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Abstract—In this paper we construct multidimensional codes are interested either in a small number of errors or that the
with high dimension. The codes can correct high dimensional cluster is spread in radius at most one from the center of the
errors which have the form of either small clusters, or confired error event

to an area with a small radius. We also consider small number .
of errors in a small area. The clusters which are discussed ar How can we correct such bursts? If the S'Z(? of the bur.st
mainly spheres such as semi-crosses and crosses. Also comid IS One then we can always use an one-dimensional Hamming
are clusters with small number of errors such as 2-bursts, tw code folded on theé)-dimensional array to obtain an optimal
errors.in various clusters, and three errors on a line. Our mgin code. Given a sef with patterns of errors, the most natural and
focus is on the redundancy of the codes when the most dominant gjs1e way to correct an error frosi is to correct a box-error
parameter is the dimension of the code. . . . - .
which contains all possible errors fro\ This might result
[. INTRODUCTION in a large excess redundancy as the number of pattersss in
Multidimensional coding in general and two-dimensionanight be much smaller than the number of patterns defined
coding in particular is a subject which attracts a lot ofatiten by a box-error. The goal of this paper is to construct codes
in the last three decades. But, although the related theforywgth excess redundancy much smaller than the one implied by
the one-dimensional case is well developed, the theoryhier ta correction of a related box-error. If the size of the busst i
multidimensional case is developed rather slowly. Thistie dtwo then we will see in the sequel that a code with optimal,
to the fact that most of the one-dimensional techniques aealmost optimal, excess redundancy can be constructed. Bu
not generalized easily to higher dimensions and usuallyymaifi the size of the burst is three then we don’t know how to
different techniques are used in the multidimensional .case construct a code which attains the lower bound on the excess
Remark 1: In our discussion we will consider noncyclicredundancy. In fact, the question how to construct an optima
arrays, even if the construction works on a cyclic array, i.ecode which corrects an arbitrary cluster is still open.
a torus. This is done for convenient reasons. In the follgwin The rest of the paper is organized as follows. In Sedfibn I
redundancy definition, the array is considered to be cycliwe present the definitions of linear codes and shapes which
But, since the size of the array is very large we will omit thare discussed throughout this paper. In Sediidn Il we discu
minor difference in the redundancy between a cyclic array asodes for which the error is small and confined to an one-
a noncyclic array. dimensional line. We will examine two types of errors, 2disr
A binary multidimensional error-correcting code correctand 3-bursts (bursts of length two and three, respectivaty)
errors which occur in a multidimensional array. Throughbet a line, where ab-burst is any set of errors that is confined
paper the volume of the array i$. If we are given a set with to an area of sizé. In Section[I¥ we discuss a coloring
3 possible patterns of errors (no error is also such a pattemgthod presented iri|[3] and explain how it is designed to
that can occur anywhere in the array then the redundancyoofrect cluster errors. We show how to correct error whose
the code must satisfy > log (N - 3) =log N +log 8 (all shape is a semi-cross (corner) with arms of length one (sadiu
logarithms in this paper are in base 2). The differencbog N of length one) or a cross (Stein’s sphere) with arms of length
is called theexcess redundancy of the codel[1], [[2]. one (radius of length one). These two shapes will exhibit an
Abdel-Ghaffar [1] constructed binary two-dimensionaéxcellent example for the strength of the coloring method.
codes which correct a cluster of a rectangle shape with Bredn Section[\V we consider clusters with small weight inside
for whichr = [log N+ B. These codes attain the lower bounea relatively larger cluster. We present asymptoticallyiropt
on the excess redundancy. There is no known generalizatgmutions for the case where the weight is two and the clister
for the construction of Abdel-Ghaffaf][1] to more than twa semi-cross, cross, or a two-dimensional square. In $d¥¢flo
dimensions. Moreover, the number of length parameters we conclude and present the goals for the future research.
which the construction works is very limited. A constructio
in [3] produces aD-dimensional code for correction of &-
dimensional box-error with redundanfipg N+ B+[log b ], A binary multidimensionab-error-correcting code is a set
whereb; is the length of theD-dimensional box in the first C' consisting ofD-dimensional binary arrays of the same size,
dimension. For the two-dimensional case, this constrandso such that if we are given an array from C' and the values
more flexible in its parameters than the constructiori In [1]. of up to b positions in.4 are changed, then we will be able
In this paper we are interested iP-dimensional codes, to recover.A. We consider only linear codes as done in all
where D > 2 is usually very large. On the other hand, werevious works.

