point MAC and BC networks automatically follow from our
main result, since they are special cases of the MAC-Z-BC
network. The separability leads to a characterization of the
sum-capacity of the parallel MAC-Z-BC network.

II. SYSTEM MODEL : PARALLEL SINGLE-HOP WIRELESS

NETWORKS

Definition 1: Network : A Gaussian wireless single-hop
networkN is characterized by(S,D, E ,M). HereS denotes
the number of sources or transmitters,D represents the number
of destinations or receivers. The topology of the network is

1We assume that nodes are half-duplex, i.e., transmitters cannot receive
and receivers cannot transmit, so that co-operation, feedback, relaying are all
precluded in the network.
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identified by aconnectedundirected bipartite graph between
the set of transmittersS = {1, 2, . . . , S} and the set of
receiversD = {1, 2, . . . , D}, with E ⊆ D × S representing
the set of edges in the network.M ⊆ E is used to identify
the message-graph or message-set, where corresponding to
element(j, i) ∈ M, j is termed the message destination, and
i, the message source. Finally, we assume that1 ≤ i ≤ S ⇒
∃j0, (j0, i) ∈ M and 1 ≤ j ≤ D ⇒ ∃i0, (j, i0) ∈ M. In
other words, for every source, there exists at least one message
destination, and similarly, for every destination, there exists at
least one message source.

Given a networkN
△
= (S,D, E ,M), an instanceof the

network is uniquely identified by(F, P ,H), whereF denotes
the number of carriers,P = (P1, P2, . . . , PS) is a S × 1
vector denoting the power constraints andH is a DF × SF
dimensional complex channel gain matrix. The channel gain
matrix can be expressed as a block matrix,H = [Hj,i]
where Hj,i is a diagonal2 F × F dimensional matrix for
(j, i) ∈ {1, 2, . . . , D} × {1, 2, . . . , S}, such thatHj,i = 0

if (j, i) /∈ E . We use the termsinstance of the network,
and channel, interchangeably in the paper. The input-output
relations of the channel can be represented as

Yj(τ) =
∑

(j,i)∈E

Hj,iXi(τ) + Zj(τ) (1)

where, corresponding to theτ th channel use,Xi(τ) =
(Xi(1, τ), Xi(2, τ), . . . , Xi(F, τ)) represents theF × 1 com-
plex input vector at Transmitteri ∈ {1, 2, . . . , S}, whosef th
component indicates the input corresponding to thef th carrier
for f ∈ {1, 2, . . . , F}. Similarly, for j ∈ {1, 2, . . . , D}, Yj(τ)
and Zj(τ) are F × 1 vectors respectively representing the
complex output and circularly symmetric complex additive
white Gaussian noise respectively. We assume that the additive
noise has zero-mean and identity covariance. For brevity
of notation, the dependence on the channel-use indexτ is
dropped unless necessary. Thef th diagonal entry of diagonal
matrixHj,i represented byHj,i(f) indicates the channel gain
between Transmitteri and Receiverj in thef th carrier. There
are |M| independent messages in the system indicated by
Wj,i where (j, i) ∈ M. MessageWj,i is generated at the
Transmitter i and is intended for Receiverj. We assume
that the codewords satisfy an average power constraint, i.e.,
E
[

1
T

∑T

t=1

∑F

f=1 |Xj(f, t)|2
]

≤ Pj , where T denotes the
length of the codeword. For codewords of lengthT , the rates
Rj,i =

log(|Wj,i|)
T

are said to beachievableif the probability
of error of all messages can be made arbitrarily small by
choosing an appropriately largeT . The capacity region of the
channelCN (F, P ,H) is defined to be the set of all achievable
rate matrices[Rj,i] over the channel. The sum-capacity of the
channelCN (F, P ,H) is defined as

CN (F, P ,H) = max
[Rj,i]∈CN (F,P ,H)

∑

(j,i)∈M

Rj,i.

2Note that the diagonal nature of the channel matrix reflects the fact that
we assume negligible inter-carrier interference.

