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Abstract—In this paper we construct low decoding complexity these designs is less than complex symbol per channel
STBCs by using the Pauli matrices as linear dispersion matdes. yse when the number of transmit antennas is more than two
In this case the Hurwitz-Radon orthogonality condition is $10wn [.[2],[3]. Single complex symbol decodable or doublelrea

to be easily checked by transferring the problem taF, domain. . -
The problem of constructing low decoding complexity STBCs SYMPo! decodable rate STBCs were given in [4LISL.[6].[8].

is shown to be equivalent to finding certain codes oveff,. It In [7],[8,[9] the framework for multigroup decodable
is shown that almost all known low complexity STBCs can be STBCs was given. In[{2), if the symbols,,...,zx can be

obtained by this approach. New codes are given that have the divided into groups such that each group of symbols can be
least known decoding complexity in particular ranges of rae. ML decoded independently of other groups, then the decoding

I. INTRODUCTION complexity is greatly reduced. A necessary condition £gr
and z; to be decoded independently of each other is that
their weight matrices4; and A; must be Hurwitz-Radon
orthogonal, i.e., they must satisfy

Consider anV transmit antennay,. receive antenna quasi-
static Rayleigh flat fading MIMO channel given by

Y =XH+W, 1) AFFA;+ AP A =0 4)

whereH is the N x N, channel matrixX is theT x N matrix  Constructing low decoding complexity STBCs requires one
of transmitted signallV" is theT" x N, additive noise matrix to find weight matrices satisfying the above equation.[In [7]
andY is theT' x N, matrix of received signal, all matricess.group decodable rat¢ codes for arbitrary antennas was
being over the complex field@. Throughout this paper, we given. Coordinate Interleaved Orthogonal Designs or CIODs
consider only the casé = N. [6] provide single complex symbol decodable designs for
An N x N Space-Time Block Code (STBQ) is a finite  arpitrary number of transmit antennas. However their rate
subset of CY*V. An N x N Linear Space-Time Design decreases rapidly with increasing number of antenrias. [8]
(LSTD) [17] or simply a designX in K real variables gave a general algebraic structure of the weight matrices

T1,..., K 1S @ matrix of g-group decodable codes using Clifford Algebras, where
K different groups can have different number of information
inAi (2) symbols to be decoded togethér. [9] givegroup decodable
i=1 designs, called Clifford Unitary Weight Designs (CUWDs),

where A; € CN*N i = 1,... K and the se{ Ay, ..., Ax} by manipulating the matrices obtained through represientat

is linearly independent over the field of real numb@ts of Clifford Algebras. In [10] an algebraic framework based

Throughout the paper designs are denoted using upper c . : .
bold font letters. AnN x N designX in K real variables is TBCs and using this framework, the optimal tradeoff betwee

said to have a rate aR = &= complex symbols per channel2® and ML decoding complexity of CUW STBCs was

2N i ifi i i
use (cspcu). The matricet are known as linear dispersion Orobtalned for few specific cases. Codes meeting this tradeoff

ight matrices. An STBC can be obtained f design Were also provided. .
\évjlr?]akmg;lces Ir;( take v(;?l?esirgmaallnf?niter?sglac Hzi@n In [11] fast-decodable(FD) codes were introduced. These

: ecd)des were not multigroup decodable but they had reduced
sphere-decoding complexity. Later in [21], [12] it was smow
that the Golden Code [13] is fast-decodable and hence has

r,geﬁxtended Clifford Algebras was proposed to study CUW

this way byC(X, A). Thus we have

K . lower ML decoding complexity than previously thought of.
C(X,A) = {ZalAlella---vaK] €A} ®) In [21] rate 2 codes for2, 4 antennas with the largest
=1 known coding gain were given. These codes too were fast-

One of the important aspects in the design of space-tidecodable. Recently fast-decodable codes for number of an-
block codes (STBC) is the ML decoding complexity. Spacéennas N = 2,4,6,8 were given in [[14] . These codes,
Time block codes based on orthogonal designs were propokedwn as EAST codes, combine a modified version of Perfect
in [1],[2],[8]. Clifford Algebras were proposed as a meansodes [[15] with Alamouti embedding. Their rates are limited
to design square orthogonal designs n [3]. It is knowim 1 < R < N/2 complex symbols per channel use, but
that [4],[5],[6] orthogonal designs offer single real sywhb they posses the non-vanishing determinant property. Iih [16
decodability and full diversity. However the rates offeteg a new class of codes called fast-group-decodable(FGD) were
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introduced. These codes combine the low decoding complexit
properties of multigroup and FD codes.

