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Abstract—In this paper we construct low decoding complexity
STBCs by using the Pauli matrices as linear dispersion matrices.
In this case the Hurwitz-Radon orthogonality condition is shown
to be easily checked by transferring the problem toF4 domain.
The problem of constructing low decoding complexity STBCs
is shown to be equivalent to finding certain codes overF4. It
is shown that almost all known low complexity STBCs can be
obtained by this approach. New codes are given that have the
least known decoding complexity in particular ranges of rate.

I. I NTRODUCTION

Consider anN transmit antenna,Nr receive antenna quasi-
static Rayleigh flat fading MIMO channel given by

Y = XH +W, (1)

whereH is theN×Nr channel matrix,X is theT ×N matrix
of transmitted signal,W is theT ×Nr additive noise matrix
andY is the T × Nr matrix of received signal, all matrices
being over the complex fieldC. Throughout this paper, we
consider only the caseT = N.

An N × N Space-Time Block Code (STBC)C is a finite
subset ofCN×N . An N × N Linear Space-Time Design
(LSTD) [17] or simply a designX in K real variables
x1, . . . , xK is a matrix

K
∑

i=1

xiAi (2)

whereAi ∈ C
N×N , i = 1, . . . ,K and the set{A1, . . . , AK}

is linearly independent over the field of real numbersR.
Throughout the paper designs are denoted using upper case
bold font letters. AnN ×N designX in K real variables is
said to have a rate ofR = K

2N complex symbols per channel
use (cspcu). The matricesAi are known as linear dispersion or
weight matrices. An STBC can be obtained from a designX

by makingx1, . . . , xK take values from a finite setA ⊂ RK .
The setA is called the signal set. Denote the STBC obtained
this way byC(X,A). Thus we have

C(X,A) = {
K
∑

l=1

alAl|[a1, . . . , aK ]T ∈ A} (3)

One of the important aspects in the design of space-time
block codes (STBC) is the ML decoding complexity. Space-
Time block codes based on orthogonal designs were proposed
in [1],[2],[3]. Clifford Algebras were proposed as a means
to design square orthogonal designs in [3]. It is known
that [4],[5],[6] orthogonal designs offer single real symbol
decodability and full diversity. However the rates offeredby

these designs is less than1 complex symbol per channel
use when the number of transmit antennas is more than two
[1],[2],[3]. Single complex symbol decodable or double real
symbol decodable rate1 STBCs were given in [4],[5],[6],[8].

In [7],[8],[9] the framework for multigroup decodable
STBCs was given. In (2), if the symbolsx1, . . . , xK can be
divided into groups such that each group of symbols can be
ML decoded independently of other groups, then the decoding
complexity is greatly reduced. A necessary condition forxi
and xj to be decoded independently of each other is that
their weight matricesAi and Aj must be Hurwitz-Radon
orthogonal, i.e., they must satisfy

AHi Aj +AHj Ai = 0 (4)

Constructing low decoding complexity STBCs requires one
to find weight matrices satisfying the above equation. In [7]
4-group decodable rate1 codes for arbitrary antennas was
given. Coordinate Interleaved Orthogonal Designs or CIODs
[6] provide single complex symbol decodable designs for
arbitrary number of transmit antennas. However their rate
decreases rapidly with increasing number of antennas. [8]
gave a general algebraic structure of the weight matrices
of g-group decodable codes using Clifford Algebras, where
different groups can have different number of information
symbols to be decoded together. [9] givesg-group decodable
designs, called Clifford Unitary Weight Designs (CUWDs),
by manipulating the matrices obtained through representation
of Clifford Algebras. In [10] an algebraic framework based
on Extended Clifford Algebras was proposed to study CUW
STBCs and using this framework, the optimal tradeoff between
rate and ML decoding complexity of CUW STBCs was
obtained for few specific cases. Codes meeting this tradeoff
were also provided.

In [11] fast-decodable(FD) codes were introduced. These
codes were not multigroup decodable but they had reduced
sphere-decoding complexity. Later in [21], [12] it was shown
that the Golden Code [13] is fast-decodable and hence has
lower ML decoding complexity than previously thought of.
In [21] rate 2 codes for 2, 4 antennas with the largest
known coding gain were given. These codes too were fast-
decodable. Recently fast-decodable codes for number of an-
tennasN = 2, 4, 6, 8 were given in [14] . These codes,
known as EAST codes, combine a modified version of Perfect
codes [15] with Alamouti embedding. Their rates are limited
to 1 ≤ R ≤ N/2 complex symbols per channel use, but
they posses the non-vanishing determinant property. In [16]
a new class of codes called fast-group-decodable(FGD) were
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introduced. These codes combine the low decoding complexity
properties of multigroup and FD codes.

Let X =

(

0 1
1 0

)

andZ =

(

1 0
0 −1

)

. Note that bothX

andZ are Hermitian and unitary. The four matricesI2, X, Z
and iXZ are known as the Pauli matrices. They form aC-
linear basis ofC2×2. The finite groupGm generated by the
mth order tensor products of the Pauli matrices is called
the Pauli group. It consists of all possiblem fold tensor
products of the Pauli matrices together with multiplicative
factors±1,±i, i.e.,

Gm = { iµB1⊗· · ·⊗Bm|µ ∈ Z4 andBk ∈ {I2, X, Z, iXZ} }.

The following subest ofGm,

Λm = { iλB1⊗· · ·⊗Bm|λ ∈ Z2 andBk ∈ {I2, iX, iZ, ZX} }

is a basis forC2m×2m as a vector space overR.
We relate the setΛm to a subset ofFm+1

4 , whereF4 is the
finite field with4 elements{0, 1, ω, ω2} satisfying the relations
1 + ω = ω2, by defining the map

ψ : {I2, iX, iZ, ZX} → F4.

that sends

I2 → 0, iX → 1, iZ → ω, ZX → ω2. (5)

Note that every elementt ∈ Λm can be uniquely written as

t = iλψ−1(ξ1)⊗· · ·⊗ψ−1(ξm) for λ ∈ Z2 andξk ∈ F4. (6)

In fact, the mapϕ : Λm → F2 ⊕ Fm4 that sends

iλB1 ⊗ · · · ⊗Bm → [λ, ψ(B1), . . . , ψ(Bm)]

is a one to one correspondence betweenΛm and F2 ⊕
Fm4 . The Hamming weightwt([λ, ξ1, . . . , ξm]) of a vector
[λ, ξ1, . . . , ξm] ∈ F2 ⊕ Fm4 is defined as

wt([λ, ξ1, . . . , ξm]) = 1{λ 6= 0}+
m
∑

i=1

1{ξi 6= 0}.

In this paper we construct low decoding complexity STBCs
from designs that use elements from the Pauli group as linear
dispersion matrices. This problem is converted to one of
finding certain codes overF4, which are subsets ofF2⊕Fm4 , in
which checking the conditions for low decodability becomes
simpler. The contributions of this paper are as follows.

• It is shown that when designs are constructed by using
elements of Pauli group as weight matrices, the Hurwitz-
Radon orthogonality condition (4) can be easily checked
by transferring the problem to the correspondingF4-
domain. This facilitates both the description and the
construction of low decoding complexity codes in theF4-
domain.

• A new class of full-diversity fast-group-decodable and
fast-decodable codes is reported. The codes of this class
have the lowest decoding complexity among all known
codes for rates1 < R < 3/2 and2m−2 + 1

2m < R ≤ 2m

for 2m antennas. Particular examples of codes from this
class are

– Code forN = 4 transmit antennas, rateR = 5/4
with a complexity of the order ofM2 for arbitrary
constellations andM1.5 for constellations carefully
chosen to reduce decoding complexity. This is in
comparison with the code given in [19] and [20] with
complexityM2.5 for arbitrary constellations.

– Code forN = 4 andR = 17/8 with a complexity
of the order ofM5.5 and M5 for arbitrary and
carefully chosen constellations respectively. This is
in comparison with the code given in [16] with a
complexity ofM6. It is also shown that the STBC
given in [16] is a specific case of STBCs obtainable
from codes overF4.

• We construct STBCs from codes overF4 that meet the
rate-ML decoding complexity tradeoff of a particular
class of CUWDs obtainable from Extended Clifford Al-
gebras.

• It is shown that almost all the low decoding complexity
STBCs available in the literature can be obtained via
codes overF4.

• We show that full-diversity STBCs with a decoding
complexity of M2m−1R−0.5 can be obtained by using
regular PAM constellation for a subset of real symbols in
the design given in [20]. For rates3/2 ≤ R ≤ 2m−2+ 1

2m

these codes have the least known decoding complexity for
2m antennas.

• STBCs obtainable by our approach are shown to include
as special cases, theR = 2 codes, proposed in [21], for
2 and 4 antennas having the largest known coding gain
and the fast-decodable rate2 code for2 transmit antennas
proposed in [22], [23].

• We show that if a design has only full-rank linear dis-
persion matrices, then a full diversity STBC can always
be constructed from it by encoding each real symbol
independently.

The contents of this paper are organized as follows. In
Section II preliminary results and the necessary background
and notations are established. Results regarding full diversity
are given in Section III. The focus of the paper then shifts to
designing low complexity designs rather than specific STBCs.
Clifford Algebras and Pauli matrices are introduced in Sec-
tion IV and the problem of designing low complexity designs
from Gm is converted to a problem inFm+1

4 . Examples of
STBCs in the literature that can be obtained via codes over
F4 are given in this section. In Section V, it is shown that
almost all known multi group decodable codes are obtainable
via codes overF4. Also, a new class of multi-group decodable
codes is presented. In Section VI new fast-group-decodable
and fast-decodable codes are presented. Concluding remarks
are made in Section VII.
Notation: For a complex matrixA the transpose, the conjugate
and the conjugate-transpose are denoted byAT ,Ā and AH

respectively.||A||2F is the Frobenius norm of the matrixA.



