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Télécom ParisTech
Paris, France

Abstract—Starting from a practical use of Reed-Solomon codes
in a cryptographic scheme published in Indocrypt’09, this paper
deals with the threshold of linear q-ary error-correcting codes.
The security of this scheme is based on the intractability of
polynomial reconstruction when there is too much noise in
the vector. Our approach switches from this paradigm to an
Information Theoretical point of view: is there a class of elements
that are so far away from the code that the list size is always
superpolynomial? Or, dually speaking, is Maximum-Likelihood
decoding almost surely impossible?

We relate this issue to the decoding threshold of a code, and
show that when the minimal distance of the code is high enough,
the threshold effect is very sharp. In a second part, we explicit
lower-bounds on the threshold of Maximum-Distance Separable
codes such as Reed-Solomon codes, and compute the threshold
for the toy example that motivates this study.

I. I NTRODUCTION

In [1], Bringer et al. proposed a low-cost mutual authen-
tication protocol, that uses a Reed-Solomon code structure.
This protocol is pretty simple: Bob owns two secret polyno-
mials Pb, P

′
b of degree less thank known only by Alice; to

authenticate herself to Bob, Alice proves the knowledge of
Pb by sending〈i, Pb(αi)〉 whereαi is the i-th element of a
Fq. Bob proves his identity by replying with〈P ′

b(αi)〉. This
protocol is made such that if Alice speaks to a lot of persons,
it is hard to trace Bob out of all the conversations, and it
is hard to impersonate Alice (or Bob). The security of the
protocol is based on an algorithmic assumption, saying thatthe
polynomial reconstruction problem is hard for the vectors of
F
n
q that are far enough from the code. Indeed, the best known

algorithms solving polynomial reconstruction are those of
Guruswami-Sudan [2] and, on a related problem, Guruswami-
Rudra [3], which can basically reconstruct a polynomial given√
kn correct values.
This algorithmic security result is somehow unsatisfying,

for it is possible to exhibit better decoding algorithm. We
therefore take interest in the information-theoretic aspect of
such a problem.

The solution of the problem raised by [1] is to look at the
output of a list-decoder centered around the received values,
and to output the possible polynomials as candidate values for
Pb orP ′

b. Our approach consists in looking at a usually ignored
side of list-decoding, which is to look at the radiir such that
list-decoding a word with radiusr provides a list that is always
lower-bounded by a large enough number. This differs from

the literature concerning list-decoding, which usually looks
for radii for which the size is always upper-bounded by a
maximum list size, or tries to exhibit a counter-example.

The “large enough” list size can be obtained easily by
imposing that Maximum-Likelihood Decoding to be most im-
probable. For that, we focus on the all-or-nothing behaviour of
the ML decoder. Inspired by percolation theory [4], and code-
applied graph theory [5], we will show how it is possible to
conservatively estimate, before, after, and around a threshold,
the all-or-nothing probability of ML decoding.

II. T HE THRESHOLD OF ACODE

The existence of a threshold is motivated by the classical
question of percolation : given a graph, with a source, and
a sink, and given the probabilityp for a “wet” node of the
graph to “wet” an adjacent node,what is the probability for
the source to wet the sink? It appears that this probability has a
threshold effect; in other words, there exists a limit probability
pc such that, ifp > pc, then the sink is almost surely wet, and
if p < pc, then the sink is almost never wet. The threshold
effect is illustrated in Fig 1.

This question can be transposed into the probability of
error-correcting a code. Given a proportion of errorsp, with
a decoding algorithm, what is the probability of correctly
recovering the sent codeword? It was shown in [6] that
for every binary code, and every decoding algorithm, this
probability also follows a threshold.

In this paper, we show that this property also applies toq-
ary codes. In the following part, we show that the threshold
behaviour that was seen on binary codes can be obtained again.

A. The Margulis-Russo Identity

The technique used to derive threshold effects in discrete
spaces is to integrate an isoperimetric inequality; for that, the
Margulis-Russo identity is required.

Let H = {0, 1}n be the Hamming space; the Hamming
distanced(x, y) provides the number of different coordinates
between vectorsx and y. Consider the measureµp : H →
[0, 1] defined byµp(x) = pw(x)(1 − p)n−w(x) wherew(x) is
the Hamming weight ofx. The number of limit-vectors of a
subsetA ⊂ H is a function defined ashA(x) = |B(x, 1)∩A|
for x ∈ A.