Let X = 1 L0 . Note that bothX

1 o) aMdZ=1g
and Z are Hermitian and unitary. The four matricés X, Z
andiX Z are known as the Pauli matrices. They fornCa
linear basis ofC2*2. The finite groupG,, generated by the
mt" order tensor products of the Pauli matrices is called
the Pauli group. It consists of all possible fold tensor
products of the Pauli matrices together with multiplicativ
factors+1, 41, i.e.,

Gp ={i"B1® - -@Bp|p € Zy and B, € {13, X, Z,iXZ} }.
The following subest of7,,,
Ap = {i*B1® - -@Bp|\ € Zy and By, € {I5,iX,iZ, ZX} }

is a basis forC2" *2" as a vector space Ov&.

We relate the sed,,, to a subset OFZH_l, whereF, is the
finite field with 4 elementd0, 1, w, w?} satisfying the relations
1 +w = w?, by defining the map

O :{l,iX,iZ, ZX} — Fy.
that sends
I, »0,iX = 1,iZ = w, ZX — w’. (5)
Note that every elemerte A,, can be uniquely written as
t=iMp €)@ @ L(Ey) for X € Zy and§y, € Fy. (6)
In fact, the mapy : A,,, — Fo & F}* that sends
;¥ (Bm)]

is a one to one correspondence betwekn and Fy &
F}*. The Hamming weightwt([\, &1, ...,&,]) of a vector
A&, ..., ém] € Fo @ FY is defined as

i*B) ® - @ By, — [N\ (B1), ...

WE(\ €r, o Eml) = A # 0+ ) 1{& # 0}

=1

for 2 antennas. Particular examples of codes from this
class are

— Code for N = 4 transmit antennas, rat@ = 5/4
with a complexity of the order of\f? for arbitrary
constellations and/!-®> for constellations carefully
chosen to reduce decoding complexity. This is in
comparison with the code given in [19] and [20] with
complexity M2 for arbitrary constellations.

— Code forN = 4 and R = 17/8 with a complexity
of the order of M®® and M® for arbitrary and
carefully chosen constellations respectively. This is
in comparison with the code given in_[16] with a
complexity of MS. It is also shown that the STBC
given in [16] is a specific case of STBCs obtainable
from codes oveif,.

We construct STBCs from codes oV that meet the
rate-ML decoding complexity tradeoff of a particular
class of CUWDs obtainable from Extended Clifford Al-
gebras.

It is shown that almost all the low decoding complexity
STBCs available in the literature can be obtained via
codes oveify.

We show that full-diversity STBCs with a decoding
complexity of 2" 'E=05 can be obtained by using
regular PAM constellation for a subset of real symbols in
the design given ir [20]. For rat8g2 < R < 27"‘2+2Lm
these codes have the least known decoding complexity for
2™ antennas.

STBCs obtainable by our approach are shown to include
as special cases, the = 2 codes, proposed in_[21], for

2 and 4 antennas having the largest known coding gain
and the fast-decodable ra&teode for2 transmit antennas
proposed in[[22],[123].

We show that if a design has only full-rank linear dis-
persion matrices, then a full diversity STBC can always
be constructed from it by encoding each real symbol
independently.

The contents of this paper are organized as follows. In

In this paper we construct low decoding complexity STBCSection[1 preliminary results and the necessary backgtoun
from designs that use elements from the Pauli group as line@d notations are established. Results regarding fullrsitye
dispersion matrices. This problem is converted to one @fe given in Sectiof lll. The focus of the paper then shifts to

finding certain codes ovét,, which are subsets df;®F), in

designing low complexity designs rather than specific STBCs

which checking the conditions for low decodability becomeslifford Algebras and Pauli matrices are introduced in Sec-

simpler. The contributions of this paper are as follows.

tion[[V]and the problem of designing low complexity designs

. It is shown that when designs are constructed by usifi@m G., is converted to a problem ifi]"*". Examples of
elements of Pauli group as weight matrices, the Hurwit8TBCs in the literature that can be obtained via codes over
Radon orthogonality conditioi}(4) can be easily checkdt are given in this section. In Secti¢n V, it is shown that
by transferring the problem to the correspondifigs almost all known multi group decodable codes are obtainable
domain. This facilitates both the description and theia codes oveF,. Also, a new class of multi-group decodable

construction of low decoding complexity codes in the
domain.

codes is presented. In Sectibnl VI new fast-group-decodable
and fast-decodable codes are presented. Concluding remark

« A new class of full-diversity fast-group-decodable andre made in Sectidn VlI.
fast-decodable codes is reported. The codes of this clagstation: For a complex matrixi the transpose, the conjugate
have the lowest decoding complexity among all knowand the conjugate-transpose are denoted4ByA and AY

codes for rates < R < 3/2and2™ 2 + ;. < R < 2™

respectively.||A||% is the Frobenius norm of the matriA.



