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Abstract—In this work we advocate an approach for the
statistical performance analysis of an identification system. The
statistical performance analysis is accomplished for the corre-
sponding probability of miss and false acceptance based on the
order statistic list decoding framework.

I. I NTRODUCTION

In the past decade, the cryptography community developed
a set of powerful tools to protect physical objects [1]. Histori-
cally, the protection of items is based on technologies thatuse
features that are difficult to duplicate, copy or clone.

The present work addresses an identification problem based
on biometrics or Physical Unclonable Functions (PUFs). Both
biometrics andPUFs are well-known techniques in forensic
applications [1] because of their ability to serve as a unique
identifier for many people and objects.

Channel distortions, due to acquisition imperfection, com-
pression etc., impact data and make it noisy. Therefore,
the identification system should be able to cope with data
variations. The decoders in classical identification setups es-
timate a unique index for a given query. This makes them
relatively sensitive to strong distortions in their input.Another
approach, which can be considered as the generalization of
the above mentioned one, was firstly proposed by Elias [2]
in communication theory and is known aslist decoding. The
main feature of this type of decoding is to produce a fixed
list size of the most likely candidates rather than a single one.
The result of [2] was generalized by Forney to a variable list
size [3]. Using a Neyman-Pearson type optimality criterion
it was demonstrated that the proposed decoder guarantees
maximal Gallager-type error exponents. In many identification
problems, the final sink of information is a human being. This
restriction makes variable list size decoding undesirable, due to
the high variability of the list size, for very noisy environments
the list might be exceedingly long.

As mentioned, these types of decoders have been used
in a communication setup, where the decoder estimates the
sent message from a fixed codebook. It is also believed that
list decoding might bring additional benefits for identification
systems that operate in very noisy environments. However,
contrary to digital communications, in the identification setup
the decoder should determine whether a given query is related
to some elements of the database, and if so, which one.
Therefore, just using a list decoder is not sufficient to ensure

that the estimated indices are really related to the query,
i.e., without restricting the probability of false acceptance. To
generalize the list decoder to the identification setup, we must
add an erasure option to the decoding rule, which means that
the decision regions are not exhaustive.

The main contribution of this paper can be summarized as
follows. We introduce a new identification setup by using a
fixed maximum list size decoder based on anorder statistic
list decoder(OSLD) and analyze its performance versus unique
or so-called ordinary decoding for the identification problem.
For reasons of computational complexity, privacy and security,
it is undesirable for an identification system to retain the
biometrics orPUFs in their original form. In most cases, some
non-invertible dimensionality reduction transform is applied to
produce a template (a.k.a. digital fingerprint) that is quantized
at the second stage. We use the random projection transform
and binarization for binary template generation [6]. By using
i.i.d. Gaussian random projectors, the data and channel statis-
tics change to the Gaussian model and binarization converts
them to a binary model. Therefore, we analyze theOSLD
probability of miss and false acceptance over two channels,
the additive white Gaussian noise (AWGN) and the binary
symmetric channel (BSC).

The outline of this paper is as follows. In section II, we
introduce the identification setup. In section III, we analyze
the error events related to our setup. The simulation results
and conclusions are presented in section IV and V.

Notations: We use capital lettersX to denote scalar random
variables andX to denote vector random variables. Corre-
sponding small lettersx andx denote the realizations of scalar
and vector random variables. All vectors without sign tilde
are assumed to be of the lengthN and with the sign tilde of
lengthL. We useh(·) andH(·) to denote differential entropy,
entropy and binary entropy.N (µ, σ2

X) stands for the Gaussian
distribution with meanµ and varianceσ2

X . B(N, p) denotes the
Binomial distribution withN trials and probability of success
p. Φ(·) denotes cumulative distribution function (CDF) for
a N (0, 1) random variable andQ(·) designates Q-function,
Q(v) = 1−Φ(v). ‖ ·‖ denotes Euclidean vector norm.V(r:M)

stands for ther-th order statistics ofM i.i.d. random variables.
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Fig. 1. Identification problem based on binary templates.

II. I DENTIFICATION SETUP

The identification setup under analysis is shown in Fig. 1.
TheCodebook/Databaseis generated by recording biometrics
or PUFs of each item to be identifiedx(m) ∈ XN , m =
1, . . . , M , during the enrollment stage. It is assumed that these
biometrics orPUFs are drawn independently from a common
stationary distributionpX(x). The receiver observes a noisy
version Y of the biometric orPUFs of a given person or
item, where the probabilistic mismatch betweenX andY is
modeled byp(y|x) =

∏N−1
n=0 p(y[n]|x[n]). The second step

of enrollment is to reduce the dimensionality fromN to L.
The reduction is accomplished by applying random projectors
[6]; we use an approximation of a so-calledorthoprojector
W ∈ R

L×N , where each elementwij ∼ N (0, 1
N ) with

1 ≤ i ≤ L, 1 ≤ j ≤ N . A dimensionality reduction step
is applied to producẽX = WX and Ỹ = WY. L-length
binary data is derived from the projected data by taking the
sign of X̃ andỸ, producing binary templates,Bx andBy.