Il. BASIC DEFINITIONS
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A binary D-dimensional linear codé€’ is a linear subspace A. Correction of 2-burst
of then; x ny x --- x np binary matrices. If the subspace is
of dimensionN — r, where N = [[._, ns, we say that the
code is ann; x ng X --- X np, N — r| code. The code can
be also defined by its parity-check matrix. LEt = (h; ;),
wherei € I, I = {(41,i2,...,ip) : 0 <1ip <ny—1}, and
0 <j<r-—1,be a(D +1)-dimensional binary matrix of size
niy X ng X --- X np X r, consisting ofr linearly independent
ny X mg X -+ X np matrices. Letc = (¢;) denote a binary
n1 X ng X -+ X np matrix. The linear subspace defined by th&
following set of equations,

Assume that we have B-dimensional array of siza; x

ng X - - - x np on which we want to correct any cluster of error
that can be confined to a 2-burst.

Construction A: Let o be a primitive element in GE(*) for
2m — 1> [[7, ne. Letd = [log D] andi = (i1, ia, .. .,ip),
where0 < iy < ny — 1. Let A be ad x D matrix containing
distinct binaryd-tuples as columns. We construct the following
1Xng X Xnp X (m-+d+ 1) parity check matrix{:

1
Zcihi,j =0, hi = AiT mod 2 ,
iel it i (T jq me)
forall0 <j<r—1,isan[ny xny x---xnp, N —r] code.
We say that- is the redundancy of the code. for all i = (i1,42,...,ip), where0 <i, <ny — 1.
Our goal in this paper is to handlB-dimensional errors  Remark 2: The matrix A that we are using was also used
from one of the following types: in [9], but the construction here is more flexible in its pa-

« Errors which don't spread more than one position aroui@meters. This is a consequence from the way that we fold
an artificial center (which is the center of the error eventii€ elements of GE(*) into the parity-check matrix of the
« Two errors in a cluster of some shape. code. Moreover, we will see in the sequel that this method

These clusters include the following types of bursts. will be of use for gqnstructlons of larger bursts with at most
1) A D-dimensional 2-burst which corresponds to an tngo erroneous positions.
P Y In the decoding algorithm we assume that the error occurred

adjacent pos.|t|ons that m|g.ht be In error. can be confined to a 2-burst. The syndrome receivaudthe
2) A D-dimensional 3-burst in which all the errors are X . :
decoding algorithm consists of three parts.

on the same line. Such an error corresponds to threé

positions of the forntiy, ... i, 1,i;—1,ij41,-..,ip), « The first bit determines the number of errors occurred.
(i1, yij-1,04,041,---,ip), and (i1,...,i; 1,3 + Obviously if the syndrome is the all-zeroes vector than
1,ij41,...,ip) for somej, 1 < j < D. no errors occurred. If the first bit of the syndrome is an

3) A D-dimensional burst whose shape is a semi-cross with one then exactly one error occurred and its position is the
arms of length one. Such a semi-cross has a center point Position ofv in H. If the first bit of a non-zero vector
at (i1, is,...,ip) and includes all the points of the form v is azero then two errors occuUed. Their position is
(i1, ij-1,0; + 1,ij01,...,ip), 1 < j < D. determined by the othen + d entries ofv.

4) A D-dimensional burst whose shape is a cross with » The nextd bits determine the dimension in which the
arms of length one. Such a cross has a center point at burst occurred. There ai@ dimensions and each column

(i1,i2,...,ip) and includes all the points of the form of the matrix A corresponds to a different dimension
(i1,...,ij_1,i; —1,ij41,...,ip) and all the points of for _tyvo consecutive errors. If the errors occurred in
the form(iy, ..., i;_ 1,454 1,ij41,...,ip), 1 < j < D. positionsiy; = (i1,...,ip) andiz = (i1,...,4;-1,%; +

5) Two errors inside a semi-cross or a cross with arms of 1,%j+1,---,ip) then the value of thel bits, (Aif +
length R. A semi-cross with arms of lengt® has a Aij) mod 2, is the j-th column of the matrixA.
center point afiy, is, . .., ip) and includes all the points The entries of the lastn rows of the matrixH form
of the form (i1, ..., i 1,5+ {,ij41,...,ip), 1 < j < the folding of the firstHlelng consecutive elements of

D, 1 < ¢ < R. Similarly, a cross with arms of length GF@™). Given a dimensior there exists an intege(()
R is defined. These errors are also related to two errors Such that each two consecutive elements in dimenéion

inside a two-dimensional square with edges of length have the forma/, o/ () It is easy to verify that for
Why are we interested in crosses and semi-crosses? Errors J1 7 j2 We havea + alt T £ o2 + a2 0. Thus,
are likely to be spread within spheres to some limited radius ~ 9/ven the dimension of the burst of size two, the last
Crosses and semi-crosses are types of spheres as describecPitS Of v can determine the two consecutive positions of
in [4] which are relatively simpler to handle than other sgse the burst.
These spheres are also discussed extensively in the diterat Theorem 1:

e.g. [3], [6], (7], [&]. « The code constructed in Construction A can correct any
[1l. CONSTRUCTIONS WITHLOW REDUNDANCY error pattern confined to a 2-burstin apxny x - --xnp
array codeword.
« The code constructed by Construction A has redundancy
which is greater by at most two from the trivial lower
bound on the redundancy.