A® B is the Kronecker product of matricesandB. I,, is the subsetd’;,...,I'y and if there exist finite subset$; C RITil,
n xn identity matrix and) is the all zero matrix of appropriate: = 1, ..., g such that the following conditions are satisfied

dimension. The empty set is denoteddayCardinality of a set 1) The weight matricest;, I € Ny of the designX are

I is denoted byI'| andi = /—1. 1{---} is the indicator such that
function. For a square matrid, det(A) is the determinant of . .
A. For a positive integen, Z, is the set{0,1,...,n —1}. Ay Ai+ A" Ay = 0 whenever € T';, k € T'; andi # j

For a complex matrixA, Ag. and Ay,, denote its real and

imaginary parts respectivelyec(A) is the vectorization of the 2) C(X,A) is g-group encodable with respect to the par-

matrix A tition I'y,...,T', of the set Nx and the signal sets
Ai, . A,
Il. PRELIMINARIES We now turn to fast-decodable codes. Consider an STBC

In this section, multigroup decodability, fast-decodiapil C(X,.4) being used for communication via the MIMO chan-
[11] and fast-group-decodability [16] of STBCs and desigrize! (). For a complex matrid, define

are formally defined with the help of the notion of group- Se(A) — AT A, \TIT
decodability. vee(d) = fec(Are)” vee(Arm)]

Let Nx denote the sefl,..., K}. For anyK-tuplez = In [17] it was shown that the ML decoding problem can be
(x1,...,2x) and non-empty sdf C N define reduced to one of finding

Tr = (Tiy Tigy -+« Tippy) arg min, 4 ||y — Hal[

whereinT' = {i1,...,4r|}. The idea of encoding complexity where
was first introduced in[[10]. We now definggroup encod- R .
ability of an STBCC(X, A). y = vec(Y) T =[z1,...,2K]

Definition 1: Let ¢ be any positive integer. An STBC
C(X,.A) obtained from a desigX and a signal se# is said
to be g-group encodable if there exists a partition/éf into  Let the QR decomposition o be 4 = QR whereR is a

non-empty subset§';,..., T’y and there exist finite subsetsK’ x K upper triangular matrix. The ML decoding problem
A; ¢RIl =1,... g such that now reduces to

H = [vec(A1H) vec(AsH) -+ vec(AxH))|

K ; T 2
C(X, A) ={> aAlar, € Aifori=1,...,g} arg min, 4[|Q" y — Re|[j
I=1 The " column of R is associated with the symbat;.
In short, for a g-group encodable STBC the tuplesConsider the case wheR is of the following form
xr,,...,or, are assigned values independently of each other T 0 .. 0 B
during encoding. If for each |T';| = 1, we say that the STBC 0 T, ... 0 B
C(X, A) is single real symbol encodable. For a deskrin o _ _
K real variables and a non-empty subbef Ny define the R=1": o :
designXr as follows 0o 0 ... T, B

0 0 ... 0 T,
XF = leAz gt

el whereg > 1, T;, i = 1,...,g + 1 are square upper triangular

We now define theg-group maximum-likelihood (ML) matrices "?‘”‘Bi* in general, are rectangular. I_Denotehyth_e

I set of indices of the columns associated with the maftix

decodability of an STB& (X, A). During sphere-decodirg[R4]. [25] when values are proposed

Definition 2: An STBC C(X, .A) is said to beg-group fu Ithg P bol ll o f' ¥ \tﬁ value: P bpl

ML decodable if there exists a partition aVx into g or the symbols{z;l & T'g41}, the remaining symbols

non-empty subset$§'y,...,I'; and if there exist finite sub- Eecome cogdétlpndally—géoui)l de_lt_:ﬁdablg, prov;gethEeé/ ha\(’f
sets 4; c RITil, i = 1,... ¢ such that the ML decoder, een encoded independently. 1his recuces ne ecoding

: _ 5 complexity greatly. Such an STBC is said to be fast-decedabl
arg Mingec(x,.4)|1Y" — CH|[, decomposes as Here we call such STBCs as being ‘conditionaflygroup

()