The decoding process in the identification setup is accom-
plished in two steps. At the first step, the primary candidates
are chosen by theOSLD. At the second step, a threshold is
applied to all candidates, and the candidates which satisfythe
constraint remain on the list. TheOSLD decoding procedure
can be summarized as follows1:

1) The likelihood functions,p(y|x(m)), 1 ≤ m ≤ M , for
all database entries are evaluated.

2) The computed likelihood functions are sorted in ascend-
ing order.

3) TheNl indices with the largest likelihood functions are
chosen which form a setNl. ParameterNl is referred
as a list size.

4) The final output set of the decoder is defined as:

N ′
l = {m ∈ Nl : p(y|x(m)) ≥ eNγ} (1)

where the parameterγ controls the number of final
candidates.

To investigate performances of the decoders, we should con-
sider a composite hypothesis test where:

H0: The queryY is unrelated to any database entry,

1The low-complexity identification ofOSLD decoding based on the
concept of bit reliability is given in [7].

Hm: The queryY is related to themth entry of database.

The performance of the decoder is evaluated by:

• the Probability of miss (a related query is incorrectly
rejected, i.e., not in the final listN ′

l );
• the Probability of false acceptance (an unrelated query is

incorrectly accepted).

III. E RROR EVENTS

Before considering error events, we will considerOrder
Statisticswhich will be used in the computation of the proba-
bility of errors. We suppose thatV (1), V (2), . . . , V (M) areM
i.i.d. random variables, each with the cumulative distribution
function (CDF) F (v). Let F(r:M)(v) denote theCDF of ther-th
order statisticsV(r:M), which corresponds to ther-th position
of v(1:M) ≤ v(2:M) ≤ . . . ≤ v(r:M) ≤ . . . ≤ v(M :M) for a
specific outcome. TheCDF of the r-th order statisticV(r:M)

is given by [5]:

F(r:M)(v)=Pr
{

V(r:M) ≤ v
}

=Pr {at leastr of Vi are less or equal tov}

=

M
∑

i=r

(

M

i

)

F i(v)[1 − F (v)]M−i (2)

since the term in the summand is the binomial probability that
exactlyi of V (1), V (2), . . . , V (M) are less than equal tov.

In the following subsections, we consider the probability of
miss and probability of false acceptance for theAWGN channel
and theBSC.

A. Probability of Miss

Once the list of primary candidates is selected by theOSLD,
the final candidates are extracted by applying the threshold
to their likelihoods. A miss event occurs when the query
related to the database entry does not belong to the list of
final candidates. The probability of miss,PM , is given by:

PM=1 −
M
∑

m=1

Pr{x(m) ∈ Nl andp(y|x(m)) ≥ eNγ |Hm} ×

Pr{Hm},
(3)

whereNl is the primary list of candidates. As the entries of
the database are identically distributed and equally likely to
be queried, the overall probability of miss does not depend on
the particular index and hence:

PM = 1 − Pr{x(1) ∈ Nl andp(y|x(1)) ≥ eNγ |H1}. (4)

The miss event is considered for the reduced dimensionality
data over theAWGN channel and binary data over theBSC.

1) The Additive White Gaussian Noise Channel:We as-
sume that the decoder input is generated by the following
additive channel2:

Ỹ = X̃ + Z̃, (5)

2This channel results from the random projections with possible diagonal-
ization [6].
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Fig. 2. The illustration of the event that the first entry of database related
to the query is not on the primary list.

whereX̃ ∼ N (0, ξ
LIL), ξ = L

N ‖x‖2 and Z̃ ∼ N (0, σ2
ZIL).