In this section we will handle two types of errors, 2-burst
and 3-burst on a straight line. The number of possible padter
of errors (excluding no errors) which can be confined tb-a
dimensional 2-burst i + 1 and to aD-dimensional 3-burst
on aline is3D+1. Hence, a lower bound of their redundancies Remark 3: There are cases in which we can prove that the
is log ((D +2)- N) and log((3D + 2) - N), respectively. code of Construction A is optimal.



B. 3-burst on a line additional information concerning the positions of theoesr

Next, we would like to consider correction of error patternke it reduces the sets of possible locations of errors ias
confined to an arbitrary-dimensional 3-burst. This appears tdveré found byCi, Cs, ..., Cs—1. Finally, the last component
be much more difficult than the 2-burst case. The main reasgifie finds the actual positions of the burst-error. To execut
is that the error can be spread on a two-dimensional subspdBSe tasks the colorings should satisfy a few properties:
Therefore, we consider only the case oflxdimensional ¢ (P.1) For thes-th coloring, for eachs, 1 < s < D,
cluster of size three on an one-dimensional subspaceni.a. o the colors inside a burst of the given shape are distinct
straight line. In this case we can generalize Construction A integers and the difference between the largest integer and
Construction B: Let a be a primitive element in GE(") for the smallest one is at mo#t + J, — 1.
om_1 > HeD:1 ne. Let B be a matrix of sizdlog (D+1)] x D e (p.2 Glyen the D colorings and a Colo_vs, for the s-
which contains all binary representations of the integers b~ th coloring, for eachl < s < D, there is at most one
tween1 andD as its columns, such that the binary representa- Position in the array which is colored with the colors

tion of D is the left most column, and the binary representation (v1,v2,..,VD). N ) )
of 1 is the right most column. The rows d are denoted  * (p.3) Any two _posmons_whlch are colored Wlth th_e same
by b1,ba,. .., briog (p41)]- Let B be a primitive element in color b_y the first coloring, have color_s which differ by
GF(4). By abuse of notation, if = (v1, v, - .., Ufiog (D+1H)T a multiple of B + §; by the s-th coloring, for eachs,
is a column vector of lengtlog (D + 1)], we denote 2<s<D.
BY = (B, Bv2,..., B +01)T We construct the follow- The redundancy of th®-dimensional code is the sum of the
ing ny x ng X -+ x np x (m+ 2[log (D +1)] + 2) parity redundancies of th® component codes. If we use&+9;)-
check matrixHP: burst-correcting code for the-th component code then this
1 code does not need to satisfy.g). The disadvantage will be
p . that the total redundancy of the multidimensional code will
nD — (Zj:l Zj) mod 2 increase. The advantage will be that we will be more flexible
! 5BiT ’ in the parameters of the multidimensional code since burst-
o2y a5 (T2 11 me) locator codes are more rare than burst-correcting codes.
Which codes can be used for the coloring method? We start
for all i = (i1,42,...,ip), where0 < i, < ny — 1. The with the code for the first component code. The most efficient

multiplication Bi” is taken over the integers and the vectatodes are those constructed by Abdel-Ghaffar et[al. [10] for
BB consists offlog (D + 1)] vectors of length two, each correction of ab-burst. For a code of length, the redundancy
one representing an element in GF(4). of the code is[log n| + b — 1. The main disadvantage of
Theorem 2: these codes is that their existence depends on a sequence of
« The code constructed in Construction B can correct agpnditions which are not easy to satisfy.
error pattern confined to a 3-burst on a straight line in an What about the locator codes? We can use locator codes
N1 X ng X --- x np array codeword. derived from the codes of Abdel-Ghaffar [10], [11] as demon-

« The code constructed by Construction B has excegated in[[3]. The redundancy of a locator code of length
redundancy2[log (D + 1)] + 2 which is at most twice IS [log n], i.e., it does not depend on the length of the burst.

than the trivial lower bound on the excess redundancyBut, these locator codes exist only for odd burst length [3].
Component codes with the parameters b and D, which