9 _ ) decodable’. Formal definition of a fast-decodable STBC is
> arg Ming, cexp, a0 1Y — Cill[|% given below.
=1 Definition 3: Let C(X,.A) be such that for every channel

Such a decomposition reduces the decoding complexisalizationH, the upper triangular matriR (H) is of the form
from []/_, |Ai| computations to)_7_, |A;| computations. given in (7). If further the tuples; ,i = 1,..., g are encoded
Following theorem gives a set of sufficient conditions fer independently thed (X, .A) is said to be fast-decodable.
group decodability of an STBC. The following theorem gives the relation between the struc-

Theorem 1 (8], [8], [10]): An STBCC(X, A) is g-group ture of R and the linear dispersion matrices of the design
decodable if there exists a partition dfx into g non-empty



Theorem 2 ([[21]): Let r;,(H) be the element in the

" row and k** column of R(H). For any1 < [ <
k < K and any channel realizatio®l, r;,(H) = 0 if
AfAl + AFAI@ =0.

This means that an STBC(X, .A) will be conditionally g-

group decodable if the STBC obtained by suppressing a subset

3) X is said to be fast-group-decodableXf is g-group
decodable with respect to the partitidi,...,I"; and
there exists at least onE; such thatXp, is fast-
decodable.

IIl. ON FuLL DIVERSITY

of the variables ig-group decodable. More formally we have In this section we give a sufficient condition for a design
the following theorem which gives a sufficient condition forX to give rise to full-diversity STBQ (X, A) via single real

an STBC to be fast-decodable.

Theorem 3:Consider aA-group encodable STBC(X, A)
with the encoding groups beirlg,, ..., T'y. C(X, A) is fast-
decodable ifl';,...,T', C N are such that we have

Af A+ Al AL =0 (8)

whenever
leTy kelyandp # q. (9)

Proof: From Theoreni2 and8) it is clear that, (H) =
0 for any channel realizationrd wheneverl € T';,k €

symbol encoding. This result is then used to show that every
low complexity design presented in this work can be combined
with an appropriate signal set to get a full diversity STBC
without compromising on decoding comfort.

Let X, => 1, z;A4; be anN x N linear design im real
symbols{z,...,z,} and letA; € CN*N i =1,... n be
full-rank. Given a set of positive integer€);, i =1,...,n
we are interested in finding a real constellatidp C R for
the real symbok; with |A4;| = Q; for eachi =1,...,n. The
constellations must be such that the specific STBC obtained,
C(Xn, A1 x---x A,), must be of full-diversity. Towards

I'; andi # j. Thus with appropriate reordering of the columnsstablishing the main result of this section we introdugeeso
the matrix R(H) can be brought to the form ifJ(7). It only notation.

remains to show that the tupleg , i =1,...
independently. But{{9) assures exactly this. TBUX, A) is
fast-decodable. [ |

,g are encoded

For each i €
Ai = {ail0], a[1], .. ., a;[Qi —
For an n tuple u= (uq,...

{1,...,n} let
1]}, where a;[j] € R.
aun) eZQl x ZQz"' X ZQn

Fast-Group-Decodable(FGD) STBCs were recently introlefine

duced in [16].

Definition 4 ( [16]): An STBCC(X, .A) is said to be fast-

group-decodable if it satisfies the following conditions

1) For somg > 1, C(X, .A) is g-group decodable with the

groups and the signal setslas ..., I’y and A, . ..
2) There exists an € {1,...
C(Xr,, A;) is fast-decodable.

JAg.

,g} such that the STBC

Crlu] = Xn(a1|ui], asfus], . .., anluy])

Hence the single real symbol encodable STBC obtained by
using the given constellations satisfies

The complexity is reduced because of two reasons. FirstlyC(Xn, A1 x -+ x Ay) = {Cplul|lu € Zg, x -+ x Zq,}
multigroup decodability decreases the number of COMPUiRe see that the codewords are indexed by the elements of

tions. Further there is at least one component code whichyis
fast-decodable. Such a low complexity code was given in [16]Q'Ilheorem dilet X, = "

for 4 transmit antennas and rat&/8 cspcu.

X oo X ZQn
i—1%iA; be anN x N linear
design inn real variables with full-rank weight matrice$;.