Since

T (m)=

L−1
∑

n=0

ỹ[n]x̃(m)[n] − 1

2

L−1
∑

n=0

x̃2(m)[n]

=

L−1
∑

n=0

ỹ[n]x̃(m)[n] − 1

2
ξ (6)

is a sufficient statistic, the first event in (3) occurs iffT (m)
is among theNl largest of{T (1), T (2), . . . , T (M)}. Fig. 2a
illustrates this given the fact that the query is related to the
first entry. Therefore the probability of miss can be stated as,

PM = 1 − Pr{T(M−Nl:M−1) < T (1) andT (1) ≥ λ|H1}

=1 −
∫ ∞

λ

Pr{T(M−Nl:M−1) < t|H1, T (1) = t}pT (1)(t) dt,

(7)

where from (1) and (6),λ =
ξ+Lσ2

Z

2 +σ2
ZL
(

1
2 ln(2πσ2

Z) + γ
)

,
pT (1)(t) denotes thePDF of T (1). For equiprobable, equal
energy and orthogonal̃x(m), conditioned onH1:

T (m) ∼
{

N (1
2ξ, σ2

Zξ), for m = 1,
N (− 1

2ξ, σ2
Zξ), for m 6= 1.

(8)

From (2), theCDF of the (M −Nl)
th order statistics of the

i.i.d random variablesT (m), m 6= 1, is given by:

Pr{T(M−Nl:M−1) < t} = F(M−Nl:M−1)(t) =

M−1
∑

p=M−Nl

(

M − 1

p

)

Φp

(

t + 1
2ξ

√

ξσ2
Z

)[

Q

(

t + 1
2ξ

√

ξσ2
Z

)](M−1)−p

.(9)

From (7), (8), (9) and lettingu , (t + 1
2ξ)/

√

ξσ2
Z , the

probability of miss over theAWGN channel can be expressed

as3:

PM =1−
{

M−1
∑

p=M−Nl

(

M − 1

p

)

×
∫ ∞

λ+1
2

ξ√
ξσ2

Z

Φp(u)Q(M−1)−p(u)

× 1√
2π

exp



−1

2

(

u −
√

ξ

σ2
Z

)2


 du

}

. (10)

2) Binary Symmetric Channel:After dimensionality reduc-
tion and binarization, we have binary data with the lengthL,
whereL < N . In order to evaluate the probability of miss, we
consider it over theBSC with a crossover probability ofPb.
For anybx(m),by ∈ {0, 1}L, the likelihood function

p(by|bx(m)) = P
d(m)
b (1 − Pb)

L−d(m) (11)

is a decreasing function of the Hamming distanced(m) ,

dH(by,bx(m)) for 0 ≤ Pb ≤ 0.5. Therefore, the first
event in (4) occurs, ifD(m) is not among theNl smallest
{D(1), D(2), . . . , D(M)}. Similarly to the AWGN channel
case, for a given query related toH1 the first event occurs
when D(1) of the related query is on the primary list (Fig.
2b). Therefore, the probability of miss can be stated as:

PM = 1 − Pr{D(Nl:M−1) > D(1) andD(1) ≤ η|H1}

= 1 −
η
∑

d=0

Pr{D(Nl:M−1) > d|H1, D(1) = d}pD(1)(d),

(12)

where from (1) and (11), η = L γ−ln(1−Pb)
ln(Pb/(1−Pb))

and pD(1)(d)

denotes thePMF of D(1). The dimensionality reduction and
binarization change the statistics of the database generated
by pX(x) to the Binomial distribution, i.e.,Bx ∼ B(L, 1/2)
for pX(x) = N (0, σ2

XIN ). Conditioned onH1, the sufficient
statistics can be expressed as follows:

D(m) ∼
{

B(L, Pb),for m = 1,
B(L, 1

2 ), for m 6= 1.
(13)

From (2), theCDF of the N th
l order statistics of the i.i.d.

random variablesD(m), m 6= 1 is given by:

Pr{D(Nl:M−1) < d} = F(Nl:M−1)(d) =
M−1
∑

p=Nl

(

M − 1

p

)

S(d)p(1 − S(d))(M−1)−p, (14)

whereS(d) ,
(

1
2

)L∑d
x=0

(

L
x

)

. From (12), (13) and (14), the
miss probability over theBSC is given by:

PM = 1−
{

η
∑

d=0

(

L

d

)

P d
b (1 − Pb)

L−d

×
Nl−1
∑

p=0

(

M − 1

p

)

S(d)p(1 − S(d))(M−1)−p

}

.(15)

3It should be pointed out that forNl = 1 and λ = −∞, (10) coincides
with the error probability of theML decoder [4], page 121.



B. Probability of False Acceptance

The main reason to consider the probability of false ac-
ceptance is to show the reliability of the decoding process
with respect to various attacking strategies. There are differ-
ent scenarios to investigate the reliability of the decoderin
identification setups:

• The attacker has no access to thePDF of database
generation,pX(x).

• The attacker has access to thePDFof database generation,
pX(x).

• The database entries are partially known by the attacker.
• The database entries are totally known by the attacker.