Note that the above framework captures any arbitrary parallel
single-hop wireless network with distributed single-antenna
half-duplex transmitting and receiving nodes. For example, the
K-user interference network is characterized by(S = K,D =
K, E ,M), whereE = {1, 2, . . . ,K}2 andM = {(i, i) : i ∈
{1, 2, . . . ,K}}. Following standard nomenclature, we refer to
the edges(i, i) as the direct links, and the edges(i, j), i 6= j
as cross links fori, j ∈ {1, 2, . . . ,K}.

Notation: The notationH(f) is used to indicate theD ×
S matrix of channel gains corresponding to thef th carrier,
i.e., [Hj,i(f)], wherej = 1, 2, . . . , D, i = 1, 2, . . . , S. When
F = 1, we useH to represent the matrixH(1). We also use
the notationXT

i = (Xi(1),Xi(2), . . . ,Xi(T )) for 1 ≤ i ≤
S. The quantitiesYT

j ,Z
T
j , X

T
i (f), Y

T
j (f), ZT

j (f) are defined
similarly for 1 ≤ i ≤ S, 1 ≤ j ≤ D, 1 ≤ f ≤ F .

A. Separability

Definition 2: Separability of a Network A channel be-
longing to networkN characterized by(F, P ,H) is said to
be separableif and only if

CN (F, P ,H) = max
∑

F
f=1 P

[f]
≤P

F
∑

f=1

CN
(

1, P
[f ]
, H

[f ]
)

A channel is said to beinseparable, if it is not separable. A
networkN is said to be separable if all its instances (channels)
are separable. The network is inseparable if it is not separable.

Remark: We focus on separability from the perspective of
sum-capacity of the network in this paper. Separability of
networks from the perspective of the whole capacity region
can be correspondingly defined; their study is an area of future
work.

Definition 3: Sub-network A network N
′ △

=
(S

′

, D
′

, E
′

,M
′

) is said to be asub-networkof network

N
△
= (S,D, E ,M) if S

′

≤ S,D
′

≤ D, E
′

⊆ E and
M

′

= M∩ E
′

.
In plain words, sub-networkN

′

can be obtained from network
N by deleting certain links from networkN . For example, the
Z-interference network, characterized by(S = 2, D = 2, E =
{(1, 1), (1, 2), (2, 2)},M = {(1, 1), (2, 2)} is a sub-network
of K-user interference networks.

Lemma 1:A network is separable only if all its sub-
networks are separable. Equivalently, if a sub-networkN

′

of network N is inseparable, then the networkN is also
inseparable.
The above lemma can be shown based on the definition of
separability as follows. First, note thatN

′

can be derived by
setting certain channel gains inN to zero. Consider the case
whereN

′

is inseparable. The inseparability ofN
′

implies
that an instance ofN

′

exists where separate coding is sub-
optimal. This instance can be used to construct an instance
of N where separate coding is suboptimal, by setting the
appropriate channel gain matrices to0 in N . HenceN is
inseparable.



III. M AIN RESULT : UNIQUE SEPARABILITY OF THE

MAC-Z-BC CHANNEL

A. Background on Interference Networks and Motivation

Interference networks have been shown to be inseparable in
[1], [2]. We summarize the main factors behind the insepara-
bility of interference networks below, since they will be seen
to recur in our main result as well.

• [1] Joint coding enables interference alignment, whereas
separate coding does not (used to show inseparability of
the 3-user interference network).

• [2] Joint coding enables a receiver to use the interfering
signal received over certain carriers to cancel interference
from other carriers - this is not possible with separate
coding (used to show that theZ-interference network is
inseparable).

Note that the interference network does not exploit the full
potential of the physical channel because every link does
not carry a message. For example, the capacity of theZ-
interference channel does not increase (beyond an extent)
as the strength of the cross-link is made arbitrarily large,
if the strength of the direct links are held constant. Based
on this motivation, we study the separability properties ofa
more general class of networks where every link can carry
a message, i.e., whereM can be any sub-set ofE . We will
find that, surprisingly, theZ network - which is physically
identical to theZ-interference network except that the cross-
link also carries a message (M = E) - is in fact separable
from a sum-capacity perspective.