For A ⊂ H such thatA is increasing (i.e. if x ∈ A, and
y ≥ x, theny ∈ A with ≥ defined component-wise), Margulis
and Russo showed :
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dµp(A)

dp
=

1

p

∫

A

hA(x)dµp(x)

Let q ∈ N, q > 2. This section shows that this equality is
also true inHq = {0, ...q − 1}n.

For a vectorx ∈ Hq, the support ofx is the set of all its
non-null coordinates,i.e. supp(x) = {i ∈ {1, . . . , n} : xi 6=
0}. Define the measure functionµp(x) =

(

p
q−1

)w(x)

(1 −
p)n−w(x) with w(x) = |supp(x)| the weight of x. This
definition is consistent with a measure, asµp(Hn) =
∑

x∈Hq
µp(x) = 1.

Note the inclusion⊂ to be the relation between a set and a
(general) subset (i.e. for all X , X ⊂ X). The support inclusion
generalises the component-wise≤ that was used in the binary
case.

Lemma 1 (Margulis-Russo Identity overq-ary alphabets):
Let A be an increasing subset ofHq, i.e. such that ify ∈ A,
for all x ∈ Hq such thatsupp(y) ⊂ supp(x), then x ∈ A.
Then

dµp(A)

dp
=

1

p

∫

A

hA(x)dµp(x)

Proof: The proof of this lemma is an adaptation of
Margulis’ proof in [7]. For this, we use the notation:

• [A,B] = |{x, y} ∈ A × B : d(x, y) = 1| whereA,B ⊂
Hq, is the number of links fromA to B

• for k ∈ {0, . . . , n}, Zk = {x ∈ Hq : w(x) = k},
• for A ⊂ Hq, Ak = A∩Zk (A is the reunion of theAk);
• Dk =

∑

x∈Ak
hA(x) is the number of limit-vectors next

to elements of weightk.

Trivially, Dk = [Ak, Zk+1−Ak+1]+ [Ak, Zk−1 −Ak−1]+
[Ak, Zk −Ak]. We now note that :

• [Ak, Zk−1] = |Ak|k, as to go fromAk to Zk−1, the only
way (in one move) is to put one coordinate to0;

• [Ak, Zk+1] = |Ak|(n−k)(q−1) with the same reasoning;
• [Ak, Zk − Ak] = [Ak, Zk+1 − Ak+1] = 0 as A is

increasing.
• Combining these equalities, we get[Ak, Ak+1] =

|Ak|(n− k)(q − 1);
• [Ak, Zk] = 0 as it is necessary to put a non-null

coordinate to0 and a null one to{1, ...q − 1}.

Finally Dk = [Ak, Zk−1]− [Ak, Ak−1] = k|Ak|− (n− k+
1)(q − 1)|Ak−1| for k > 0 andD0 = 0 (or A = Hq).

Back to the identity desired, we observe that

∫

A

hA(x)dµp(x) =

n
∑

k=0

∑

x∈Ak

hA(x)(
p

q − 1
)k(1 − p)n−k

=

n
∑

k=0

Dk

(

p

q − 1

)k

(1− p)n−k

=

n
∑

k=1

(k|Ak| − (n− k + 1)(q − 1)|Ak−1|)

·
(

p

q − 1

)k

(1− p)n−k

=
∑n

k=0 |Ak|(k − pn−k
1−p

)
(

p
q−1

)k

(1− p)n−k

on the other hand,
dµp(A)

dp
=

∑n
k=0 |Ak| d

dp

(

(

p
q−1

)k

(1 − p)n−k

)

=
∑n

k=0 |Ak|
(

p
q−1

)k

(1− p)n−k
(

k
p
+ −(n−k)

1−p

)

Hence the identity.
This lemma shows that the Margulis-Russo identity is also

true on{0...(q − 1)}n; it was the keystone of the reasoning
done in [5] to show an explicit form of the threshold behaviour
of Maximum-Likelihood Error Correction.

