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Abstract—In this work we advocate an approach for the that the estimated indices are really related to the query,
statistical performance analysis of an identification systm. The | e., without restricting the probability of false accepta. To
statistical performance analysis is accomplished for the ave-  ganarglize the list decoder to the identification setup, wstm
sponding probability of miss and false acceptance based ore . . .
order statistic list decoding framework. add an erasure pptlon to the decodmg rule, which means that

the decision regions are not exhaustive.
I. INTRODUCTION

In the past decade, the cryptography community developedrhe main contribution of this paper can be summarized as
a set of powerful tools to protect physical objects [1]. Bist follows. We introduce a new identification setup by using a
cally, the protection of items is based on technologiestisat fixed maximum list size decoder based onader statistic
features that are difficult to duplicate, copy or clone. list decode{OSLD) and analyze its performance versus unique

The present work addresses an identification problem basgdso-called ordinary decoding for the identification peobl
on biometrics or Physical Unclonable FunctioR$JEs). Both For reasons of computational complexity, privacy and sgcur
biometrics andPUFs are well-known techniques in forensidt is undesirable for an identification system to retain the
applications [1] because of their ability to serve as a uaigqiiometrics orPUFs in their original form. In most cases, some
identifier for many people and objects. non-invertible dimensionality reduction transform is kg to

Channel distortions, due to acquisition imperfection, eonproduce a template (a.k.a. digital fingerprint) that is dizz«l
pressionetc, impact data and make it noisy. Thereforeat the second stage. We use the random projection transform
the identification system should be able to cope with dasmd binarization for binary template generation [6]. Bynasi
variations. The decoders in classical identification seteg- i.i.d. Gaussian random projectors, the data and chanried-sta
timate a unique index for a given query. This makes thetits change to the Gaussian model and binarization converts
relatively sensitive to strong distortions in their inp&hother them to a binary model. Therefore, we analyze th&LD
approach, which can be considered as the generalizationpodbability of miss and false acceptance over two channels,
the above mentioned one, was firstly proposed by Elias [®le additive white Gaussian noiseWGN) and the binary
in communication theory and is known Bst decoding The symmetric channelgSC).
main feature of this type of decoding is to produce a fixed
list size of the most likely candidates rather than a single.o  The outline of this paper is as follows. In section II, we
The result of [2] was generalized by Forney to a variable ligttroduce the identification setup. In section lll, we anrzaly
size [3]. Using a Neyman-Pearson type optimality criteriothe error events related to our setup. The simulation result
it was demonstrated that the proposed decoder guarant@ed conclusions are presented in section IV and V.
maximal Gallager-type error exponents. In many identificat
problems, the final sink of information is a human being. This Notations: We use capital letterX to denote scalar random
restriction makes variable list size decoding undesirahle to variables andX to denote vector random variables. Corre-
the high variability of the list size, for very noisy envinoents sponding small letters andx denote the realizations of scalar
the list might be exceedingly long. and vector random variables. All vectors without sign tilde

As mentioned, these types of decoders have been used assumed to be of the length and with the sign tilde of
in a communication setup, where the decoder estimates thegth L. We useh(-) and H (-) to denote differential entropy,
sent message from a fixed codebook. It is also believed tleatropy and binary entropy/(u, 03 ) stands for the Gaussian
list decoding might bring additional benefits for identitioa distribution with mean: and variance3,. B(V, p) denotes the
systems that operate in very noisy environments. HowevBinomial distribution with/NV trials and probability of success
contrary to digital communications, in the identificaticetigp p. ®(-) denotes cumulative distribution functiolCF) for
the decoder should determine whether a given query is telaee N'(0,1) random variable and)(-) designates Q-function,
to some elements of the database, and if so, which ofigv) =1—®(v). | -|| denotes Euclidean vector nori,.. )
Therefore, just using a list decoder is not sufficient to emsustands for the-th order statistics ol i.i.d. random variables.



inar ure Extraction Codebook/Databa: .
Ko A [— H,.,: The queryY is related to then'" entry of database.
‘ XOR x S, i
{w S s The performance of the decoder is evaluated by:

« the Probability of miss (a related query is incorrectly
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rejected, i.e., not in the final lis\/});
« the Probability of false acceptance (an unrelated query is

incorrectly accepted).
[\ PRET ; 1By B0 N

v OyN W B | Decoder | I1l. ERROREVENTS

Binary Feature Extraction

Before considering error events, we will considerder

N =i} i, O{1.. MJU{D} 25 <N Statisticswhich will be used in the computation of the proba-

bility of errors. We suppose th&t(1),V(2),..., V(M) areM

i.i.d. random variables, each with the cumulative disttittou

function (CDF) F'(v). Let F,.5)(v) denote theDF of ther-th

Il. I DENTIFICATION SETUP order statisticd/(,..r), Which corresponds to theth position
fowan < vewy < o0 S vy <o S vy for a

. I . .0
The identification setup under analysis is shown in Fig. %pecific outcome. ThEDF of the r-th order statisticV;,.
The Codebook/Database generated by recording biometricgg given by [5]: '

or PUFs of each item to be identifiest(m) € XV, m =

Fig. 1. Identification problem based on binary templates.

1,..., M, during the enrollment stage. It is assumed that these F{,.ar) (v)=Pr {V(,.ar) < v}

biometrics orPUFs are drawn independently from a common =Pr{at leastr of V; are less or equal to}
stationary distributiorpx (z). The receiver observes a noisy M

version Y of the biometric orPUFs of a given person or :Z (M) Fi(w)[1 — F(v))M~i 2)
item, where the probabilistic mismatch betweXnandY is i \ 7

N-—-1
modeled byp(y|x) = I, p(y[n]lz[n]). The second step g the term in the summand is the binomial probability tha
of enrollment is to reduce the dimensionality fraW to L. exactlyi of V(1),V(2),..., V(M) are less than equal ta
The reduction is accomplished by applying random projector In the foIIowin79 subéections, we consider the probability o

[6]; we use an approximation of a so-calledthoprOJec_tor miss and probability of false acceptance for B¢GN channel
W e RN, where each elemenb;; ~ N(0,5) with 4 ihepsc

1 <i<L,1 <j < N.A dimensionality reduction step
is applied to produc& = WX andY = WY. L-length A. Probability of Miss

binary data is derived from the projected data by taking the once the list of primary candidates is selected byaseD,

sign of X andY, producing binary template®, andBy.  the final candidates are extracted by applying the threshold
The decoding process in the identification setup is accoy- their likelihoods. A miss event occurs when the query

plished in two steps. At the first step, the primary candslatgy|ated to the database entry does not belong to the list of
are chosen by th@SLD. At the second step, a threshold iging| candidates. The probability of misBys, is given by:
applied to all candidates, and the candidates which satigfy

constraint remain on the list. TheSLD decoding procedure

M
can be summarized as follotvs Py=1-— Z Pr{x(m) € Ny andp(y[x(m)) > " 7[Hn} x
m=1

1) The likelihood functionsp(y|x(m)),1 < m < M, for Pr{H,}
all database entries are evaluated. mh 3

2) The computed likelihood functions are sorted in ascend- ®)
ing order. where N is the primary list of candidates. As the entries of

3) The N, indices with the largest likelihood functions arghe database are identically distributed and equally yikel
chose_n W_h'Ch form a set. ParameterV, is referred pe queried, the overall probability of miss does not depend o
as a list size. the particular index and hence:

4) The final output set of the decoder is defined as: (x(1) € A; andp(y[x(1)) Vi), @)

Py =1—-Pr{x(1) e N andp(y|x(1)) > e""|H1}. (4
N{ = {m € Ny : p(y|x(m)) > "7} ) . _ . o
~ The miss event is considered for the reduced dimensionality
where the parametey controls the number of final gata over theawGN channel and binary data over tBsC.

_ can_didates. 1) The Additive White Gaussian Noise Channdéle as-
To investigate performances of the decoders, we should cgame that the decoder input is generated by the following
sider a composite hypothesis test where: additive channél
Ho: The queryY is unrelated to any database entry, Y=X+2Z, (5)

1The low-complexity identification ofOSLD decoding based on the 2This channel results from the random projections with pmesiliagonal-
concept of bit reliability is given in [7]. ization [6].