B. Main Result : Unique Separability and Sum-Capacity of
MAC-Z-BC network

Definition 4: The MAC-Z-BC network is characterized by
(S,D, E ,M = E), whereE has the following property.

deg(Ti) > 1, i
′

6= i ⇒ deg(Ti
′ ) = 1, ∀i

′

, i ∈ S

deg(Rj) > 1, j
′

6= j ⇒ deg(Ri
′ ) = 1, ∀j, j

′

∈ D

where,S = {1, 2, . . . , S}, D = {1, 2, . . . , D}, deg(Ti) is the
degree of Transmitteri, anddeg(Rj) is the degree of Receiver
j.

Remark: The MAC-Z-BC network, based on the above
definition, can be noted to contain a MAC component and
a BC component connected by aZ component (See Fig. 1).
The MAC, BC andZ networks are sub-networks of the MAC-
Z-BC network.

The main result of the paper can be stated as follows :
Theorem 1:A network N is separable if and only if it is

the MAC-Z-BC network (or one of its sub-networks).
Theorem 2:Consider a single-carrier MAC-Z-BC channel

characterized by(1, P ,H), wheredeg(Ti) > 1 < deg(Rj) ⇒
j = 1, i = S (See Fig. 1). Then, its sum-capacity is

CMAC−Z−BC(1, P ,H) = log



1 +

S
∑

j=1

|H1,j|
2Pj





+ log

(

1 + |H |2PS

1 + |H1,S |2PS

)

,

whereH = maxj=1,2,3,...,D |Hj,S |.
The two theorems lead to a sum-capacity characterization
of the parallel MAC-Z-BC network as the sum of the sum-
capacities of the individual carriers, under an optimal power
allocation. The achievability of the expression in Theorem
2 can be seen as follows. Letj∗ = argmaxj=1,2,...,D Hj,S

so that |H | = Hj∗,S . TransmitterS generates only one
messageWj∗,S and sets all other messages to null, i.e.,
Wj,S = φ, j 6= j∗. If j∗ = 1, then the capacity can be
achieved over the multiple access channel formed at Re-
ceiver 1 and Transmitters1, 2, . . . , S. If j∗ 6= 1, Receiver
j∗ observes a point-to-point channel from TransmitterS to
achieve a rate oflog(1 + |Hj∗,S |

2PS). Receiver1 treats the
interference from TransmitterS as noise and a total rate of
log(1 +

∑S−1
i=1 |H1,i|2Pi) can be achieved for the messages

W1,j , j 6= S over the multiple access channel formed at
the receiver. The converse for Theorem 2 follows from the
converse of Theorem 1 (Appendix A).

The proof of Theorem 1 involves two parts. First, we prove
that the MAC-Z-BC network is separable; then, we show
that any network which is not the MAC-Z-BC network is
inseparable. The proof of the separability of the MAC-Z-BC
network is placed in Appendix A. Intuitively, the separability
of the Z network (which is a sub-network of the MAC-Z-
BC network) can be understood as follows. Note that the
Z-interference network is inseparable because joint coding
enables better interference-cancellation over the cross-link.
However, in theZ network, any bit that the receiver is able to
decode over the cross-link can be used for the desired message,
rather than for interference management and the second factor
of inseparability listed in Section III-A, is avoided from a
sum-capacity perspective. We will now present a proof of the
second part of Theorem 1, i.e., we show that any network
which is not the MAC-Z-BC network is inseparable.

Property 1: Consider any networkN characterized by
(S,D, E ,M = E). In the network, if∃(i, j), i 6= j such that

deg(Ti) > 1 < deg(Tj) or deg(Ri) > 1 < deg(Rj)

then, the networkN has at least one of the following three
networks as a sub-network.

1) TheZ-interference network.
2) The 2-userX network (Fig. 2(a)), withS = 2, D =

2, E = {1, 2} × {1, 2}, M = E .
3) The Σ network (Fig. 2(b)), withS = 2, D = 3, E =

{(1, 1), (2, 1), (2, 2), (3, 2)}, M = E .
4) The

Σ

network (Fig. 2(c)), withS = 3, D = 2, E =
{(1, 1), (1, 2), (2, 2), (2, 3)}, M = E .