After the Gaussian random projections, reduced database en-
tries have the Gaussian distribution; therefore, the first and
second scenarios coincide. In this paper, we consider the
scenario in which thePDF is fully known by the attacker.
Then, blindly generated codewords that follow thePDF are
sent to the decoder. For this scenario, the probability of false
acceptance can be defined as:

PFA = Pr{N ′
l 6= ∅|H0}. (16)

In the following subsections, the false acceptance event is
considered over theAWGN channel and theBSC.

1) Additive White Gaussian Noise Channel:For a given
query, which is unrelated to any entry of the database, the
correlation between the query and all entries is computed and
sorted in ascending order. The following events are defined:

ET(i:M)
= {T(i:M) ≥ λ|H0}, (17)

whereM − Nl + 1 ≤ i ≤ M andT (m) ∼ N (− 1
2ξ, ξσ2

z) for
largeL. From (16) and (17), the probability of false acceptance
can be defined as:

PFA =Pr{∪M
i=M−Nl+1ET(i:M)

|H0}
=1 − Pr{∩M

i=M−Nl+1E
c
T(i:M)

|H0}
(a)
=1 − Pr{Ec

T(M:M)
|H0} = Pr{ET(M:M)

|H0}, (18)

whereEc
T(M:M)

is the complement ofET(M:M)
, and(a) follows

from the fact that asEc
T(M:M)

occurs the rest of the events will
certainly occur. Then the probability of false acceptance can
be derived as in [5]:

PFA=Pr

{

max
1≤m≤M

T (m) ≥ λ|H0

}

∼=1 − ΦM

(

λ + 1
2ξ

√

ξσ2
Z

)

. (19)

The interesting thing to note is that the probability of false
acceptance is independent of the primary list sizeNl, under
the considered attacking scenario.

2) Binary Symmetric Channel:The same as for theAWGN
channel, we define the following events:

ED(i:M)
= {D(i:M) ≤ η|H0}, (20)

where 1 ≤ i ≤ Nl, D(m) ∼ B(L, 1
2 ) and ED(i:M)

is the
event that theith ascending ranked Hamming distance between

the query and an entry of the database is smaller than the
threshold. The probability of false acceptance is found as:

PFA =Pr{∪Nl

i=1ED(i:M)
|H0}

=1 − Pr{∩Nl

i=1E
c
D(i:M)

|H0}
(a)
=1 − Pr{Ec

D(1:M)
|H0} = Pr{ED(1:M)

|H0} (21)

whereEc
D(i:M)

is the complement ofED(i:M)
, and(a) follows

from the fact that if the eventEc
D(1:M)

occurs the rest of
the events will certainly occur. Then the probability of false
acceptance can be derived [5]:

PFA=Pr

{

min
1≤m≤M

D(m) ≤ η|H0

}

=1 −
[

1 −
(

1

2

)L η
∑

x=0

(

L

x

)

]M

. (22)

Similarly to theAWGN channel case, the probability of false
acceptance is independent of the primary list size.

IV. SIMULATION RESULTS

The proposed decoder performance is evaluated by using
databases of synthetic data with different sizes that are in-
dependently and identically normally distributed, i.e.,X ∼
N (0, IN ). The Signal-to-Noise Ratio (SNR) is defined as
SNR= 10 log10

σ2
X

σ2
Z

, σ2
X = 1.

Fig. 3 and Fig. 4 confirm the fact that the empirical and
analytical probability of miss and false acceptance over the
AWGN channel and theBSC coincide with each other as far
as the precision of computer simulation allows.

From (10), (19) and (15), (22) the probability of miss and
false acceptance over theAWGN channel and theBSC are
computed andreceiver operating characteristic(ROC) curves
are shown for differentSNRs, database sizesM and primary
list sizesNl.

Fig. 5 shows that if theSNR is high, the performance for
the unique decoder and theOSLD are the same. However, in
low SNR scenarios, theOSLD helps improve the performance
while the probability of correct detectionPD = 1 − PM is
not close to one. Fig. 6 shows the impact ofNl and M on
the identifier performance. Increasing the primary list size Nl

improves the identifier performance but after a certain value
of Nl it does not change anymore, and increasing the database
sizeM decreases the performance.

Fig. 7 and Fig. 8 confirm the above conclusions for theBSC
case.

V. CONCLUSION

We have analyzed the identification setup based on the
OSLD framework. In light of this framework, we have investi-
gated theOSLD performance by deriving analytical equations
for the probability of miss and false acceptance.

Simulation results show that on the one hand, theOSLD
can only improve the identifier performance in very lowSNR
scenarios. On the other hand, this improvement is restricted
by a certain range of list sizes. The obtained results can
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be of interest for security and content-based retrieval system
analysis.
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