A⊗B is the Kronecker product of matricesA andB. In is the
n×n identity matrix and0 is the all zero matrix of appropriate
dimension. The empty set is denoted byφ. Cardinality of a set
Γ is denoted by|Γ| and i =

√
−1. 1{· · · } is the indicator

function. For a square matrixA, det(A) is the determinant of
A. For a positive integern, Zn is the set{0, 1, . . . , n− 1}.
For a complex matrixA, ARe andAIm denote its real and
imaginary parts respectively.vec(A) is the vectorization of the
matrix A.

II. PRELIMINARIES

In this section, multigroup decodability, fast-decodability
[11] and fast-group-decodability [16] of STBCs and designs
are formally defined with the help of the notion of group-
decodability.

Let NK denote the set{1, . . . ,K}. For anyK-tuple x =
(x1, . . . , xK) and non-empty setΓ ⊆ NK define

xΓ = (xi1 , xi2 , . . . , xi|Γ|
)

whereinΓ = {i1, . . . , i|Γ|}. The idea of encoding complexity
was first introduced in [10]. We now defineg-group encod-
ability of an STBCC(X,A).

Definition 1: Let g be any positive integer. An STBC
C(X,A) obtained from a designX and a signal setA is said
to beg-group encodable if there exists a partition ofNK into
non-empty subsetsΓ1, . . . ,Γg and there exist finite subsets
Ai ⊂ R|Γi|, i = 1, . . . , g such that

C(X,A) = {
K
∑

l=1

alAl|aΓi ∈ Ai for i = 1, . . . , g}

In short, for a g-group encodable STBC the tuples
xΓ1

, . . . , xΓg are assigned values independently of each other
during encoding. If for eachi, |Γi| = 1, we say that the STBC
C(X,A) is single real symbol encodable. For a designX in
K real variables and a non-empty subsetΓ ⊆ NK define the
designXΓ as follows

XΓ =
∑

i∈Γ

xiAi

We now define theg-group maximum-likelihood (ML)
decodability of an STBCC(X,A).

Definition 2: An STBC C(X,A) is said to beg-group
ML decodable if there exists a partition ofNK into g
non-empty subsetsΓ1, . . . ,Γg and if there exist finite sub-
sets Ai ⊂ R|Γi|, i = 1, . . . , g such that the ML decoder,
arg minC∈C(X,A)||Y − CH ||2F , decomposes as

g
∑

i=1

arg minCi∈C(XΓ
i
,Ai)

||Y − CiH ||2F

Such a decomposition reduces the decoding complexity
from

∏g
i=1 |Ai| computations to

∑g
i=1 |Ai| computations.

Following theorem gives a set of sufficient conditions forg-
group decodability of an STBC.

Theorem 1 ( [6], [8], [10]): An STBCC(X,A) is g-group
decodable if there exists a partition ofNK into g non-empty

subsetsΓ1, . . . ,Γg and if there exist finite subsetsAi ⊂ R
|Γi|,

i = 1, . . . , g such that the following conditions are satisfied

1) The weight matricesAl, l ∈ NK of the designX are
such that

AHk Al+A
H
l Ak = 0 wheneverl ∈ Γi, k ∈ Γj and i 6= j

2) C(X,A) is g-group encodable with respect to the par-
tition Γ1, . . . ,Γg of the setNK and the signal sets
A1, . . . ,Ag.

We now turn to fast-decodable codes. Consider an STBC
C(X,A) being used for communication via the MIMO chan-
nel (1). For a complex matrixA, define

˜vec(A) = [vec(ARe)
T vec(AIm)T ]T

In [17] it was shown that the ML decoding problem can be
reduced to one of finding

arg minx∈A||y −Hx||2F
where

y = ˜vec(Y ) x = [x1, . . . , xK ]T

H =
[

˜vec(A1H) ˜vec(A2H) · · · ˜vec(AKH)
]

Let the QR decomposition ofH be H = QR whereR is a
K × K upper triangular matrix. The ML decoding problem
now reduces to

arg minx∈A||QT y −Rx||2F
The ith column of R is associated with the symbolxi.
Consider the case whenR is of the following form

R =















T1 0 . . . 0 B1

0 T2 . . . 0 B2

...
... . . .

...
...

0 0 . . . Tg Bg
0 0 . . . 0 Tg+1















(7)

whereg ≥ 1, Ti, i = 1, . . . , g + 1 are square upper triangular
matrices andBi, in general, are rectangular. Denote byΓ̃i the
set of indices of the columns associated with the matrixTi.
During sphere-decoding[24], [25] when values are proposed
for the symbols{xl|l ∈ Γ̃g+1}, the remaining symbols
become conditionallyg-group decodable, provided they have
been encoded independently. This reduces the ML decoding
complexity greatly. Such an STBC is said to be fast-decodable.
Here we call such STBCs as being ‘conditionallyg-group
decodable’. Formal definition of a fast-decodable STBC is
given below.

Definition 3: Let C(X,A) be such that for every channel
realizationH , the upper triangular matrixR(H) is of the form
given in (7). If further the tuplesxΓ̃i

, i = 1, . . . , g are encoded
independently thenC(X,A) is said to be fast-decodable.

The following theorem gives the relation between the struc-
ture ofR and the linear dispersion matrices of the designX.



Theorem 2 ( [21]): Let rl,k(H) be the element in the
lth row and kth column of R(H). For any 1 ≤ l <
k ≤ K and any channel realizationH , rl,k(H) = 0 if
AHk Al +AHl Ak = 0.

This means that an STBCC(X,A) will be conditionallyg-
group decodable if the STBC obtained by suppressing a subset
of the variables isg-group decodable. More formally we have
the following theorem which gives a sufficient condition for
an STBC to be fast-decodable.

Theorem 3:Consider aλ-group encodable STBCC(X,A)
with the encoding groups beingΓ1, . . . ,Γλ. C(X,A) is fast-
decodable ifΓ̃1, . . . , Γ̃g ⊆ NK are such that we have

AHk Al +AHl Ak = 0 (8)

whenever
l ∈ Γp, k ∈ Γq andp 6= q. (9)

Proof: From Theorem 2 and (8) it is clear thatrl,k(H) =
0 for any channel realizationH whenever l ∈ Γ̃i, k ∈
Γ̃j and i 6= j. Thus with appropriate reordering of the columns
the matrixR(H) can be brought to the form in (7). It only
remains to show that the tuplesxΓ̃i

, i = 1, . . . , g are encoded
independently. But (9) assures exactly this. ThusC(X,A) is
fast-decodable.

Fast-Group-Decodable(FGD) STBCs were recently intro-
duced in [16].

Definition 4 ( [16]): An STBC C(X,A) is said to be fast-
group-decodable if it satisfies the following conditions

1) For someg > 1, C(X,A) is g-group decodable with the
groups and the signal sets asΓ1, . . . ,Γg andA1, . . . ,Ag.

2) There exists ani ∈ {1, . . . , g} such that the STBC
C(XΓi

,Ai) is fast-decodable.

The complexity is reduced because of two reasons. Firstly
multigroup decodability decreases the number of computa-
tions. Further there is at least one component code which is
fast-decodable. Such a low complexity code was given in [16]
for 4 transmit antennas and rate17/8 cspcu.

So far we have only discussed about the decoding complex-
ity of an STBCC(X,A). We end this section by introducing
the notion of the decoding complexity of a designX. From
Theorem 1 it is clear that the decoding complexity of an STBC
C(X,A) is affected by the choice of both the designX and
the signal setA. By the decoding complexity of a design we
refer to the amount of complexity that the choice of the linear
dispersion matrices contributes to the decoding complexity of
the STBC. The following definition makes this formal.

Definition 5: Consider a designX =
∑K

i=1 xiAi.

1) X is said to beg-group decodable if there exists a
partition of NK into g non-empty subsetsΓ1, . . . ,Γg
such that

AHk Al+A
H
l Ak = 0 wheneverl ∈ Γi, k ∈ Γj and i 6= j

(10)
2) X is said to be fast-decodable if there exists a non-empty

subsetΓ ⊆ NK such that the designXΓ is g-group
decodable for someg > 1.

3) X is said to be fast-group-decodable ifX is g-group
decodable with respect to the partitionΓ1, . . . ,Γg and
there exists at least oneΓi such thatXΓi

is fast-
decodable.

III. O N FULL DIVERSITY

In this section we give a sufficient condition for a design
X to give rise to full-diversity STBCC(X,A) via single real
symbol encoding. This result is then used to show that every
low complexity design presented in this work can be combined
with an appropriate signal set to get a full diversity STBC
without compromising on decoding comfort.

Let Xn =
∑n

i=1 xiAi be anN ×N linear design inn real
symbols{x1, . . . , xn} and letAi ∈ C

N×N , i = 1, . . . , n be
full-rank. Given a set ofn positive integersQi, i = 1, . . . , n
we are interested in finding a real constellationAi ⊂ R for
the real symbolxi with |Ai| = Qi for eachi = 1, . . . , n. The
constellations must be such that the specific STBC obtained,
C(Xn,A1 × · · · × An), must be of full-diversity. Towards
establishing the main result of this section we introduce some
notation.