T(l) < T(M =N;:M-=1) )

TOON M-1 M—1
Py=1-0 Y ( )
T(:L'Mfl) T(M—N,—J.-M—l) T(M—N,:M—l) T(M—:L'M-l)I p=M—N, p
o0
M > dP()QM—1)—Pr(y,
(a) AWGN Channel. /H%j (w)Q (u)
o
D(1)<D)\( 9
DM | S | Dyu- 1 1 ¢
oo CRVE xﬁ exp | =5 | u— g dup. (10)
Dyuny e A I . . . : .
o Pty Doy D-sm-o 2) Binary Symmetric ChanneRfter dimensionality reduc-
T g tion and binarization, we have binary data with the lenfth
(b) BSC. whereL < N. In order to evaluate the probability of miss, we
Fig. 2. The illustration of the event that the first entry otatmse related consider it over the8SC WltLh a crossover prObap”'ty ob%.
to the query is not on the primary list. For anyby(m), by € {0,1}", the likelihood function

p(by[bx(m)) = P (1= p)F=m - (12)

. . . : . A

whereX ~ N(0, 1), ¢ = L|x||? andZ ~ N(0,021;). 'S @ decreasing function of the Hamming distanke:) =
0. £10),€ = x| (0,0211) di(by,by(m)) for 0 < P, < 0.5. Therefore, the first

Since
event in (4) occurs, ifD(m) is not among theN; smallest
L—1 = {D(1),D(2),...,D(M)}. Similarly to the AWGN channel
T(m)= g[n)z(m)[n] — = Z jQ(m)[n] case, for a given query related 9, the first event occurs
n=0 2 n—=0 when D(1) of the related query is on the primary list (Fig.
L-1 1 2b). Therefore, the probability of miss can be stated as:
=>» gn]z - = 6
n:Oy[n]fE(m)[n] 25 ( ) Py=1- Pr{D(Nl:Mfl) > D(l) and D(l) < 77|H1}
7
is a sufficient statistic, the first event in (3) occursf{m) =1- ZPF{D(M:M*D > dHy, D(1) = d}pp()(d),
is among theN; largest of{T'(1),T(2),...,T(M)}. Fig. 2a d=0 (12)

illustrates this given the fact that the query is relatedhe t 1P
first entry. Therefore the probability of miss can be stated avhere from (1) and (11) = L% and pp1)(d)
denotes theeMF of D(1). The dimensionality reduction and
Py =1—=Pr{Tin_n.a1 < T(1) andT(1) > \H binarization change the statistics of the database gexerat
v =1 = Prifas—nan—n <T() WAk px (x) to the Binomial distribution, i.eBx ~ B(L,1/2)
=1 —/ Pr{T(v—ny:m—1) < t/H1, T(1) = t}pray(t)dt,  for px(x) = N(0,0%1y). Conditioned orfH;, the sufficient
A ) statistics can be expressed as follows:
B(L, Py),for m =1,

9 D(m) ~ { 1
where from (1) and (6)) = %-FUQZL (3 In(2m0%) +7), B(L,3), form # 1 _ y
PTO) ) denotes thePDF of T'(1). For equiprobable, equal From (2), theCDF of the Nlth order statistics of the i.i.d.

(13)

energy and orthogonal(m), conditioned orfH;: random variablesD(m), m # 1 is given by:
Pr{Dn,.pm-1) < d} = Fin,.m—1)(d) =
T(m) ~ {N(%§70%§)7 for m = 1, (8) M—(lN . (ek=n
N(—% ,0%5), for m # 1. Z (M - 1>5(d)p(1 _ S(d))(Mfl)fp7 (14)
p

p=N;

whereS(d) & (%)L ¢, (). From (12), (13) and (14), the

miss probability over th&SC is given by:

From (2), theCDF of the (M — N;)*" order statistics of the
i.i.d random variable§(m), m # 1, is given by:

Pr{T(M—Nl:M—l) < t} = F(M—N;:M—l)(t) = Py = 1_{ i (L) Pbd(l . Pb)Lfd
N v - t+ e t+ 1€ r=n-r =0\
o Q ©) Nt
2N ) < fff%> [ (wf%) <y (M) swara- S<d>><M-1>—P}.(15)
p=0

; 2 1
From (7)- (8), (9) and lettingu = (t + 3§)/v o, the 31t should be pointed out that faN; = 1 and A = —oo, (10) coincides
probability of miss over th&wGN channel can be expressedvith the error probability of theVIL decoder [4], page 121.