B. A Threshold for Error-Decodingq-ary codes

In the following, we useϕ(t) = 1√
2π
e−

t2

2 the normal distri-

bution,Φ(x) =
∫ x

−∞ ϕ(t)dt the accumulate normal function,
andΨ(x) = ϕ(Φ−1(x)) (so that∀x,Ψ(x) · Φ′−1(x) = 1).

A monotone property is a setA ⊂ Hq such thatA is
increasing, orA is increasing.

Theorem 1:Let A be a monotone property ofHq. Suppose
that ∀x ∈ A, hA(x) = 0 or hA(x) ≥ ∆.

Let θ ∈ [0, 1] be (the unique real) such thatµθ(A) =
1
2 . Let

gθ(p) = Φ
(√

2∆(
√
− ln θ −

√
− ln p)

)

.

Then the measure ofA, µp(A) is bounded by :

µp(A) ≤ gθ(p) for p ∈]0; θ]
µp(A) ≥ gθ(p) for p ∈ [θ; 1[

Sketch of Proof
The proof is exactly the same as the one from [5]. The whole
idea is to derive the upper-range:

∫

A

√

hAdµp ≥
√

2 ln
1

p
Ψ(µp(A))

The integration of this equation, together with the Margulis-
Russo lemma, gives the result.

To conclude this part, we remark that the non-decoding
region of a given point, for aq-ary code, is an increasing
region ofFn

q . For linear codes, this non-decoding region can
always be translated to that of0 without loss of generality; let
A0 = {x ∈ F

n
q s.t. ∃c ∈ C, c 6= 0 : d(x, c) ≤ d(x, 0)}. The

probability of error decoding ofC is thenµp(A0).
For x ∈ µp(A0), we show that eitherhA0

(x) = 0, or
hA0

(x) ≥ d
2 . Indeed, ifhA0

(x) > 0, then x is nearer to a
non-null codewordc than to0. Then all the vectors obtained
by replacing one of the coordinates ofx by 0 are out ofA0; in
particular,hA0

(x) ≥ d(x, 0). Let dc = d(c, 0) be the weight
of c; as x is nearer toc than to 0, d(x, 0) ≥ dc

2 . Thus the
previous assertion.

Combining the previous results, we just showed that for any
q-ary code, the probability of error is, as for binary codes,
bounded by a threshold function. This can be expressed by
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Figure 1. Illustration of the threshold effect,d = 400, pc = 0.7

the following theorem, which has the same form as the one
showed in [5]:

Theorem 2:Let C be a code of any length, and of minimal
distanced. Over theq-ary symmetric channel, with transition
probability p, the probability of decoding errorPe(p) associ-
ated withC is such that there exists a uniquepc ∈]0; 1| such
thatPe(pc) =

1
2 , andPe is bounded by:

Pe(p) S 1− Φ(
√
d(
√

− ln(1− pc)−
√

− ln(1− p)))

The upper-bound (≤) is true whenp ∈]0; pc]; the lower-bound
(≥) is true whenp ∈ [pc; 1[.

Even though linearity was used not to lose any generality
previously, it is not a requirement for this theorem. Indeed, the
bounding equations are true for every codewordc by replacing
d by minc′∈C,c‘ 6=c d(c, c

′). Assuming that the codewords sent
are distributed in a uniform way overC, we thus obtain this
result.

The behaviour of this function is illustrated in Fig 1. Around
p ≈ 0 (actually, for all p < pc − ǫ...), Pe is extremely flat
around 0; aroundp ≈ 1 (and, symmetrically, for allp > pc+ǫ,
Pe is extremely flat around 1. Finally, around the threshold
pc, the slope is

√
d√

2π(1−pc)
, which is almost vertical when the

minimal distanced is large.

III. E XPLICIT COMPUTATION OF THETHRESHOLD FOR

MAXIMUM -DISTANCE SEPARABLE CODES

In this section, we only take interest in linear codes over
F
n
q .

A. Another Estimation of the Decoding Threshold

By linearity, we can again without loss of generality assume
that the sent codeword was the all null vector. It is possibleto
have a rough estimation of the probability of wrongly decoding
with crossover probabilityp correctly a vector by computing
the proportion of vectorsx ∈ F

n
q of weight less or equal to

np that are closer to a non-null codeword than to0. Let g(p)
be this proportion.

g(p) =
| {x : s.t. ∃c ∈ C, c 6= 0 : d(x, c) 6= w(x) ≤ np} |

| {x : w(x) ≤ np} | .