IV. THE COLORING METHOD satisfy (.3) are usually difficult to find. Hence, if we want

The coloring method introduced in [3] is an effective methogodes designed especially to fit the parameter$ and D we
to handle multidimensional cluster errors. In the coloringhould compromise on the redundancy of the component codes
method we useD one-dimensional auxiliary codes for ourwhich will result in larger redundancy of the multidimensid
encoding and decoding procedures. These codes are cafigde- The best codes known for this purpose are the Fire
component codes. Each such a catle 1 < s < D, has codes [[12], [[1B]. A Fire code of length which corrects a
length, and we assign to it a coloring of the array codeworgrburst has redundancy at mdsog nf +2b—1. _
A. Position;j of the codeC, is the binary sum of all positions It Will be more convenient if each coloring is a linear
in A colored with colorj by the s-th coloring. Assume that function of the coordinate indices, i.e., given a position
the size of the burst i%. The first code is 4B + 6;)-burst- (11,72, -, ip), its color for thes-th coloring is defined by
correcting codeg; > 0. This code finds and corrects the D
shape of the error in the codeword 6f. The error thatC, Zaiik
corrects can occur in a few positions of the array codeword k=1
A. It might also have different shapes .y but the erroneous wherec; is a constant integer which depends on the coloring
positions in.A have the colors of the positions which werg and the shape of thB-dimensional cluster. Such a coloring
in error in the codeword of;. The s-th component code, will be called alinear coloring. With a linear coloring we
2 < s < D, is a(B + d,)-burst-locator codej, > 0, associate acoloring matrix Ap, where (Ap)s i = af. It
(usually, 65 will be the same integer for alk < s < D). is easy to verify that propertyp(2), is fulfilled for a linear
Burst-locator codes were discussed[ih [3] and are designectoloring if and only if the coloring matrix is invertible.
find the location of a one-dimensional burst which its shape Now we will apply the coloring method on two types of
is given up to a cyclic shift. Each of these codés, provides errors, semi-crosses and crosses with arms of length one. If



we will try to correct an error of either type by correcting @. Crosses with arms of length one

box-error which inscribes it then the excess redundandyogil  \ve define the colorings by the coloring matrix, which is a
exponential inD. The lower bound on the excess redundancy .. p matrix A — {ai;}1<ii<n

is linear in D and our code will have slightly larger excess -

redundancy. For simplicity we will assume for the rest okthi a;; =ijmod (2i(D—i+1)+1),

section that all the edges of our array are equat.tdVe use

the notation(xn)” to denoten x - -- x n. aij € {=i(D—i+1),...,-1,0,1,..,iD —i+1)}.
D times The first color of positior(iy, iz, ...,ip) in the array is given
A. Semi-crosses with arms of length one by 5
We define the colorings by the coloring matrix, which is a o Zamik-
D x D matrix A = {aij}lgi,jgp (fndzeain) k=1
ap=Fk 1<k<D. The s-th color,2 < s < D, of position (i1, i2,...,ip) in the

array is given by
For eachs, 2 < s < D we define

D
b=k 1<k<s, Cfi17i27»»»=iD) = (; askik> mod (2s(D — s+ 1)n).

ask=k—D—1, s<k<D. . .
g Theorem 6: There exists a code which corrects afy

The s-th color,1 < s < D, of position(iy, is,...,ip) in the dimensional error confined to a Lee sphere burst with ra-
array is given by dius one in an(xn)P cube and its redundancy is at most
D [log n”] + 2D [log D].
Cfil,iz vvvvv in) = Zaskik- Theorem 7: For any g_ivenD_ and n, there exists a cod_e
k=1 which corrects anyD-dimensional Lee sphere burst with

Using these colorings we obtain the following result. WEadius one in an(xn)” cube and its redundancy is at most
present here its proof in order to demonstrate how the eajori [log nP]+2D%+2D [I_og D]. _ _
method works. The proofs for all other colorings is similar a Rémark 4: For specific values oD, i.e., when2D + 1 is
they all satisfy propertiep(l), (p.2), and ¢.3). a prime numberll < 2D +1 < 10000, this construction can

Theorem 3: For any given evem, there exists a code which Pe slightly improved.
corrects anyD-dimensional error confined to a semi-cross
burst with radius one in afixn)? cube and its redundancy is ) )
at most[log n?] + 2D [log (D + 1))] + D. When a certain area suff_e_rs from an error event we mlght