For each i ∈ {1, . . . , n} let
Ai = {ai[0], ai[1], . . . , ai[Qi − 1]}, where ai[j] ∈ R.
For an n tuple u = (u1, . . . , un) ∈ ZQ1

× ZQ2
· · · × ZQn

define

Cn[u] = Xn(a1[u1], a2[u2], . . . , an[un])

=

n
∑

i=1

ai[ui]Ai (11)

Hence the single real symbol encodable STBC obtained by
using the given constellations satisfies

C(Xn,A1 × · · · × An) = {Cn[u]|u ∈ ZQ1
× · · · × ZQn}

We see that the codewords are indexed by the elements of
ZQ1

× · · · × ZQn .
Theorem 4:Let Xn =

∑n
i=1 xiAi be anN × N linear

design inn real variables with full-rank weight matricesAi.
Let Ai ⊂ R, i = 1, . . . , n be such that|Ai| = Qi and
C(Xn,A1 × · · · × An) is of full diversity. LetAn+1 ∈ CN×N

be any full rank matrix andQn+1 be any positive integer. Then
there exists a one dimensional real constellationAn+1 ⊂ R

such that
1) |An+1| = Qn+1

2) The STBCC(Xn+1,A1 × · · · × An+1) offers full di-
versity.

Proof: Proof is given in Appendix A.
We now present the main result of this section in the

following theorem.
Theorem 5:For any givenN × N square linear design

Xn =
∑n
i=1 xiAi with full-rank weight matricesAi and pos-

itive integersQ1, . . . , Qn, there exist constellationsAi ⊂ R,
i = 1, . . . , n such that

1) |Ai| = Qi for i = 1, . . . , n
2) The single real symbol encodable STBC

C(Xn,A1 × · · · × An) offers full diversity.



Proof: Proof is by induction. The theorem is shown to be
true forn = 1 here. Theorem 4 is the induction step.

Consider the design for one real symbolX1 = x1A1.
Choose anyA1 ⊂ R with |A1| = Q1. The codewords are
indexed by elements inZQ1

. For anyu, v ∈ ZQ1
andu 6= v

we have

det(C1[u]− C1[v]) = det((a1[u]− a1[v])A1)

= (a1[u]− a1[v])
Ndet(A1)

6= 0 (12)

Since the difference matrix of any two codewords is of full-
rank, the STBCC(X1,A1) offers full diversity.

The STBC obtained from Theorem 5 is single real sym-
bol encodable. Thus ifX were a g-group decodable, fast-
decodable or fast-group-decodable design then the resulting
STBC C(X,A) is a g-group decodable, fast-decodable or
fast-group-decodable STBC respectively. Most importantly the
condition that the linear dispersion matrices are full-rank
ensures that the STBCC(X,A) offers full-diversity.

All the designs discussed in this paper have unitary, and
hence, full-rank weight matrices. In the remaining sections of
the paper the focus is on designing low complexity designs and
not on the design of signal setsA. Since it has been shown in
Theorem 5 that there exist signal sets leading to full-diversity
STBCs without increasing the decoding complexity than that
imposed by the design itself, the only problem left is to design
signal sets that maximize the coding gain without increasing
the decoding complexity. This problem is not addressed in this
paper.

The following theorem will be useful when we are con-
structing STBCs with low decoding complexity.

Theorem 6:Let X =
∑K

i=1 xiAi be anN × N design
in K real symbols with full-rank weight matrices andl ∈
{1, . . . ,K} be such that

AHi Aj +AHj Ai = 2δi,jIN for all 1 ≤ i, j ≤ l (13)

Given positive integersQ1, . . . , QK and any set of real con-
stellationsA1, . . . ,Al with cardinalitiesQ1, . . . , Ql respec-
tively, there exist real constellationsAi, l < i ≤ K such that

1) The STBCC(X,A1 × · · · × AK) offers full diversity.
2) |Ai| = Qi for l < i ≤ K.

Proof: Consider the designXl =
∑l

i=1 xiAi and the
STBC C(Xl,A1 × · · · × Al) generated using the signal sets
A1, . . . ,Al for the independent variablesx1, . . . , xl. Because
{A1, . . . , Al} satisfy the complex Hurwitz-Radon matrix equa-
tions (13) we have [2],

Xl
H
Xl =

l
∑

i=1

x2iA
H
i Ai = (

l
∑

i=1

x2i )IN

Thus for any real signal setsA1, . . . ,Al, and
u, v ∈ ZQ1

× · · · × ZQl
with u 6= v we have

(Cl[u]− Cl[v])
H(Cl[u]− Cl[v]) =

l
∑

i=1

(ai[ui]− ai[vi])
2IN

which is full-rank. Since the rank of any square matrixA
is equal to the rank ofAHA, det(Cl[u] − Cl[v]) 6= 0. Thus
the STBCC(Xl,A1 × · · · × Al) is of full diversity. By using
Theorem 4 repeatedlyK − l times with integersQi and the
matricesAi, l < i ≤ K we get the desired signal set and the
STBC.

IV. L OW DECODING COMPLEXITY STBCS VIA CODES

OVERF4

In this section, we make use of Universal Clifford Algebras
and their matrix representations over the complex field, to
construct low decoding complexity codes via codes overF4. A
subset of elements in the Universal Clifford Algebra are seen
to have multiplicative properties similar to (4). We attempt to
obtain low complexity designs by choosing linear dispersion
matrices from the matrix representation of these elements.We
proceed in this direction by using a theorem that establishes
an isomorphism between a Universal Clifford Algebra and
a full matrix algebra of appropriate dimension overC. It
is then observed that the tensor product of Pauli matrices
are a double cover of the set elements in question from the
Universal Clifford Algebra. The connection with vectors over
F4 is made. The problem of finding low complexity designs is
then converted to one of finding a set of vectors inF2 ⊕ Fm4 .
Examples of low complexity STBCs available in the literature
that are obtainable from codes overF4 are given.

Let n be any positive integer. Denote byNn the set
{1, . . . , n}. Let e1, . . . , en be elements of an associative
algebra overC and α ⊆ Nn. For any nonempty sub-
set α = {i1, . . . , i|α|} with i1 < i2 < · · · < i|α| we define
eα = ei1ei2 · · · ei|α|

andeφ = 1.
Definition 6 ([27]): A Universal Clifford AlgebraUn is an

associative algebra overC with a multiplicative identity 1 and
generated byn objectse1, . . . , en which satisfy the following
equations

eiej + ejei = 0 wheneveri 6= j (14)

ei
2 = −1 for i = 1, . . . , n (15)

{eα|α ⊆ Nn} is a basis forUn (16)

From (14) and (15) it is clear that for anyα ⊆ Nn,
eα

2 = ±1. Also for anyα, β ⊆ Nn either eαeβ + eβeα = 0
or eαeβ − eβeα = 0. This property resembles (4) except for
the conjugate-transpose. Hence by representing the basis ele-
ments using either Hermitian or skew-Hermitian matrices we
can obtain linear dispersion matrices that are Hurwitz-Radon
orthogonal. Together with the fact thateα2 = ±1 it is clear
that we need unitary representation of the basis elements. The
following theorem gives a representation of a class of Clifford
Algebras.

Theorem 7 ( [27]): For any positive integerm, the Clifford
AlgebraU2m is isomorphic to the full matrix algebraC2m×2m .
The extension of the mapek → Ek for k = 1, . . . , 2m gives
an isomorphism of the algebras, where fors = 1, . . . ,m, Es
andEs+m are them-fold tensor products given by

Es = i(Z ⊗ · · · ⊗ Z ⊗ iXZ ⊗ I2 ⊗ · · · ⊗ I2)



Es+m = i(Z ⊗ · · · ⊗ Z ⊗X ⊗ I2 ⊗ · · · ⊗ I2)

there beings− 1 factors ofZ in each product.
From Theorem 7 we have that eachEk, k = 1, . . . , 2m

is unitary, skew-Hermitian and thus squares to−I. With Eα
defined similar toeα for α ⊆ N2m we see that all the basis
elements are represented in terms of unitary matrices. The iso-
morphism ensures that these matrices are linearly independent
overC. Since we are concerned with the transmission of real
symbols we note thatB = {iλEα|λ ∈ Z2 andα ⊆ N2m} is a
R-linear basis forC2m×2m . With −B defined as{−b|b ∈ B},
we have the following proposition.

Proposition 1: B ∪−B = Gm.
Proof: We note that bothX andZ square toI2. Further,

they anticommute. So it is clear that for anyα ⊆ N2m,
Eα ∈ Gm. Since Gm is closed under multiplication by
iI2m and −I2m we haveB ∪ −B ⊆ Gm. To complete the
proof we note there are22m distinct subsets ofN2m, thus
|B| = 22m+1. SinceB is linearly independent overR, for
any b ∈ B we have−b /∈ B. EquivalentlyB ∩ −B = φ. Thus,
|B ∪ −B| = 22m+2 = |Gm|. ThusB ∪ −B = Gm.

Proposition 1 says that the weight matrices to be chosen
from the matrix representation of the basis elements of Clif-
ford Algebra can be equivalently obtained through the Pauli
group. However, the Pauli group of matrices are not linearly
independent overR. Thus we concern ourselves with a proper
subsetΛm ofGm which is maximally linearly independent and
thus satisfiesΛm ∪−Λm = Gm. One such set is the following

Λm = { iλB1⊗· · ·⊗Bm|λ ∈ Z2 andBk ∈ {I2, iX, iZ, ZX} }
(17)

Proposition 2: The setΛm is a basis forC2m×2m as a
vector space overR.