So far we have only discussed about the decoding compleX; 4. - R ; = 1.....n be such that4;| = Q; and
ity of an STBCC(X,,.A). We end this section by introducinge (x4, x .o x Ay) is of full diversity. LetA, ., € CNXN

the notion of the decoding complexity of a desin From e any fyll rank matrix and),.. be any positive integer. Then

Theorent 1 it is clear that the decoding complexity of an STBf

C(X,A) is affected by the choice of both the desinand

the signal setd. By the decoding complexity of a design we
refer to the amount of complexity that the choice of the Imea
dispersion matrices contributes to the decoding complefit

the STBC. The following definition makes this formal.
Definition 5: Consider a desigX = Zfil z; A;.

1) X is said to beg-group decodable if there exists %ollo

partition of Nx into g non-empty subset§, ...
such that

Ty

AT A+ AP Ay = 0 wheneverl € T,k € T'; andi # j
(10)

ere exists a one dimensional real constellatibn,; C R

such that

1) |~An+1| = Qn+1

2) The STBCC(Xpt1,A41 X -+ x A1) offers full di-
versity.

Proof: Proof is given in Appendix A. ]
We now present the main result of this section in the
wing theorem.

Theorem 5:For any givenN x N square linear design
X, = >, x;A; with full-rank weight matrices4; and pos-
itive integersQ, ..., Q.,, there exist constellationd; C R,
1=1,...,n such that

2) X is said to be fast-decodable if there exists a non-emptyl) |A;|=Q; fori=1,...,n

subsetl € Nk such that the desigiXr is g-group
decodable for some > 1.

2) The single real symbol encodable STBC

C(Xp, A1 x -+ x Ay,) offers full diversity.



Proof: Proof is by induction. The theorem is shown to b&hich is full-rank. Since the rank of any square matrix
true forn = 1 here. Theoreril4 is the induction step. is equal to the rank ofA” A, det(C)[u] — C;[v]) # 0. Thus
Consider the design for one real symb¥h = z1A4;. the STBCC(X), 41 x --- x A;) is of full diversity. By using
Choose anyA; C R with |A;] = Q. The codewords are Theoreni# repeatedliX — I times with integers); and the
indexed by elements ¢, . For anyu,v € Zg, andu # v matricesA;, | < i < K we get the desired signal set and the

we have STBC. -
det(C1[u] — C1[v]) = det((a1[u] — a1[v]) A1) IV. Low DECODING COMPLEXITY STBCS VIA CODES
= (a1 [u] — a1[v])Ndet(Ay) oVERF,
#0 (12) In this section, we make use of Universal Clifford Algebras

and their matrix representations over the complex field, to
Since the difference matrix of any two codewords is of fulleonstruct low decoding complexity codes via codes duerA
rank, the STBQC(X4,.4;) offers full diversity. B subset of elements in the Universal Clifford Algebra arensee
The STBC obtained from Theoreli 5 is single real syme have multiplicative properties similar tbl (4). We attetrtgp
bol encodable. Thus X were ag-group decodable, fast- obtain low complexity designs by choosing linear dispersio
decodable or fast-group-decodable design then the negultmatrices from the matrix representation of these elem#iis.
STBC C(X, A) is a g-group decodable, fast-decodable oproceed in this direction by using a theorem that estakdishe
fast-group-decodable STBC respectively. Most imporiathid  an isomorphism between a Universal Clifford Algebra and
condition that the linear dispersion matrices are fullkrara full matrix algebra of appropriate dimension ov€r It
ensures that the STBC(X, A) offers full-diversity. is then observed that the tensor product of Pauli matrices
All the designs discussed in this paper have unitary, ante a double cover of the set elements in question from the
hence, full-rank weight matrices. In the remaining seatioh Universal Clifford Algebra. The connection with vectorseov
the paper the focus is on designing low complexity desigis aR, is made. The problem of finding low complexity designs is
not on the design of signal sets Since it has been shown inthen converted to one of finding a set of vector&ins F1".
Theoren{b that there exist signal sets leading to full-digr Examples of low complexity STBCs available in the literatur
STBCs without increasing the decoding complexity than th#iat are obtainable from codes over are given.
imposed by the design itself, the only problem leftistodesi Let n be any positive integer. Denote by, the set
signal sets that maximize the coding gain without incre@sif1,...,n}. Let ey,...,e, be elements of an associative
the decoding complexity. This problem is not addressedis thalgebra overC and « C N,. For any nonempty sub-
paper. set a = {i1,... 4o} With iy <iy <--- <ijq we define
The following theorem will be useful when we are cone,, = ¢;, e;, I andeg = 1.
structing STBCs with low decoding complexity. Definition 6 ([27]): A Universal Clifford Algebral4, is an
Theorem 6:Let X = Zfil z;A; be anN x N design associative algebra ovér with a multiplicative identity 1 and
in K real symbols with full-rank weight matrices ardde generated by: objectsey, ..., e, which satisfy the following
{1,..., K} be such that equations
eej +eje; =0 whenever; # j (24)