B. Probability of False Acceptance the query and an entry of the database is smaller than the
The main reason to consider the probability of false athreshold. The probability of false acceptance is found as:
ceptance is to shqw the reI|a_b|I|ty of th_e decoding process PFA:PI"{Uiv:llED(i:MﬂHO}
with respect to various attacking strategies. There aferdif
ent scenarios to investigate the reliability of the decoder
identification setups: (a) c
=1—-Pr{FE Hot =Pr{Ep,,  .|H 21
« The attacker has no access to tR®F of database {Ebyn, o) {EDan [Hoy(21)
generationpx (). whereE7, | is the complement oEp,, ,,,, and(a) follows
« The attacker has access to #1F of database generation,from the fact that if the event’p, - occurs the rest of
px (). the events will certainly occur. Then the probability ofsil
« The database entries are partially known by the attackar.ceptance can be derived [5]:

= 1 - Pr{mg\glEcD(i:M) |H0}

« The database entries are totally known by the attacker.
After the Gaussian random projections, reduced database en PFA—PY{ Jnin D(m) < 77|H0}
tries have the Gaussian distribution; therefore, the firgt a T L on M
second scenarios coincide. In this paper, we consider the 1 [1_ (1) Z <L)] (22)
scenario in which thePDF is fully known by the attacker. 2) = \w '

Then, blindly generated codewords that follow thBF are
sent to the decoder. For this scenario, the probability Isefa
acceptance can be defined as:

Pra = Pr{N] # @|H,}. (16) IV. SIMULATION RESULTS
. The proposed decoder performance is evaluated by using

In the following subsections, the false acceptance event js : . : . .
considered over thaWGN channel and thesc. atabases of synthetic data with different sizes that are in

1) Additive White Gaussian Noise Channélor a given dependently and_identically_normall_y distriputed, .i'K’ -
query, which is unrelated to any entry of the database, rf%(o’IN)' TheaglgnQal-to-Nmse RatioSNR) is defined as
correlation between the query and all entries is computed anNR= 10logyo 020X = L.

sorted in ascending order. The following events are defined: Fig- 3 and Fig. 4 confirm the fact that the empirical and
analytical probability of miss and false acceptance over th

Eran = Tt = A Ho}, (17)  AWGN channel and th&sc coincide with each other as far
where M — N, +1 <i < M andT(m) ~ N(—1L¢ €0?) for @S the precision of computer simulation allows.
large L. From (16) and (17), the probability of false acceptance From (10), (19) and (15), (22) the probability of miss and

Similarly to the AWGN channel case, the probability of false
acceptance is independent of the primary list size.

can be defined as: false acceptance over thWGN channel and theSC are
v computed andeceiver operating characteristi(ROC) curves
Ppa=Pr{UiZy_ N, 41 E76.0) [Ho} are shown for differensNRs, database size/ and primary
=1-Pr{ny_n1E%,,, |Ho} list sizesN;.
() Fig. 5 shows that if theSNR is high, the performance for

=1-Pr{E}, , [Ho} =Pr{E7,,.,, |Ho}, (18) the unique decoder and tI@SLD are the same. However, in
low SNR scenarios, th®SLD helps improve the performance
|while the probability of correct detectioFfp = 1 — Py is
not close to one. Fig. 6 shows the impact®f and M on
the identifier performance. Increasing the primary lisesi
improves the identifier performance but after a certain ealu

whereEs. ~ isthe complementabr,,,,, , and(a) follows
from the fact that a#y ., occurs the rest of the events wil
certainly occur. Then the probability of false acceptanae c
be derived as in [5]:

pFA:Pr{ max T(m) > /\|H0} of V; it does not change anymore, and increasing the database
lsmsM size M decreases the performance.
v (A le Fig. 7 and Fig. 8 confirm the above conclusions for Bis<
~]—® 2 (19) case
Véoy '
The interesting thing to note is that the probability of éals V. CONCLUSION
acceptance is independent of the primary list size under ~ We have analyzed the identification setup based on the
the considered attacking scenario. OSLD framework. In light of this framework, we have investi-
2) Binary Symmetric Channelfhe same as for th&WGN gated theOSLD performance by deriving analytical equations
channel, we define the following events: for the probability of miss and false acceptance.
Ep ., = {Diany < nlHo}, (20) Simulation results show that on the one hand, @®.D

can only improve the identifier performance in very ISNR
wherel < i < Ny, D(m) ~ B(L,3) and Ep..y 1S the scenarios. On the other hand, this improvement is restricte
event that theé!” ascending ranked Hamming distance betweday a certain range of list sizes. The obtained results can
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be of interest for security and content-based retrievalesys
analysis.
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