Proof: {I2, iX, iZ, ZX} is a basis forC2×2 as a vector
space overC. Thus theirm fold tensor products form aC-
linear basis forC2m×2m . From this the required result follows.

We now proceed by relating the setΛm toF2⊕Fm4 . Consider
the finite fieldF4 with 4 elements{0, 1, ω, ω2} satisfying the
relations1 + ω = ω2. Define a map

ψ : {I2, iX, iZ, ZX} → F4

that sends

I2 → 0, iX → 1, iZ → ω, ZX → ω2 (18)

Note that every elementt ∈ Λm can be uniquely written as

t = iλψ−1(ξ1)⊗ · · · ⊗ ψ−1(ξm) for λ ∈ Z2 andξk ∈ F4

(19)

Proposition 3: The mapϕ : Λm → F2 ⊕ Fm4 that sends

iλB1 ⊗ · · · ⊗Bm → [λ, ψ(B1), . . . , ψ(Bm)]

is a one to one correspondence betweenΛm andF2 ⊕ Fm4 .

Proof: Sinceψ is one to one, it is clear thatϕ is one to
one. Further|Λm| = |F2⊕Fm4 | = 22m+1. Thusψ is surjective
as well. This completes the proof.

The Hamming weight of a vector inF2 ⊕ Fm4 is defined
next.

Definition 7: The (Hamming) weightwt([λ, ξ1, . . . , ξm]) of
a vector[λ, ξ1, . . . , ξm] ∈ F2 ⊕ Fm4 is defined as

wt([λ, ξ1, . . . , ξm]) = 1{λ 6= 0}+
m
∑

i=1

1{ξi 6= 0}

Any matrix t ∈ Λm is either Hermitian or skew-Hermitian.
This information aboutt is present inwt(ϕ(t)). The following
proposition explains this claim.

Proposition 4: A matrix t ∈ Λm is Hermitian if wt(ϕ(t))
is even. Else it is skew-Hermitian.

Proof: Let t = iλB1 ⊗ · · · ⊗Bm,Bi ∈ {I2, iX, iZ, ZX}
andλ ∈ Z2. ExceptI2,which is mapped to0 underψ, the other
3 matrices are skew-Hermitian. Hence

tH = (−1)1{λ6=0}iλ(−1)1{B1 6=I}B1 ⊗ · · · ⊗ (−1)1{Bm 6=I}Bm

= (−1)1{λ6=0}iλ ⊗mk=1 (−1)1{ψ(Bk) 6=0}Bk

= (−1)wt(ϕ(t))t

Thus t is Hermitian if wt(ϕ(t)) is even, elset is skew-
Hermitian.

For linear dispersion matrices coming from the setΛm the
g-group ML decodability condition (10) can be reformulated
in terms of the weight of corresponding vectors inF2 ⊕ F

m
4

as follows:
Proposition 5: For anyt1, t2 ∈ Λm, we have

tH1 t2 + tH2 t1 = 0 iff wt(ϕ(t1) + ϕ(t2)) is odd

where the vector sum is component wise addition.
Proof: Recall that anyt ∈ Λm is either Hermitian or

skew-Hermitian. ThustH1 t2 is skew-Hermitian ifft1t2 is skew-
Hermitian. Let

tk = iλkψ−1(ξk,1)⊗ · · · ⊗ ψ−1(ξk,m) for k = 1, 2

Note thatψ−1(ζ)ψ−1(η) = ±ψ−1(ζ + η) for any ζ, η ∈ F4.
Hencet1t2

= ±iλ1+λ2ψ−1(ξ1,1 + ξ2,1)⊗ · · · ⊗ ψ−1(ξ1,m + ξ2,m)

= ±i(λ1+λ2)mod2ψ−1(ξ1,1 + ξ2,1)⊗ · · · ⊗ ψ−1(ξ1,m + ξ2,m)

= ±ϕ−1(ϕ(t1) + ϕ(t2))

We havet1t2 is skew-Hermitian iffϕ−1(ϕ(t1) + ϕ(t2)) is
skew-Hermitian. Applying Proposition 4 we have thatt1t2 is
skew-Hermitian iffwt(ϕ(t1) + ϕ(t2)) is odd. This completes
the proof.

When we restrict the possible linear dispersion matrices to
the setΛm, Proposition 5 helps us reformulate the original
problem of finding weight matrices for low decoding com-
plexity STBCs in terms of finding vectors inF2 ⊕ Fm4 . This
leads to the following theorem.



Theorem 8:If there exist K distinct vectors
y1, . . . , yK ∈ F2 ⊕ Fm4 and a partition Γ1, . . . ,Γg of
{1, . . . ,K} into nonempty subsets such that

wt(yk+yl) is odd wheneverk ∈ Γi, l ∈ Γj and i 6= j (20)

then there exists a designX(x1, . . . , xK) of dimension
2m × 2m in K real variables and which isg-group ML
decodable with theith group being{xk|k ∈ Γi}.

Proof: Given theK vectors as in the hypothesis, define
Ak = ϕ−1(yk) ∈ Λm. The bijective nature ofϕ ensures that
the K matricesAk are distinct. SinceΛm is linearly inde-
pendent overR, Ak,k = 1, . . . ,K are linearly independent.
Define a linear space-time designX(x1, . . . , xK) as

X =

K
∑

i=1

xiAi

Applying Proposition 5 we get theith group asΓi. This
completes the proof.

Theorem 8 converts the original problem of findingg-group
ML decodable designs fromΛm to that of finding certain
codes overF4. Once such a code is chosen inF2 ⊕ Fm4 the
linear dispersion matrices can be obtained by the one-to-one
correspondenceϕ.

Definition 8: A design inK real symbols for2m antennas
from F2 ⊕ Fm4 is defined as a subsetS ⊆ F2 ⊕ Fm4 such that
|S| = K.

The ‘design’S in the above definition refers to the lin-
ear design that can be obtained by mapping the vectors in
S = {y1, . . . , yK} to linear dispersion matrices inΛm. The
corresponding design inK real variablesx1, . . . , xK is given
as

X =

K
∑

i=1

xiϕ
−1(yi) (21)

With the linear designX associated with the setS defined as
in (21) we can use Theorem 8 to defineg-group decodable,
FD and FGD designs obtainable from codes overF4. These
are given below.

Definition 9: Let S be a design obtainable fromF2 ⊕ Fm4 .

1) S = ∪gi=1Si or equivalently the set{Sk|k = 1, . . . , g}
is called ag-group decodable design if for anyy ∈ Sk,
z ∈ Sl andk 6= l we havewt(y + z) is odd.

2) S is said to be fast-decodable if there exist subsets
Si ⊆ S, i = 1, . . . , g, g > 1 such that{Si|i = 1, . . . , g}
is a g-group decodable design.

3) A g-group decodable design{Si|i = 1, . . . , g} is said
to be fast-group-decodable if there exists at least one
l ∈ {1, . . . , g} such that the designSl is fast-decodable.

We now give examples of low complexity designs obtain-
able from codes overF4 i.e., linear designs whose weight
matrices come fromΛm. Assume that the number of groups
is g and each group hasτ vectors in it. The total number of
vectors or the total number of real symbols in the design is
thusK = gτ .

A. Alamouti Code

The Alamouti Code [28] is a2×2 square orthogonal design
of rate1. Its parameters are:m = 1, K = 4, g = 4 andτ = 1.
Its linear dispersion matrices are :{I2, iX, iZ, ZX}. All the
weight matrices belong toΛ1. The four sets of vectors from
F2 ⊕ F4 corresponding to the four groups are as follows:

S1 = {[0, 0]}, S2 = {[0, 1]}, S3 = {[0, ω]}, S4 = {[0, ω2]}

It can be seen that the weight of the sum of any two different
vectors is odd, thus the above design is single real symbol
decodable.

B. Other2× 2 codes of rate1

Here we describe designs with parametersm = 1, K = 4,
g = 2, τ = 2, R = 1. There are only three non-equivalent
designs that can be obtained fromΛ1. They are parametrized
by l ∈ {0, 1, 2} and are given by

S1 = {[0, 0], [1, ωl]}

S2 = {[0, ωl], [1, 0]}

1) l = 0: The design is given byS1 = {[0, 0], [1, 1]},
S2 = {[0, 1], [1, 0]}. The two groups of weight matrices are
M1 = {I,−X}, andM2 = {iX, iI}. With Γ1 = {1, 2} and
Γ2 = {3, 4} the resulting design is

X =

(

x1 + ix4 −x2 + ix3
−x2 + ix3 x1 + ix4

)

This is the2× 2 ABBA code [30].
2) l = 1: The design is given by

S1 = {[0, 0], [1, ω]}, S2 = {[0, ω], [1, 0]}. The matrices
are M1 = {I,−Z} andM2 = {iZ, iI}. With Γ1 = {1, 2}
andΓ2 = {3, 4} the design is given by

X =

(

x1 − x2 + i(x4 + x3) 0
0 x1 + x2 + i(x4 − x3)

)

With appropriate transformation of the symbols within each
group we get the2× 2 CIOD [6].