Let vol(q, n, t) = 1
n
logq (|B(t)|), whereB(t) is the Ham-

ming ball of radiust, ( for example, centered on0) in F
n
q . It is

well known that whent ≤ q−1
q

, vol(q, n, t) = Hq(
t
n
)+on(1),

whereHq(x) = −x logq x−(1−x) logq(1−x)+x logq(q−1)
is theq-ary entropy ofx ∈ [0, 1].

To compute the numerator, we suggest, for each codeword
c ∈ C that has a weight betweend and2pn, to compute the
number of vectorsx that are nearer toc than to0. This number
actually only depends on the weight ofc, and will be noted
νpn(w(c)). As there areAw(c) codewords of weightw(c) in
the code (with the standard notation), the functiong(p) can
be approximated by:

g(p) ≤
∑2pn

l=d Alνpn(l)

qnvol(q,n,pn)
(1)

The different quantities used in this equation are illustrated
in Fig 2.

Figure 2. Different quantities used in Eq 1

νt(w) is explicited hereafter. Letc be a codeword of weight
w. Let x ∈ F

n
q be a vector with the following constraints:

• d(x, 0) ≤ t, i.e. x is the result of the transmission of0
with at mostt errors.

• d(x, 0) ≥ d(x, c), i.e. x is wrongly decoded.
We noteα the number of coordinatesi in x such thatxi 6= ci

andxi = 0; β is the number of coordinatesi such thatxi 6= ci
andxi 6= 0; γ is the number of coordinatesi such thatxi 6= ci
andci = 0.

The previous constraints onx can be rewritten into the
system(S):

(S) :























1) 0 ≤ α, β ≤ w

2) 0 ≤ γ ≤ n− w

3) γ ≤ t+ α− w

4) β + γ ≤ t

5) 2α+ β ≤ w

We then obtain

νt(w) =
∑

α,β,γ

(

w

α+ β

)(

α+ β

β

)

(q − 2)β
(

n− w

γ

)

(q − 1)γ .

Remark 1: It is easy to see thatνt(w) is at most the volume
of a ball of radiusw − d

2 ; this estimation will be used in the
next part.



B. Application to MDS codes

Maximum-Distance Separable (MDS) Codes are codes such
that their dimensionk and minimal distanced fulfil the
Singleton bound, so that:

k + d = n− 1.

A well known family of MDS codes are the Reed-Solomon
codes, for which a codeword is made of the evaluation of a
degreek − 1 polynomial overn field elementsα1, . . . , αn.
Reed-Solomon codes overFq can have a length up toq − 1,
but shorter such codes are also MDS.

For MDS codes, the numberAl of codewords of given
weight is known. This number is:

An−i =

n−1
∑

j=1

(−1)j−i

(

n

j

)(

j

i

)

(qk−j − 1)

From this identity, it is easy to derive the more usable
formula:

Al =

(

n

l

) l−d
∑

j=0

(−1)j
(

l

j

)

(q1+l−d−j − 1) (2)

It is now possible to approximate quite nicely the error
probability while under the threshold - indeed, the numerator
and denominator are correct as long as a vectorx is not close
to 2 different codewords with a weight in the range[d; pn],
i.e. as long as the list of codewords at a distance less thanpn

from x is reduced to a single element.

C. Short MDS Codes over Large Fields

We now focus on the specific problem presented in the
Introduction, and motivated by the beckoning and authenti-
cation protocol from [1]. This setting is characterized by the
following:

• The underlying code is a Reed-Solomon over a fieldFq;
• The field sizeq is very large for cryptographic reasons;
• The code lengthn is very short (with respect toq) asnq

is the size of embedded low-cost devices’ memory.

This application fits into the framework depicted in the
previous sections. Moreover, the information “n much smaller
than q” (n = o(q)) enables to compute an asymptotic first
order estimation of the threshold in such codes.

Indeed, if g(p) ≤ f(p), then g−1(12 ) ≥ f−1(12 ). We now
compute an upper-bound ong(p), to derive an estimation on
the thresholdθ. More precisely, we aim at computingι(p)
the first-order value oflogq (g(p)); then, ι−1(0) is a lower-
approximation of the threshold.