Based on the above property of connected bipartite graphs
(See Appendex B for a proof) and Lemma 1, it is enough to
show that theZ-interference network,2-userX network, the
Σ network and the

Σ

networks are all inseparable. TheZ-
interference network has been shown to be inseparable in [2].
We show the inseparability of the latter networks below.

1) The 2-user X network: Consider a2-userX channel
(See Fig. 2 (a)) whereF = 3, P = (P, P ) and



1

0

1X1(1)

X2(1) Y2(1)

Y1(1)

1

1

1

X2(2) Y2(2)

Y1(2)X1(2)

10

1

1

1

1

Y1(3)

Y2(3)X2(3)

X1(3)

0

1

1

1
0

1

1

1

X1(1)

X2(1) X2(2)

X1(2)

Y2(2)

Y1(2)

Y2(1)

Y1(1)

Y3(1) Y3(2) X3(2)X3(1)

X1(1)

X2(1) X2(2)

X1(2)

Y1(2)

Y2(2)

Y1(1)

Y2(1)

1

1

1

0

0

1

1

1

(a) A 2-user X channel with F = 3 carriers
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Fig. 2. Inseparable wireless channels (Note that the numberon the link denotes the channel gain).

H(1) =

[

1 0
1 1

]

= (H(2))T , H(3) =

[

1 1
1 1

]

With this, it can be noted (because of the fact that the first two
carriers formZ channels, and the third carrier is a degraded
X channel [4]) that

CX(1, P ,H(f)) ≤ log(P ) + o(log(P ))

⇒ max
∑

3
f=1 P

[f]
≤P

3
∑

f=1

CX(1, P
[f ]
, H(f))

≤ 3 log(P ) + o(log(P )), (2)

Joint coding can achieve a higher rate (scaling withP ). To
see this consider an achievable scheme, where each mes-
sageWi,j , i, j ∈ M is encoded as a Gaussian codeword
xi,j(τ), τ = 1, 2, . . . , T . The transmit codeword at Transmitter
j, Xj , is determined as

Xi(τ) =

D
∑

j=1

xj,i(τ)Vj,i (3)

whereτ = 1, 2, . . . , T , andVj,i is a F × 1 (beamforming)
vector as follows.

V1,1 = V1,2 = [1 0 1] ,V2,2 = V2,1 = [0 1 1]

The above beamforming vectors ensure thatH1,1V2,1 =
H1,2V2,2 and H2,1V1,1 = H2,2V1,2, i.e., both interfering
messages at each receiver arealignedinto one dimension, sim-
ilar to [5]. It can also be verified that, at Receiverj ∈ {1, 2},
the two desired signal vectors are linearly independent of the
(aligned) interference. Thus in aF = 3 dimensional space,
by linearly nulling the (aligned) interference dimension,one

interference-free dimension can be achieved for each of the
two desired messages at a receiver. Each message can thus
achieve a rate oflog(P ) + o(log(P )) [5] and

CX(1, P ,H) ≥ 4 log(P ) + o(log(P )).

Comparing the above with (2), we can conclude that, for
sufficiently largeP , the2-userX channel is inseparable. Thus,
the enabling of alignment via joint coding renders the2-user
X network inseparable.

2) The Σ network: The inseparability of theΣ channel
where F = 2, P = (P, P ) and the channel gains shown
in Figure 2 (b) can be shown based on the enabling of
interference alignment. To see this, first, note that separate
coding allows, at most, a sum-rate of2 log(P ) + o(log(P )),
since each carrier viewed separately forms aZ channel whose
sum-rate is at mostlog(P ) + o(log(P )) per carrier [6]. A
sum-rate of3 log(P ) + o(log(P )) based on a joint coding
scheme, with each ofW1,1,W2,1,W3,2 achieving a rate of
log(P ) + o(log(P )) (and R1,2 = 0)). The messages are
encoded as in (3), whereV1,1 = V2,3 = [1 0]T andV2,1 =
[1 1]T . Then, the two interfering messagesW1,1,W3,2 align
at Receiver2, i.e. H2,1V1,1 = H2,2V3,2. It can be verified
that this scheme achieves one interference-free dimensionfor
W1,1,W2,1,W3,2 so that the desired rate (scaling withP ) is
achieved implying the inseparability of theΣ network.