X =

(

x̃1 + ix̃3 0
0 x̃2 + ix̃4

)

3) l = 2: S1 = {[0, 0], [1, ω2]} and
S2 = {[1, 0], [0, ω2]}. The linear dispersion matrices are
M1 = {I, iZX} andM2 = {iI, ZX}. With Γ1 = {1, 2}
andΓ2 = {3, 4} the resulting design is

X =

(

x1 + ix3 x4 + ix2
−x4 − ix2 x1 + ix3

)

This is the

(

a b
−b a

)

design.



C. 4× 4 Quasi-orthogonal design

Consider the rate1 quasi-orthogonal design given in [29]
for 4 transmit antennas. The design contains8 real symbols
x1, . . . , x8 and is 4-group decodable. The parameters are
m = 2, K = 8, g = 4, τ = 2 and R = 1. The design
X =

∑8
i=1 xiAi is given below.

X =









x1 + ix2 x3 + ix4 x5 + ix6 x7 + ix8
−x3 + ix4 x1 − ix2 −x7 + ix8 x5 − ix6
−x5 + ix6 −x7 + ix8 x1 − ix2 x3 − ix4
x7 + ix8 −x5 − ix6 −x3 − ix4 x1 + ix2









The linear dispersion matrices, upto a sign change,Ai, i =
1, . . . , 8 are

A1 = I2 ⊗ I2 A2 = iZ ⊗ Z
A3 = I2 ⊗ ZX A4 = iZ ⊗X
A5 = ZX ⊗ I2 A6 = iX ⊗ Z
A7 = ZX ⊗ ZX A8 = iX ⊗X

It can be seen that all the8 matrices come fromΛ2. The
corresponding vectors inF2 ⊕ Fm4 , yi = ϕ(Ai) are

y1 = [0, 0, 0] y2 = [1, ω, ω]
y3 = [0, 0, ω2] y4 = [1, ω, 1]
y5 = [0, ω2, 0] y6 = [1, 1, ω]
y7 = [0, ω2, ω2] y8 = [1, 1, 1]

The 4 groups are

S1 = {y1, y7} S2 = {y2, y8}
S3 = {y3, y5} S4 = {y4, y6}

It can be seen that for any two vectors in different groups the
weight of their sum is odd.

D. Square Orthogonal Designs

Square Orthogonal Designs [3] are square designs
X(x1, . . . , xK) which satisfy the following equation

X
H
X = (

K
∑

i=1

x2i )I

Such designs offer both single real symbol decodability and
full diversity when arbitrary real constellations are usedto
encode each of the real symbolsxi. Maximal rate square
orthogonal designs were given in [3]. These designs are of
dimension2m×2m and have a rate ofR = m+1

2m cspcu. These
designs are obtainable from codes overF4. There are2m+2
groups containing one vector each. These vectors{yk} are
given below. Fork = 1, . . . ,m,

yk = [1{k is even}, 0, . . . , 0, ω2, ω, . . . , ω],

yk+m = [1{k is even}, 0, . . . , 0, 1, ω, . . . , ω],

there beingm− k zeros in each vector and

y2m+1 = [1{m is even}, ω, . . . , ω],

y2m+2 = [0, 0, . . . , 0].

V. K NOWN AND SOME NEWMULTIGROUP DECODABLE

STBCS FROM CODES OVERF4

In this section we construct multigroup decodable designs
via codes overF4. We give three procedures to obtain a
multigroup decodable design for2m+1 antennas by using a
multigroup decodable design for2m antennas. These con-
structions are then used to obtain4-group decodable codes.
Lastly g-group decodable codes for arbitraryg are constructed
from codes overF4. These designs meet the rate-ML decoding
complexity tradeoff attainable by a class of CUWDs obtainable
from Extended Clifford Algebras [10].

A. Construction A

Let us denote[1, 0, . . . , 0] ∈ F2⊕Fm4 by δm. The following
proposition describes how to construct ag-group decodable
design for2m+1 antennas using ag-group decodable design
for 2m antennas.

Proposition 6: Let l ∈ {0, 1, 2} and
{Si = {yi,j|j = 1, . . . , |Γi|}|i = 1, . . . , g} be a 2m × 2m

g-group decodable design of rateR. Then{S̃i|i = 1, . . . , g}
is a2m+1× 2m+1 g-group decodable design of rateR, where
S̃i = Si,A ∪ Si,B with

Si,A = {[yi,j , 0]|j = 1, . . . , |Γi| }

Si,B = {[yi,j, ωl] + δm+1|j = 1, . . . , |Γi| }

If for any i ∈ {1, . . . , g}

wt(y + z) is even for anyy, z ∈ Si
then

wt(y + z) is even for anyy, z ∈ S̃i.

Proof: Consider i, j ∈ {1, . . . , g} and i 6= j. It is
straightforward to show thatSi,A ∩ Si,B = φ and for any
y ∈ S̃i and z ∈ S̃j , wt(y + z) is odd. The second part of
the theorem is straightforward. This completes the proof.

Let y = [λ, ξ1, . . . , ξm] ∈ F2 ⊕ Fm4 andσ be any permuta-
tion on {1, . . . ,m}. Defineσ : F2 ⊕ Fm4 → F2 ⊕ Fm4 as

σ(y) = [λ, ξσ(1), . . . , ξσ(m)]

σ is thus a permutation of coordinates ofy. In terms of linear
dispersion matrices the action ofσ is to permute the order
in which the2 × 2 matrices appear in the Kronecker product
representation. The following proposition states thatg-group
decodability of a design is not disturbed by such a permutation
when it is applied to all the weight matrices.

Proposition 7: Let S ⊆ F2 ⊕ Fm4 be ag-group decodable,
FD or FGD design andσ be any permutation on{1, . . . ,m}.
Then S̃ = {σ(y)|y ∈ S} is a g-group decodable, FD or FGD
design respectively.

Proof: The action of σ on the vectors is just a
permutation of the coordinates. Thus for anyy, z ∈ F2 ⊕ Fm4 ,
σ(y + z) = σ(y) + σ(z) and wt(σ(y)) = wt(y). Thus
wt(σ(y) + σ(z)) = wt(y + z). The desired result follows
from Definition 9.



Corresponding tol = 0, 1 and 2 in Proposition 6 andσ
in Proposition 7 we get different constructions that give usa
g-group decodable design for2m+1 antennas by using ag-
group decodable design for2m antennas. We now give some
constructions obtained from Proposition 6 as examples. Let
X =

∑K
i=1 xiAi be ag-group decodable design with all the

linear dispersion matrices inΛm andW be an identical design
in a different set of real variables. Then each of the following
designs isg-group decodable.

(

X W

W X

)

(22)

(

X−W 0

0 X+W

)

(23)

(

X iW
−iW X

)

(24)

Proposition 7 is used along with Proposition 6 to arrive at these
constructions. Construction (23) can be used to obtain single
complex symbol decodable square CIODs [6] by using single
real symbol decodable square orthogonal designs as building
blocks. Construction (22) was first proposed in [30] and is
known as ABBA construction. As an example we describe
how ABBA construction is obtained from Proposition 6.

Let {Si|i = 1, . . . , g} be a g-group decodable design and
S = ∪gi=1Si. Thenϕ−1(S) = {A1, . . . , AK} is the set of lin-
ear dispersion matrices. Let{x1, . . . , xK} and{w1, . . . , wK}
be two different sets of real variables. DefineX =

∑K
i=1 xiAi

and W =
∑K
i=1 wiAi. Let {S̃i|i = 1, . . . , g} be the design

constructed according to Proposition 6 withl = 0 and let
S̃ = ∪gi=1S̃i. Then ϕ−1(S̃) is the set of linear dispersion
matrices corresponding to the new design. From Proposition6
it is clear thatS̃ = S̃A ∪ S̃B where

S̃A = {[y, 0]|y ∈ S} and

S̃B = {[y, 1] + δm+1|y ∈ S}.

Let σ be the permutation on{1, . . . ,m + 1} given by
σ(1) = m + 1 and σ(k) = k − 1 for k > 1. Using
Proposition 7 on the design{S̃i|i = 1, . . . , g} we get ag-group
decodable design with the set of linear dispersion matricesas
ϕ−1 ◦ σ(S̃) = ϕ−1 ◦ σ(S̃A) ∪ ϕ−1 ◦ σ(S̃B). But we have

ϕ−1 ◦ σ(S̃A) = {I2 ⊗Ai|i = 1, . . . ,K} =

{(

Ai 0

0 Ai

)}

ϕ−1◦σ(S̃B) = {i(iX)⊗Ai|i = 1, . . . ,K} =

{(

0 −Ai
−Ai 0

)}

Associating the variables{xi} with matrices inϕ−1 ◦ σ(S̃A)
and variables{−wi} with those inϕ−1 ◦ σ(S̃B) we get the
design in (22).

B. Construction B

The following proposition gives a procedure to obtain2-
group decodable designs for2m+1 antennas using2-group
decodable designs for2m antennas.

Proposition 8: Let l ∈ {0, 1, 2} and
{Si = {yi,j|j = 1, . . . , |Γi|}|i = 1, 2} be a 2m × 2m 2-
group decodable design which satisfies the following
condition for eachi = 1, 2

wt(y + z) is even for anyy, z ∈ Si
thenS̃1 = S1,A∪S2,B , S̃2 = S2,A∪S1,B give a2m+1×2m+1

2-group decodable design{S̃1, S̃2} which satisfies for each
i = 1, 2

wt(y + z) is even for anyy, z ∈ S̃i
where

Si,A = {[yi,j, 0]} andSi,B = {[yi,j , ωl]}

Further the rates of{Si} and{S̃i} are same.
Proof: Similar to the proof of Proposition 6.