A7 A + AT A =26, Iy forall 1 <4,5 <1 (13)
) J 7 »J
el=—1fori=1,...,n (15)

Given positive integers):, ..., Qx and any set of real con-
stellations A4, ..., A; with cardinalities@, ..., Q; respec- {ea|lae € N, } is a basis foiA,, (16)
tively, there exist real constellations;, [ < i < K such that From [13) and [(I5) it is clear that for any C N,
1) The STBCC(X, Ay x --- x Ag) offers full diversity. . 2 _ 41 also for anya, 3 C N, eithereaes + epeq = 0
2) [Ail =Qifori<i<K. or eqes — egeq = 0. This property resemble§](4) except for
Proof: Consider the desig’X; = Y°'_, z;4; and the the conjugate-transpose. Hence by representing the Hasis e
STBC C(Xy, A; x -+ x A;) generated using the signal setsnents using either Hermitian or skew-Hermitian matrices we

Ai, ..., A for the independent variables, . .., x;. Because can obtain linear dispersion matrices that are HurwitzeRad
{A1,..., A;} satisfy the complex Hurwitz-Radon matrix equaerthogonal. Together with the fact that? = +1 it is clear
tions [13) we havel]2], that we need unitary representation of the basis elemehts. T
. . following theorem gives a representation of a class of @idf
X, 7X, = ZIEA?AZ _ (Z 22 Iy Algebras. o _
) ) Theorem 7 ([[2]7]): For any positive integem, the Clifford
. . . . 2’77'L><277'L
Thus for any real signal setsAj,..., A, and Algebraugm_ is isomorphic to the full matrix algeb/@ o
W € Ty X -+ % Ty, With u # v we have The extension of the map, — Ei for k=1,...,2m gives
’ @ @ an isomorphism of the algebras, where foe 1,...,m, E,

! and F,.,,, are them-fold tensor products given by

— UH u| — v = Q'U'—Q'U'Q
(Cilu] = Giv]) " (Ci[u] — Ci[v]) ;(1[ i) — ailvi])“In BmilZ® 9 Z0iX20he o h)



Eeim=1(Z®@ - ®Z03X®L®- - ®I3) Proof: Since is one to one, it is clear that is one to
_ . one. FurthetA,,| = |Fo ®F7| = 22+, Thusy is surjective
there beings — 1 factors of Z in each product. as well. This completes the proof. -

~ From Theoreni]7 we have that eaéh, k = 1,...,2m  The Hamming weight of a vector ifi, @ F7 is defined
is unitary, skew-Hermitian and thus squares-té. With £, pext.

defined similar toe,, for o C N3, we see that all the basis pefinition 7: The (Hamming) weighivt([\, &1, . . . , £]) Of
elements are represented in terms of unitary matrices.skhe ig vector[)\, & ¢m] € Fo & F7 is defined as ’
morphism ensures that these matrices are linearly indem¢nd

overC. Since we are concerned with the transmission of real "
symbols we note thas = {i*E, |\ € Z, anda C Ny, } is a WE([A, €1, Eml) = H{A # 0} + Z H& # 0}
R-linear basis forC?" %" . With —B defined as{—b|b € B}, =t
we have the following proposition. Any matrix t € A,, is either Hermitian or skew-Hermitian.
Proposition 1: BU —B = G,,. This information about is present invt(y(t)). The following
Proof: We note that bothX and Z square tal,. Further, Proposition explains this claim.
they anticommute. So it is clear that for amy C Ny, Proposition 4: A matrix ¢t € A,, is Hermitian if wt(¢(t))

E, € G.. Since G,, is closed under multiplication by is even. Else it is skew-Hermitian.

iIom and —I,» we haveBU —-B C G,,. To complete the Proof:Lett = i*B, ® --- ® By, B; € {1,iX,iZ,ZX}
proof we note there are2™ distinct subsets ofVa,,, thus and\ € Z,. Exceptl,,which is mapped t6 undery, the other
|B| = 22™*1. Since B is linearly independent oveR, for 3 matrices are skew-Hermitian. Hence

anyb € B we have—b ¢ B. EquivalentlyB N —B = ¢. Thus, J (—1)1“#0}@“(—1)1{31#1}B1 o (—1)1{Bm¢l}Bm