To estimate the weight enumeratorAl, we use formula (2)
to derive

Al ≤ (l − d)

(

n

l

)

2lq1+l−d ≤ n2n+lq1+l−d.

The number of targetted vectors for each codewordνt(l)
is not easy to evaluate; we note its first order development
logq νt(l) = nµ(l, t) + oq(1), so thatνt(l) ≤ qnµ(l,t) · oq(q).

(Here, the termo(q) is a bounded by a polynomial inn.) We
know that

0 ≤ nµ(l, t) ≤ l − d

2
(3)

Combining these elements with equation (1), we obtain
g(p) ≤ ∑2pn

l=d o(q)q
1+l−d+µ(l,pn)−nvol(q,n,pn).

As vol(q, n, t) = Hq(
t
n
) + on(1) = t

n
+ oq(1),

the first order of g(p) is bounded by: logq g(p) ≤
maxl∈[d,pn] (1 + l − d− pn+ nµ(l, pn)) + oq(1).

The bounding (3) ofµ shows that the right-hand side of
this inequality is between1+pn−d and1+3pn− 3d

2 , which
shows that the thresholdg−1(12 ) is asymptotically betweenδ2
andδ.

Unfortunately, a more precise evaluation ofµ strongly
depends on the context. Indeed, according to Section III-A,

ν(l, t) = oq(q) · max
α,β,γ:(S)

qβ+γ

(

n− l

γ

)(

l

α+ β

)(

α+ β

β

)

.

This maximum can be obtained by evaluating the term to
be maximized on all vertices of the polytope defined by the
system(S) ((S) is made of 9 inequalities of 3 unknown, the
vertices are obtained by selecting 3 of these equations, thus at
most

(

9
3

)

= 84 vertices); however, it is not possible to exhibit
here a general answer as the solution depends on the minimal
distance of the code,i.e. on the rate of the Reed-Solomon
code.

D. Numerical Application to a(2048, 256, 1793)264 MDS
Code

In the case of a code over a finite field of reasonable
dimension, it is possible to exactly compute the ratio that
approximates the Maximum Likelihood threshold. However,
the exact threshold cannot be easily computed yet; it is still
an open problem related to the list-decoding capacity of Reed-
Solomon codes.

We therefore used the NTL open-source library [8] to
compute the valuesAl, νt(l) and |B(t)| in order to have
an accurate enough approximation of the the functiong(p)
described earlier. The parameters are those that were proposed
in [1], and show that the decoding threshold of such a code
is between0.8 and0.875.

The slope around the threshold is around 115, so forp

“small” (in fact, a bit smaller thanpc) g(p) is very near to0,
while asp goes to1, g(p) is much greater than the maximum
probability of 1. This was predicted earlier, and expresses the
fact that the list-size of radiuspn is always greater than 1.
The threshold valueg−1(12 ) ≈ ι−1(0) is a lower-bound for
the threshold of the code, though the intuition says that this
lower-bound is pretty near to the real threshold.

IV. CONCLUSION

As a conclusion, let us look back to the starting point of
our reasoning. The initial goal was to revise the conditionsof
security of the construction depicted in [1]: from a received
vector x of F

n
q , for what parameters is the size of the

list of radius pn exponentially large? This problem can be



reduced to that of the threshold probability of a linear error-
correcting code. Indeed, below the threshold of the code, when
the minimal distance of the code is large enough, the error
decoding probability of the code is exponentially small, and it
is exponentially close to 1 above the threshold. For our class of
parameters, ensuring that the error rate is above the threshold
is enough to show the security of the scheme.

We then showed that the threshold behaviour can be ex-
plicited for q-ary codes as well as for binary codes; we then
explicited a lower-bound on the threshold of MDS codes.

Applying these results to the initial problem, we show that
the threshold for a (highly) truncated Reed-Solomon code over
a finite field F264 is very near to normalized the minimal
distanced = n − k + 1 of this code. As a conclusion, to
switch from an algorithmic assumption (the hardness of the
Polynomial Reconstruction Problem, see [9]) to Information-
Theoretical security, we recommend to raise the dimensionk

of the underlying code. This lowers the decoding threshold of
the code; the downside is that storage of a codeword is more
costly.
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