As particular examples we get the following recursive
constructions. LetX andW be identical2-group decodable
designs in different variables with the weight matrices inΛm.
Let the designX be such that the corresponding vectors
in F2 ⊕ Fm4 satisfy the hypothesis of Proposition 8. The
following designs are2-group decodable.

(

X iW
iW X

)

(25)

(

X+ iW 0

0 X− iW

)

(26)

(

X W

−W X

)

(27)

These designs can be obtained from Proposition 8 in the same
way the ABBA construction was obtained from Proposition 6.

C. Construction C

The following proposition gives a procedure to obtain4-
group decodable designs for2m+1 antennas using2-group
decodable designs for2m antennas.

Proposition 9: Let {Si = {yi,j|j = 1, . . . , |Γi|}|i = 1, 2}
be a2m × 2m 2-group decodable design which satisfies for
eachi = 1, 2

wt(y + z) is even for anyy, z ∈ Si
then{S̃i|i = 1, . . . , 4} is a 2m+1 × 2m+1 4-group decodable
design where

S̃1 = {[y1,j, ξ1]}, S̃2 = {[y1,j, ξ2]}

S̃3 = {[y2,j, ξ3] + δm+1}, S̃4 = {[y2,j, ξ4] + δm+1}

and ξi, i = 1, . . . , 4 are distinct elements ofF4. Further the
rates of{Si} and{S̃i} are same.

Proof: Similar to the proof of Proposition 6.



There are4! = 24 ways of choosingξi, i = 1, . . . , 4
from F4. However, it can be shown that{ξ1, ξ2, ξ3, ξ4},
{ξ1, ξ2, ξ4, ξ3}, {ξ2, ξ1, ξ3, ξ4} and {ξ2, ξ1, ξ4, ξ3} all lead to
designs which are same upto relabeling of variables. Thus
Proposition 9 gives us6 constructions. However only4 of
them are unique i.e. lead to non-equivalent designs. Two others
can be obtained by permutation of columns and relabeling
of variables of one of the4 designs. These4 constructions
correspond to{0, 1, ω, ω2}, {ω, ω2, 0, 1}, {1, ω2, 0, ω} and
{ω, 1, 0, ω2}.

D. 4-group decodable designs

We now give a procedure to get a4-group decodable design
for 2m antennas,m ≥ 1, using any2-group decodable design
{S1,S2} for 2m−k antennas,k ≥ 1, which satisfies the
following condition for eachi = 1, 2

wt(y + z) is even for anyy, z ∈ Si (28)

Define Step A and Step B as the following steps.
• Step A: Apply any one of the6 constructions choosing

from Propositions 6 and 8 andl = 0, 1 or 2. Follow it by
an application of Proposition 7 with anyσ.

• Step B: Apply any one of the4 constructions choosing
from those provided by Proposition 9. Follow it by an
application of Proposition 7 with anyσ.

The construction procedure is as follows: Starting with the
design{S1,S2} apply Step Ak − 1 times followed by one
application of Step B.

Particular examples of this procedure are the constructions
given in [31] and [32]. We now explain how these construc-
tions are particular applications of the above algorithm. To
explain this we need the following proposition.

Proposition 10: Let {S̃1, S̃2} be a 2-group decodable de-
sign obtained through the application of any of the con-
structions of Propositions 6 or 8 on the2-group decodable
design{S1,S2}. If S1,S2 have even and odd weight vectors
respectively, theñS1, S̃2 have even and odd weight vectors.

Proof: Straightforward.
Let Mi = ϕ−1(Si) be the ith group of linear dispersion
matrices. Both constructions,[31] and [32], start with thetrivial
design for one antenna,X = (x1 + ix2). This design satisfies
the hypothesis of Proposition 10. Thus, at the end ofk − 1
applications of Step A, the resulting code{S1,S2} will be
such thatM1 has Hermitian andM2 has skew-Hermitian
matrices. In such a scenario the matrix representation of the
four constructions in Proposition 9 are given as follows.

Let {S1,S2} be a two group decodable design satisfying
the hypotheses of Propositions 9 and 10. LetX be the design
obtained from{S1,S2} and let W be identical toX but
be composed of a different set of variables. Define for any
square matrixA, AH = 1

2 (A+AH) andASH = 1
2 (A−AH).

These are the Hermitian and skew-Hermitian parts ofA. The
following 4-group decodable designs can be obtained from
Proposition 9.

(

X
H iW

iWH
X

)

(29)

(

iX W
H

−W −iXH

)

(30)

(

iXSH −WSH WH + iXH

−WH + iXH iXSH +WSH

)

(31)

(

X W

−W
H

X
H

)

(32)

The above constructions can be obtained in a way similar to
which ABBA construction was obtained from Proposition 6
and by using the fact thatM1 has Hermitian andM2 has
skew-Hermitian matrices.

Constructions in [31] and [32] start withX = (x1 + ix2).
Constructions in [32] use either (22) or (27) for the first
application of Step A and uses (22) for each of the remaining
k − 2 applications of Step A. The last step in [32] is the
application of

(

X −W
H

W X
H

)

(33)

for Step B. This construction was first given in [33] and is
known as the Doubling Construction. But this is same as (32)
upto relabeling of variables. Constructions in [31] use (27)
for each of thek− 1 applications of Step A and (32) for Step
B.

E. g-group decodable designs for arbitraryg

In this section we constructg-group decodable designs with
arbitrary g for the case when the number of real symbols
in each group is same and is equal to a power of two i.e.
τ = 2a. Resulting designs are for number of transmit antennas
2b, where

b ≥
⌈g

2
− 1

⌉

Let us first consider the case whereg is even. Say
g = 2(m+ 1). We start with a square orthogonal design for
2m antennas. We already saw that square orthogonal designs
are obtainable fromF2⊕Fm4 . Such a design has rateR = m+1

2m

and has2m+2 groups with one real symbol per group. Now
we apply Proposition 6 on this designa times. Each of the
applications can use any of the three constructions given in
Proposition 6 and can be followed with an application of
Proposition 7 with arbitraryσ.

According to Propositions 6 and 7 the resulting code will
be for 2m+a antennas, withg = 2m + 2 groups and rate
R = m+1

2m . Number of real symbols will be

K = 2×R× Number of antennas= 2(m+ 1)2a.

Therefore, the number of real symbols per groupτ = 2a as
required. The rate in terms ofg is R = g

2g/2
.

Now consider the case wheng is odd. Supposeg = 2m+1
for somem, defineg′ = g + 1 = 2m + 2. Sinceg′ is even
we can construct ag′-group decodable design forτ = 2a as
described above. This design for2m+a antennas will haveg+1
groups. This is more than what is required. The desired design



is obtained by removing any one group from this design. The
rate of the resulting design is

R =
1

2

τg

2m+a
=

g

2
g+1

2

.

Thus, for an arbitraryg, a rate of

R =
g

2⌊
g+1

2
⌋

(34)

is achievable. Since ag-group decodable square orthogonal
design exists only for2⌈

g
2
−1⌉ or more antennas, the construc-

tion procedure described above can be used to getg-group
decodable designs for any number of transmit antennas2b

with b ≥ ⌈ g2 − 1⌉. In [10] the rate-ML decoding complexity
tradeoff of the class of CUWDs for whichτ is a power of
2 was characterized. The maximum rate, as given in [10], of
any CUWD for a giveng andτ = 2a is precisely (34).

VI. N EW FAST-GROUP-DECODABLE CODES

In this section we propose a new class of fast-group-
decodable and fast-decodable codes with ratesR > 1 for
number of antennas that are a power of2. The rate-decoding
complexity tradeoff of this class of codes is derived. We also
show that codes with lower decoding complexity than those
reported in [20] can be obtained by simply using the same
design as in [20] but by choosing the constellations carefully.
We also show that the STBC given in [16] is a specific case
of STBCs obtained from codes overF4. In the latter part of
this section we show that some of the best known codes for
2 and4 transmit antennas are obtainable from codes overF4.

A. A new class of FD and FGD designs

We first propose a new class of rate5/4 fast-group-
decodable designs. These designs are then extended to obtain
fast-decodable designs with ratesR > 5/4. Designs of rate
less than5/4 are obtained by puncturing.

Let the number of transmit antennas be2m, m ≥ 1. Let
ξ1, ξ2 ∈ F4 \ {0} andξ1 6= ξ2. Let ξ3 = ξ1 + ξ2. Define

Sξ1 = {[0, ζ1, . . . , ζm]|ζi ∈ {0, ξ1} for i = 1, . . . ,m},
SA = {y ∈ Sξ1 |wt(y) is even} and

SB = {y ∈ Sξ1 |wt(y) is odd}.
Let νm = [1{m is even}, ξ2, . . . , ξ2] and δm = [1, 0, . . . , 0].
Define

SC = νm + SA, SD = νm + SB , andSE = δm + SA.
Let S1 = SA andS2 = ∪j∈{B,C,D,E}Sj . Then we have the

following propositions.
Proposition 11: {SA,SB ,SC ,SD} is a4-group decodable,

rate1 design.
Proof: It must be noted thatSA is a subgroup of

the abelian groupF2 ⊕ F
m
4 and SB = γm + SA, where

γm = [0, 0, . . . , 0, ξ1]. Thus SB, SC and SD are cosets of
the subgroupSA and are obtained by the translatesγm,
νm and γm + νm respectively. It is straightforward to see
that all three cosets have only odd weight vectors. Also

{0, γm, νm, γm+νm} is a subgroup ofF2 ⊕ F
m
4 . Because both

F2 andF4 have characteristic2, every element ofF2 ⊕ Fm4 is
its own inverse.