|IBU—-B| = 2?"*2 = |G,,|. ThusBU —B = G,,. [ ] -
Proposition[]L says that the weight matrices to be chosen = (—1)**70* @m | (—1)Hv(BO70} g,
from the matrix representation of the basis elements of Clif ~ _ (_1ywt(e(t)y

ford Algebra can be equivalently obtained through the Pauli

group. However, the Pauli group of matrices are not linearlphus ¢ is Hermitian if wt(y(t)) is even, elset is skew-

independent oveR. Thus we concern ourselves with a propelermitian. [ ]

subset\,,, of G,,, which is maximally linearly independentand For linear dispersion matrices coming from the Agt the

thus satisfies\,, U —A,,, = G,,. One such set is the following g-group ML decodability condition (10) can be reformulated
in terms of the weight of corresponding vectorshn ® F7*

Ay ={i*B1® - @By, |\ € Zy and By, € {,iX,iZ, ZX}} as follows:

(17) Proposition 5: For anyty,ts € A,,, we have

Proposition 2: The setA,, is a basis forC>"*?" as a tty 4+t =0 iff wt(p(t1) 4+ ¢(t2)) is odd
vector space oveR. . . .
Proof: {I»,iX,iZ, ZX} is a basis folC2*2 as a vector where the vector sum is component wise addition.

space overC. Thus theirm fold tensor products form &- Proof: Recall tha}; anyt € Ay, is either Hermitian or
linear basis forC2" 2™ . From this the required result follows, SKew-Hermitian. Thus;"¢, is skew-Hermitian ifft, ¢, is skew-
Hermitian. Let

|
We now proceed by relating the sk}, to Fo®F)*. Consider = Mgyl ®- - @ ! fork —1.2

the finite fieldF, with 4 elements{0, 1,w, w?} satisfying the K ¥ (8 Y™ (Ekym) ,

relations1 + w = w?. Define a map Note thaty=1({)y=1(n) = £y~ ({ +n) for any (,n € Fy.
Hencet;t,

Vi {ls,iX,iZ, ZX} — Fy

= :|:7:)\1+)\2’l/)71(£171 + 5271) X ¢71(€1,m + 52,m)

that sends (A1 +Az)moc2,  —1 1
=43 V(611 +821)Q @Y (E1m + E2,m)

IL—0,iX = 1,iZ 5w ZX - w’ (18) =+ (p(t1) + ¢(t2))

Note that every elemerte A,, can be uniquely written as We havet;t, is skew-Hermitian iff o= (o(t1) + p(t2)) is
N . skew-Hermitian. Applying Propositidd 4 we have that, is
t="7 (&) @ @Y7 (En) for Ae Zz and&y € Fa  gkew-Hermitian iffwt((t1) + o(t2)) is odd. This completes
(19)  the proof. ]
When we restrict the possible linear dispersion matrices to
the setA,,, Propositior b helps us reformulate the original
problem of finding weight matrices for low decoding com-
plexity STBCs in terms of finding vectors if, @ F7*. This

is a one to one correspondence betwdegnandF, & F7. leads to the following theorem.

Proposition 3: The mapy : A,,, — Fo ¢ F}* that sends



Theorem 8:If there exist K  distinct vectors A. Alamouti Code
Yi,.-..yx € Fo @F and a partition T'y,...,T'; of

(1 K} into nonempty subsets such that The Alamouti Codel[28] is & x 2 square orthogonal design

of ratel. Its parameters aren = 1, K =4, g =4 andr = 1.

wt(yr+) is odd whenevek € T;, [ € T; andi # j (20) Its linear dispersion matrices are{l»,:X,iZ, ZX}. All the
weight matrices belong td. The four sets of vectors from

then there exists a desigiX(zi,...,zx) of dimension T, @ F, corresponding to the four groups are as follows:
2™m x 2™ in K real variables and which ig-group ML
decodable with the'" group being{z|k € I';}. S1 = {[0,0]}, Sz = {[0, 1]}, S3 = {[0,w]}, Sa = {[0,w?]}

Proof: Given the K vectors as in the hypothesis, define
A = ¢ Y (yr) € A,,. The bijective nature ofp ensures that It can be seen that the weight of the sum of any two different
the K matrices A, are distinct. Since\,, is linearly inde- vectors is odd, thus the above design is single real symbol
pendent ovelR, A,k = 1,..., K are linearly independent. decodable.
Define a linear space-time desid®(z1,...,zx) as
B. Other2 x 2 codes of ratel

K
X = inAi Here we describe designs with parameters- 1, K = 4,
i=1 g =2, 7 =2, R=1. There are only three non-equivalent
Applying Proposition[5 we get thé group asT;. This designs that can be obta_ined frokm. They are parametrized
completes the proof. m Dbyle{0,1,2} and are given by

Theoreni 8 converts the original problem of findipgroup
ML decodable designs from\,, to that of finding certain
codes overlF,. Once such a code is chosenlin ¢ F}* the
linear dispersion matrices can be obtained by the one-o-on Sy = {[0,«'], 1,0}
correspondence.