3) The

Σ

network: The

Σ

channel of Fig. 2(c), which is
a reciprocal of theΣ channel of Fig. 2 (b) can be shown
to be inseparable using the reciprocity of beamforming based
alignment schemes ([7], [4]). Note that in the

Σ

network, each
receiver faces at most one interferer, and it is hard to conceive
of the possibility of alignment. We take a closer look at the
channel to understand its inseparability from the perspective
of the factors listed in Section III-A. First note that separate



coding achieves a sum-rate of at most2 log(P ) + o(log(P )),
since each carrier forms aZ channel. A sum-rate of3 log(P )+
o(log(P )) can be achieved using joint coding with each of
W1,1,W1,2,W2,3 achieving1 interference-free dimension. To
see this, let Transmitter2 encodeW1,2 so that it transmits iden-
tical signals on both carriers - this would be a beamforming
based joint coding scheme where the beamforming vector is
[1 1]T . Then, each of the two receivers can subtract the signals
received along both carriers to null the signal from Transmitter
2 to achieve an interference-free dimension forW1,1,W2,3.
Note that Receiver1 gets an interference-free dimension for
W1,2 on the first carrier. Thus, joint coding enables better
interference cancellation at the two receivers and the second
factor identified in Section III-A causes inseparability. While
the fundamental reason of inseparability remains the same
as theZ-interference channel [2], the nature of interference-
cancellation in our example differs from the [2] in that it is
linear, whereas the scheme in [2] is non-linear (successive
decoding). Note that unlike theZ network where interference
management (and the associated factor of inseparability) can
be avoided by using the cross-link for the desired message,
interference management is unavoidable in the

Σ

network
becauseW1,2 andW2,1 are necessarily an interfering messages
respectively for Receivers2 and1.

IV. CONCLUSION

We recognize two principle factors causing inseparability
in parallel wireless networks and based on the intuition
obtained, identify the MAC-Z-BC as the uniquely separable
wireless network. Associated interesting areas of future work
are identification of separability properties of networks with
multiple antennas, and its study from the perspective of the
entire capacity region.

APPENDIX A
THE MAC-Z-BC CHANNEL IS SEPARABLE

We assume thatdeg(Ti) > 1 < deg(Rj) ⇒ j = 1, i = D
(See Fig. 1). We show a (tight) converse, which bounds the
sum-rate on the parallel MAC-Z-BC channel. The achievabil-
ity of the sum-rate upper bound follows from separate coding
and the capacity of the single-carrier MAC-Z-BC (Theorem
2). For the converse, we create ReceiverD+ 1 whose output
is

YD+1(τ) = HXS(τ) + ZD+1(τ)

whereZD+1 is unit-variance circularly symmetric white Gaus-
sian noise.H is aF ×F diagonal matrix whosef th diagonal
entry is determined asH(f) = maxi=1,...,D Hi,S(f). Note
that ReceiverD + 1 is an enhanced receiver so that, with
any achievable scheme, it can decodeWi,S , ∀i = 1, 2, . . . , D.
Given any achievable scheme of lengthT , we denoteP [f ]

j =

E
[

1
T
|Xj(f)|2

]

, j = 1, 2, . . . , S. Note that
∑F

f=1 P
[f ]
j < Pj .

Using Fano’s inequality for we can write for anyǫ > 0

D
∑

i=1

Ri,S − T ǫ ≤ I(YT
D+1;X

T
S )

= h(HX
T
S + Z

T
D+1)− h(ZT

D+1) (4)

S−1
∑

j=1

R1,j − T ǫ ≤ I
(

Y
T
1 ;X

T
1 ,X

T
2 , . . . ,X

T
S−1

)

= h(YT
1 )− h(H1,SX

T
S + Z

T
1 ) (5)

Adding (4),(5), we get
∑

(i,j)∈M

Ri,j − 2T ǫ

≤ h(YT
1 )− h(ZT

D+1)