Let i, j ∈ {A,B,C,D} and i 6= j. Let
yi ∈ Si and yj ∈ Sj . Then there existui, uj ∈ S
and wi, wj ∈ {0, γm, νm, γm + νm} with wi 6= wj
such that yi = wi + ui and yj = wj + uj . Thus
yi + yj = wi + wj + ui + uj = w + u for some u ∈ SA
andw ∈ {γm, νm, γm + νm}. Thusyi + yj is an element of
∪k∈{B,C,D}Sk and hence has odd weight. From Definition 9
the given design is4-group decodable.

The number of elements inSξ1 is 2m. Thus |Sj | = 2m−1

for j ∈ {A,B,C,D}. It is straightforward to show that the
four subsets are mutually non-intersecting. Thus the rate of
the proposed design is1 complex symbol per channel use.
This completes the proof.

Proposition 12: The design{S1,S2} is 2-group decodable.
Proof: Since{SA,SB,SC ,SD} was already shown to be

4-group decodable in Proposition 11, it is enough to show
that for everyy1 ∈ SA andy2 ∈ SE , y1 + y2 has odd weight.
Now SE is a coset of the additive subgroupSA and hence
y1 + y2 ∈ SE . But every vector inSE has odd weight. This
completes the proof.

From Propositions 11 and 12 we see that{S1,S2} is a
fast-group-decodable design of rate5/4. The designS2 is
conditionally 3-group decodable with the conditional groups
as SB , SC and SD. For ratesR ≥ 5/4, choose any subset
O ⊆ F2 ⊕ F

m
4 \ {S1 ∪ S2} with |O| = 2m−1(4R− 5). This

can always be done as long asR is less than or equal to
the maximum possible rate2m. The proposed design is

S = S1 ∪ S2 ∪O. (35)

It is straightforward to show that the design (35) has
rate R. We now derive its ML decoding complexity for
arbitrary complex constellations for the case when eachSj ,
j ∈ {A,B,C,D} has integral number of complex symbols.
This happens wheneverm > 1. The complexity of decoding
S is

M
1
2
|O| × decoding complexity ofS1 ∪ S2.

Observing that{S1,S2} is 2-group decodable andS2 is
conditionally 3-group decodable, we see that the decoding
complexity ofS1 ∪ S2 is

M
1
2
2m−1

+ 3M2m−1

.

Thus the decoding complexity of the proposed design for
arbitrary complex constellations is

=M2m−2(4R−5) × (M
1
2
2m−1

+ 3M2m−1

)

≃ 3M2m−1+2m−2(4R−5)

= 3M2m−2(4R−3) for m > 1, R ≥ 5

4
. (36)

The ML decoding complexity can be further reduced by
using carefully chosen constellations without affecting full
diversity. We now show how to choose constellations for this



TABLE I
COMPARISON OFDECODINGCOMPLEXITIES: A - A RBITRARY CONSTELLATION, B - CAREFULLY CHOSEN CONSTELLATION∗ - LEAST KNOWN

COMPLEXITY

Transmit AntennasN RateR
New codes in Sec VI-A EAST Codes Pavan et al. [20] New codes in Sec VI-B FGD Code

A B Sinnokrot et al. [14] A B Ren et al. [16]

2 2 ∗2M3
∗3M2

4

5/4 ∗3M2
∗3M1.5 2M2.5 2M2

2 ∗3M5
∗3M4.5 4M5 5M5.5

17/8 ∗3M5.5
∗3M5

5M6

3 ∗3M9
∗3M8.5

4 ∗3M13
∗3M12.5

8

5/4 ∗3M4
∗3M3.5 2M5 2M4.5

2 3M10
3M9.5

4M10
∗2M8

∗2M7.5

17/8 3M11 3M10.5
∗2M8.5

∗2M8

3 ∗3M18
∗3M17.5

4M18

4 ∗3M26
∗3M25.5

4M26

5 ∗3M34
∗3M33.5

6 ∗3M42
∗3M42.5

purpose and derive the ML decoding complexity for this case.
Assume thatm ≥ 1 andR ≥ 5/4. Letx1,x2,x3 andx4 be four
real symbols one each fromSA, SB , SC andSD respectively.
Since the corresponding weight matricesAi are unitary, they
satisfy

AHi Aj +AHj Ai = 0 for 1 ≤ i < j ≤ 4.

By using Theorem 6 we see that each of the symbolsxi, i =
1, 2, 3, 4 can be assigned values from a regular PAM. During
decoding, when values are proposed for all real symbols except
xi, i = 1, 2, 3, 4, these four symbols can be decoded via simple
scaling and rounding off. In this case the decoding complexity
of the code is

3M2m−2(4R−3)−0.5 for m ≥ 1, R ≥ 5

4
. (37)

Similarly it can be shown that for rates1 ≤ R ≤ 5/4 the
designs obtained by puncturing the vectors inSE give rise
to decoding complexities which have the same expression as
in (36) and (37).

Thus, the rate-ML decoding complexity tradeoff of the given
class of codes forR > 1 is

3M2m−2(4R−3), m > 1 (38)

for arbitrary complex constellations and

3M2m−2(4R−3)−0.5, m ≥ 1 (39)

for appropriately chosen constellations.

B. Complexity reducing constellations for designs in [20]

The codes in [20] are2-group decodable with unitary weight
matrices and rateR = 2m−2 + 1

2m . In [20] decoding complex-
ity was given only for arbitrary complex constellations, which
is

2M2m−1R. (40)

Consider any two symbols,x1 andx2, one from each of the
two groups. Since the linear dispersion matrices are unitary,
the weight matricesA1, A2 of the symbolsx1 andx2 satisfy

AH1 A2 +AH2 A1 = 0.

We can use Theorem 6 to use regular PAM on two variables
x1 and x2 without losing full diversity property. Decoding
complexity now becomes

2M2m−1R−0.5. (41)

C. Code in [16] as a specific case of STBCs via codes over
F4

It was shown in Section IV-D that square orthogonal designs
belong to the class of codes obtainable from codes overF4.
Consider the case ofm = 2. A square orthogonal design for22

antennas has6 vectors each forming a group on its own. One of
the vectors is the all zero vector. Thus the remaining5 vectors
are of odd weight. LetO be the set of these5 vectors. Consider
the following 2-group decodable design{S1,S2} where

S1 = {[0, . . . , 0]}, S2 = {y ∈ F2 ⊕ F
2
4|wt(y) is odd}. (42)

Thus O ⊆ S2. FurtherO, when considered as a design by
itself, is single real symbol decodable or5-group decodable.
Thus the design in (42) is fast-group-decodable. Since16
vectors are of odd weight of the total of32 vectors inF2 ⊕ F

2
4,

|S2| = 16. Hence, the above design has a rate of17/8 complex
symbols per channel use.

The decoding complexity of the code (42) is the sum of the
decoding complexities ofS1 andS2. The decoding complexity
of S1 is M

1
2 . When decodingS2, for each set of values

assigned to the real variables corresponding toS2 \ O, the
real variables corresponding toO can be conditionally decoded
with a complexity of5M

1
2 . The net complexity of decodingS2

would be the product of this term withM
1
2
(|S2\O|), which is

5M
1
2×M 1

2
(24−5) = 5M

1
2
(17−5) = 5M6. Thus the complexity

of decoding the code (42) is5M6+M
1
2 ≃ 5M6. This design

was the one proposed in [16].



D. Comparison of decoding complexities

From (38), (39), (40) and (41) it is clear that the new class
of designs described in Section VI-A yield lower decoding
complexity than the codes in [20] wheneverR < 3/2 or
R > 2m−2 + 1

2m . In fact these codes have the least known
complexity for these values ofR when the number of antennas
is 2m. For rates3/2 ≤ R ≤ 2m−2 + 1

2m the proposed codes in
Section VI-B have the least known complexity. Table I sum-
marizes the comparison of the decoding complexity of known
codes and the new ones of this paper. Only rates higher than
1 are considered. Comparison is done with EAST(Embedded
Alamouti Space-Time) codes from [14],2-group decodable
codes from [20] and the FGD code from [16]. The entry for2
antennas with rate2 and arbitrary constellation is that of the
code given in [22] and [23]. In Section VI-E2, it is shown that
this code belongs to the proposed class of STBCs. It must be
noted that the proposed code forN = 4, R = 5/4 has lower
decoding complexity than the code from [19], [20]. The code
for N = 4, R = 17/8 has lower decoding complexity than
the code from [16]. Similarly, forN = 8 andR = 5/4 the
proposed codes have the least complexity.

E. Examples of FD codes in literature obtainable from codes
overF4

1) Rate2 Codes from Pavan et al. [21]:In [21] rate 2
codes were given for2 and4 transmit antennas with the largest
known coding gain. Both these codes are fast-decodable. These
codes can be obtained from Pauli weight matrices by using
appropriate signal sets. We emphasize that these codes have
low ML decoding complexity because the underlying design
comes fromΛm. As an example we now show how the2× 2
code is obtained fromΛ1.

Choose weight matrices fromΛ1 as

A1 = I2, A5 = X,
A2 = Z, A6 = ZX,
A3 = iI2, A7 = iX,
A4 = iZ, A8 = iZX.