Proof: One can verify that the three coloring propertie§XpeCt that not qll the positions will be in error. Hence, it
hold. Therefore, given the set of erroneous colors by the fig€ems that practically, we would expect to correct a cluster
coloring, according to propertyp(3) the shape of the burst With a limited we|ght. In this section we will consider the
in all other colorings is known up to cyclic permutationc@se where the weight of the cluster is at most two.
Therefore, for2 < s < D, the burst-locator code can find theA
locations of the erroneous colors in theh coloring. Then, ) ) ) _
for each error in the multidimensional array, its set of ¢glo Ve start by correcting an error with weight at most two in
by each coloring is known and according to propes® it is aD-dlmer_lsmnaI semi-cross V\_/lth arms of Iength one.
possible to find the error location in the array. - Constructlo%C: Let o be a primitive element in GE(*) for

Better redundancy is obtained if we slightly change th&" —1 = [I,— . Letd = [log D] andi = (i1, s, .. ., D),
coloring and define a nonlinear coloring. Theth color, Where0 < i, < n,—1.LetH be a(2d)x D parity-check matrix
1 < s < D, of position (i1, i, ..., ip) is given by of a double-error correcting BCH code (or its shortened gode

We construct the following; x ng x -+ xnp x (m+2d+1)
parity check matrixH :

V. CLUSTERS WITHLIMITED WEIGHT

. Semi-crosses

D
cfi] o) = (Z askik> mod (n(D + 1)).
k=1

1

As a consequence we have the following theorems. hi = HiT mod 2 ,

Theorem 4: For any given evel), there exists a code which Qi i (T jq me)
corrects anyD-dimensional error confined to a semi-cross
burst with radius one in afixn)? cube and its redundancy isfor all i = (i1, iz, ...,ip), where0 < i, < n;, — 1.
at most[log n?] + D [log (D +1))] + D. Theorem 8:

If we use the Fire codes [12], [13] as locator codes we obtaine The code constructed in Construction C can correct any
the following theorem. error of weight at most two inside a semi-cross with arms

Theorem 5: For any givenD and n, there exists a code of length one in am; x ny x -+ x np array codeword.
which corrects anyD-dimensional error confined to a semi- « The code constructed by Construction C has redundancy
cross burst with radius one in gxn)” cube and its redun- which is greater by at most two from the trivial lower

dancy is at mosflog n”] +2D? + D [log (D +1)] + D. bound on the redundancy.



Proof: The first part of the Theorem is an immediat@’ —1 > 4D. Let H be a(4t) x (2" — 1) parity-check matrix of
consequence from the decoding procedure and the second addur-error-correcting BCH code. L&t = {H!, H?, ..., HP}
is easily verified. The decoding is very similar to the onbe a set of disjoint subsets of columns of size 4 ffdnwhere

of Construction A. If the received syndrome is the all zerdl’ = [k}, hi, h, h}]. We construct the followingy; x ny x
vector then no error occurred. The first bit of the syndrome: x np x (m + 4t 4+ 2) parity-check matrix:
indicates whether one or two errors occurred. If the first bit 1
is one, then one error occurred, and its location can be found ZD B¢ mod 2
. £=1 "%, mod 4
by the rest of the syndrome. Otherwise, two errors occurred. hi = >P i ,
The two errors can be of the formy = (i,...,ip) and LDTJgHOdQ
iy = (il, ceey ijfl, ij + 1, ij+1,ip) ori; = (il, ey l—1, 1k + aZj:l Zj(H[:jJﬂ ne)
Ligs1,ip) @andiz = (i, ..., dj-1,4;+1,i541,ip). Inthe first  for all i = (iy,4,,...,ip), where0 < iy < ng — 1.

case, the nex¢d bits of the syndrome are thgth column of Theorem 10: The code constructed in Construction E can
the matrix#, and in the second case the neéxtbits are the correct any error of weight at most two inside a cross with
sum of thej-th andk-th columns of the matrix¢{. Since arms of length one in an; x ny x --- x np array codeword.
is a parity check matrix of a double error-correcting code it
is possible to distinguish between these cases and know th
shape of the error. Thus, as in Construction A, the tadtits
of the syndrome indicate the location of the error. [ ]
Construction C is generalized for a semi-cross with arms
length R with some extra redundancy in Construction D whic
follows.
Construction D: Let o be a primitive element in GE(?)
for 2 — 1 > [[., ne. Lett be the smallest integer such tha
2!—1 > 2RD. LetH be a(4t) x (2! —1) parity-check matrix of
a four-error-correcting BCH code. L&t = {H!, {2, ..., HP}
be a set of disjoint subsets of columns of sizg from #,

where '’ = [hi,..., hiy ,]. We construct the following,; x ACKNOWLEDGMENT
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