+ h(HX
T
S + Z

T
D+1)− h(H1,SX

T
S + Z

T
1 )

≤ T

F
∑

f=1

(

h(Y ∗
1 (f))− h(Z∗

D+1(f))

+ h(H(f)X∗
S(f) + Z∗

D+1(f))− h(H1,SX
∗
S(f) + Z∗

1 (f))
)

where, in the final inequality, the asterisk superscript indicates
that the entropy is evaluated using a Gaussian distribution
where the variance ofXi(f) is P

[f ]
i . In the inequality, the first

term follows from the the chain rule, the facts that conditioning
reduces entropy, and that the circularly symmetric Gaussian
random variables maximize differential entropy under a power
constraint. The second term follows simply from the distribu-
tion of the additive noise. The final two terms are bounded
using the fact thatH1,S(f)XS(f)

T + Z1(f)
T is a degraded

version ofH(f)XS(f)
T +ZD+1(f)

T for all f = 1, 2, . . . , F
and Lemma 2 in [8]. Thus, we can write

CMAC−Z−BC(F, P ,H) ≤
F
∑

f=1

(

log



1 +

S
∑

j=1

|H1,j(f)|
2P

[f ]
j





+ log

(

1 + |H(f)|2P
[f ]
S

1 + |H1,S(f)|2P
[f ]
S

))

This completes the proof.

APPENDIX B
PROOF OFPROPERTY1

Consider any networkN characterized byS,D, E ,M. We
split the proof into various cases.

Case 1 :M 6= E

In this case,E−M is non-empty; without loss of generality,
let (1, 1) ∈ E − M. Also, based on the system model
∃i0, j0 such that(1, i0) ∈ M and (j0, 1) ∈ M. Now, the
edges{(1, 1), (1, i0), (j0, 1)} form a Z-interference network.
Therefore, theZ-interference network is a sub-network ofN
if M 6= E .

Case 2 :M = E , and∃i0 6= j0, deg(Ti0) > 1 < deg(Tj0)

Let Di = {j : (j, i) ∈ E , j ∈ {1, 2, . . . , D} represent the set
of destinations which are connected directly to source nodei.
Note that|Di0 | > 1 < |Dj0 |. We divide this case into three
sub-cases as follows.



1) Sub-case (a) :|Di0 ∩ Dj0 | ≥ 2: In this case, leti1 6=
i2, i1, i2 ∈ Di0 ∩ Dj0 . Then, the edges{i1, j1} × {i0, j0} ⊂
E = M form a 2-userX network as a sub-network ofN .

2) Sub-case (b) -|Di0 ∩ Dj0 | = 1: Here, let k1 ∈
Di0 ∩ Dj0 . Also, let i1 6= k1 6= j1 and i1 ∈
Di0 , j1 ∈ Dj0 . Then, it can be easily noted that the edges
{(i1, i0), (k1, i0), (k1, j0), (j1, j0)} ⊂ E form a Σ network as
a sub-network ofN .

3) Sub-case (d) -Di0 ∩ Dj0 = φ: Let i1 ∈ Di0 and
j1 ∈ Dj0 . Note that we consider connected network graphs
in our model. LetE1, E2, . . . , EN be a sequence of edges
denoting a path, devoid of cycles, between nodesi1 and
j1, whereEn ∈ N , n = 1, 2, . . . , N. First, note that since
the path is between two receivers (in our bipartite network
graph),N has to be even. Now, note that ifN > 3, this
automatically means that the edgesE1, E2, E3, E4 form a Σ
network. Therefore, we only need to consider the case where
N = 2. If N = 2, let E1 = (i1, k0) and E2 = (j1, k0).
Notice that we are considering the case whereDi0 ∩ Dj0 =
φ which means thati0 6= k0 6= j0. Then, the edges
{(i1, i0), (i1, k0), (j1, k0), (j1, j0)} ⊂ E form a

Σ

network as
a sub-network ofN .

Case 3 :M = E , and∃i0 6= j0, deg(Ri0) > 1 < deg(Rj0 )

The proof for this case is similar to the proof for case2.
This completes the proof.
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