The corresponding vectors are

y1 = [0, 0], y5 = [1, 1],
y2 = [1, ω], y6 = [0, ω2],
y3 = [1, 0], y7 = [0, 1],
y4 = [0, ω], y8 = [1, ω2].

The resulting designX =
∑8

i=1 xiAi is
(

(x1 + x2) + i(x3 + x4) (x5 + x6) + i(x7 + x8)
(x5 − x6) + i(x7 − x8) (x1 − x2) + i(x3 − x4)

)

.

Note that the rate1 design {y1, y1, y3, y4} is two group
decodable with the two groups being{y1, y2} and {y3, y4}.
When the symbols in the designX are encoded in3-groups
{x1, x2}, {x3, x4} and{x5, x6, x7, x8} we see that the result-
ing STBC is conditionally2-group decodable, the two groups
being {x1, x2} and {x3, x4}. This leads to low complexity
ML decoding.

In [21] the three groups are encoded as follows. Let
sk = sk,I + isk,Q, k = 1, 2, 3, 4 take values independently
from a rotated QAM constellation. The angle of rotation is
optimized for coding gain. Encodexi, i = 1, . . . , 8 as follows

(

x1
x2

)

=
1

2

(

1 −1
1 1

)(

s1,I
s1,Q

)

,

(

x3
x4

)

=
1

2

(

1 1
−1 1

)(

s2,I
s2,Q

)

and ,









x5
x6
x7
x8









=
1

2
√
2









1 −1 1 1
1 −1 −1 −1
1 1 1 −1
1 1 −1 1

















s4,I
s3,Q
s3I
s4,Q









The resulting design in terms of{sk} is
(

s1,I + is2,Q eiπ/4(s4,I + is3,Q)

eiπ/4(−s4,Q + is3,I) −s1,Q + is2,I

)

(43)

The STBC presented in [21] is (43) multiplied on the right

hand side by the unitary matrix

(

1 0
0 −i

)

.

2) The HTW-PGA Code:This is a rate2 code for2 transmit
antennas. It was was independently discovered by Hottinen,
Tirkkonen and Wichman [22] and by Paredes, Gershman and
Alkhansari [23]. Its decoding complexity is of the order ofM3

for arbitrary constellations andM2 for QAM symbols [21].
We now show that this code is obtained from an design with
Pauli Weight matrices. Specifically the rate2 design for2
transmit antennas described in Section VI-A leads to this code.

The HTW-PGA code in complex symbolss1, s2, s3, s4 is

X =

(

s1 s2
−s̄2 s̄1

)

+

(

s3 s4
−s̄4 s̄3

)(

1 0
0 −1

)

, (44)

where s1, s2 are independent complex symbols ands3, s4
are obtained from independent complex symbolsz3, z4 via
a unitary matrixU

(

s3
s4

)

= U

(

z3
z4

)

. (45)

Let sk = sk,I + isk,Q for k = 1, 2, 3, 4. The weight matrices
Ak,I , Ak,Q of the real symbolssk,I ,sk,Q, upto a sign change,
are

A1,I = I2, A1,Q = iZ,
A2,I = ZX, A2,Q = iX,
A3,I = Z, A3,Q = iI,
A4,I = X, A4,Q = iZX.

This code uses all the8 elements ofΛ2 as weight ma-
trices. From (45), we see that the encoding groups are:
{s1,I , s1,Q},{s2,I , s2,Q} and{s3,I , s3,Q, s4,I , s4,Q}. Since the
combined encoding of{s3,I , s3,Q, s4,I , s4,Q} does not affect
the fast-decodability offered by the design, the decoding com-
plexity of the code is2M3 for arbitrary complex constellations
and4M2 for complex constellations. However, it was already
shown in Section VI-A that the decoding complexity can be
further reduced to3M2 when using square QAM.



VII. D ISCUSSION

The approach of this paper is inspired and similar to that of
[18]. In this paper we provided a framework for constructing
low decoding complexity STBCs from codes overF4. New
FD and FGD codes were provided based on this approach.
However, only square designs for2m number of antennas is
considered. Thus the designs obtained fromF2 ⊕ Fm4 for arbi-
trary number of antennas, by deletion of select columns, will
not be delay optimal. In [8] delay optimal codes are provided
also for the case when number of transmit antennas is not a
power of2. These codes can not be obtained fromF2 ⊕ Fm4 .
Also the Doubling construction given in [33] for multigroup
decodable codes is general and it was applied in that work to
STBCs from Division Algebras [34]. In this paper we only
obtain its application to codes with Pauli weight matrices.
Further the relationship between the presented class ofg-
group decodable designs and those obtainable from Extended
Clifford Algebras remains to be explored.
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APPENDIX A

PROOF OFTHEOREM 4

Define a map

ρn−1 : ZQ1
× · · · × ZQn → ZQ1

× · · · × ZQn−1

http://arxiv.org/abs/0712.2384
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such that for anyu ∈ ZQ1
× · · · × ZQn

ρn−1((u1, u2, . . . , un)) = (u1, u2, . . . , un−1)

The proof is by induction onQn+1. First we show that the
theorem is true forQn+1 = 1. Then the induction step is
proved.

Let Qn+1 = 1. ChooseAn+1 = {an+1[0]} wherean+1[0]
is any element ofR. Let u, v ∈ ZQ1

× · · · × ZQn × Z1 and
u 6= v. Since there is only one element inZ1 we have
that ρn(u) 6= ρn(v). Using this along with the hypothe-
sis thatC(Xn,A1 × · · · × An) offers full-diversity we have
det(Cn+1[u]− Cn+1[v])

= det(

n+1
∑

i=1

(ai[ui]Ai − ai[vi]Ai))

= det(

n
∑

i=1

(ai[ui]Ai − ai[vi]Ai))

= det(Cn[ρn(u)]− Cn[ρn(v)])

6= 0

In order to prove the induction step, we assume that the
theorem is true forQn+1 = k with the real constellationA′

n+1

for some positive integerk. We prove that the theorem is true
for Qn+1 = k + 1 by appending another pointan+1[k] ∈ R

to A′
n+1. Thusan+1[k] must not be an element ofA′

n+1. In
order to guarantee full diversity it must satisfy an additional
criterion which is, for anyu, v ∈ ZQ1

× · · · × ZQn × Zk+1

andu 6= v, det(Cn+1[u]− Cn+1[v]) 6= 0. There are four cases
given below. For each of these cases this criterion translates
into some condition onan+1[k]. The point to be chosen must
satisfy all these criteria and must not be an element ofA′

n+1.

1) un+1 6= k and vn+1 6= k : In this case

Cn+1[u], Cn+1[v] ∈ C(Xn+1,A1 × · · · × A′
n+1)

Since C(Xn+1,A1 × · · · × An+1) offers full-diversity
this case does not impose any condition onan+1[k].

2) un+1 = vn+1 = k : Together withu 6= v we have
ρn(u) 6= ρn(v). Thusdet(Cn+1[u]− Cn+1[v])

= det(

n+1
∑

i=1

(ai[ui]Ai − ai[vi]Ai))

= det(
n
∑

i=1

(ai[ui]Ai − ai[vi]Ai))

= det(Cn[ρn(u)]− Cn[ρn(v)])

6= 0

Even this case does not impose any condition on
an+1[k].

3) un+1 6= k and vn+1 = k : In this casean+1[k] ∈ R

must not be a solution of the polynomial equation

hu,v(z) = det(Cn+1[u]−
n
∑

i=1

ai[vi]Ai − zAn+1) = 0

(46)

The above polynomial equation is not identically zero
i.e., hu,v(z) ∈ C[z] \ {0}. This can be shown by con-
sidering two cases

a) Whenρn(u) 6= ρn(v), we havehu,v(an+1[un+1])

= det(Cn+1[u]−
n
∑

i=1

ai[vi]Ai − an+1[un+1]An+1)

= det(Cn[ρn(u)]− Cn[ρn(v)])

6= 0

b) Whenρn(u) = ρn(v), we havehu,v(z)

= det(Cn+1[u]−
n
∑

i=1

ai[ui]Ai − zAn+1)

= det(an+1[un+1]An+1 − zAn+1)

= (an+1[un+1]− z)Ndet(An+1)

∈ C[z] \ {0}

4) un+1 = k and vn+1 6= k : In this casean+1[k] ∈ R

must not be a solution of the polynomial equation

gu,v(z) = det(Cn+1[v]−
n
∑

i=1

ai[ui]Ai − zAn+1) = 0

(47)
The above polynomial equation is not identically zero
i.e., gu,v(z) ∈ C[z] \ {0}. The proof of this is similar to
the proof in last case.

ThusC(Xn+1,A1 × · · · ×An+1) will offer full-diversity if
an+1[k] satisfies all of the following conditions

1) an+1[k] /∈ A′
n+1

2) an+1[k] is not a root ofhu,v(z) for anyu, v from case3.
3) an+1[k] is not a root ofgu,v(z) for anyu, v from case4.

Any non-zero polynomialf(z) ∈ C[z] has only finitely
many solutions inC and hence only finitely many solutions
in R. There are only finitely many such non-zero equations
in the above criteria. Also there are only finite number of
elements inA′

n+1. Thus there are infinitely many choices of
an+1[k] that can makeC(Xn+1,A1 × · · · × An+1) offer full-
diversity. This proves the existence of full-diversity, single
real symbol encodable codeC(Xn+1,A1 × · · · × An+1) for
Qn+1 = k + 1. Thus the induction step is proved.�
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