Definition 8: A design inK real symbols fo2™ antennas 1) [ = 0: The design is given bys; = {[0,0],[1, 1]},
from Fy @ F7 is defined as a subs&tC F, & F7* such that S2 = {[0,1],[1,0]}. The two groups of weight matrices are
IS| = K. My ={I,-X}, and My = {iX,iI}. With T’y = {1,2} and

The ‘design’S in the above definition refers to the lin-I'z = {3,4} the resulting design is
ear design that can be obtained by mapping the vectors in

S = {[070]7 [Lwl]}

S ={y1,...,yx} to linear dispersion matrices i\,,. The X = < T+ Ty T +_ix3)
corresponding design ik real variablescy, ..., zx is given o2 ULy X1
as K This is the2 x 2 ABBA code [30].
X = 20" (yi) (21) 2) 1 = 1:  The design is given by
; S ={[0,0],[1,w]}, S2={[0,w],[1,0]}. The matrices

are My ={I,-Z} and My = {iZ,il}. With T'; = {1,2}

With the linear desigrX associated with the sé&t defined as andT', — {3, 4} the design is given by

in (2I) we can use Theorel 8 to definpegroup decodable,
FD and FGD designs obtainable from codes dgr These x_ (T -t il + x3) 0
are given below. _ _ = 0 21 + @9 + i(34 — a3)
Definition 9: Let S be a design obtainable froiir, & F}".
1) § =U%_,S; or equivalently the se{Sy|k =1,...,¢9} With appropriate transformation of the symbols within each

is called ag-group decodable design if for anye S, 9roup we get the x 2 CIOD [6].
z € § andk # | we havewt(y + z) is odd. L

2) S is said to be fast-decodable if there exist subsets X = (xl tirs 0 )
S CS i=1,...,9.9>1suchthat{S;[i=1,...,g} 0 Z2tidy
is a g-group decodable design.

— . _ 2
3) A g-group decodable desigfiS;|i =1,...,g} is said 3) 1 o 2: S1={[0,0], [1, w7} and

) i . , ={[1,0],[0,w?]}. The linear dispersion matrices are
to be fast-group-decodable if there exists at least o él —{1,iZX} and My = {il, ZX}. With Ty — {1,2}

le {1, = , g} such that the desig§; |s. fast-d.ecodable.. andT', — {3, 4} the resulting design is

We now give examples of low complexity designs obtain-
able from codes oveF, i.e., linear designs whose weight Tl +iT3 T4+ ixo
matrices come from\,,,. Assume that the number of groups X =
is ¢ and each group has vectors in it. The total number of
vectors or the total number of real symbols in the design ‘ﬁ1 . a b .

is is the design.

thus K = gr. —b

—x4 —1X2 X1 +1T3



C. 4 x 4 Quasi-orthogonal design

Consider the ratd quasi-orthogonal design given in_[29]
for 4 transmit antennas. The design containeeal symbols
I, -
m=2 K =8,g=4,71
X =% | ;4 is given below.

2 and R = 1. The design

xr1 + iIQ xr3 + i.CC4 x5 + iIg xr7 + i.ng

X — —T3+1ixy T1 — 1Ty —X7+1xg Ty — 1Tg
T | —zs +izg —xr+irs T — T2 T3 — T4
T7 + 128 —X5 —1Xg —X3 — 1Ty T1 +1To

The linear dispersion matrices, upto a sign changg,: =
1,...,8 are

Al =L I Ay =12 Q7
As=L®ZX Ay=iZ X
As =X ® I Ag=iX R 7

A =ZX®ZX As=iX®X

It can be seen that all th& matrices come from\,. The
corresponding vectors iRy © FJ?, vy, = p(4;) are

y1 = [0,0,0] y2 = [1,w, w]
Y3 = [0507w2] Ys = [va 1]
ys = [0,w?,0]  ys =[1,1,w]
yr = [0,w?, w? ys=[1,1,1]

The 4 groups are

St ={yn,yr} S2={y2,ys}
Sz ={ys,us} Sa={vs,v6}

V. KNOWN AND SOME NEWMULTIGROUP DECODABLE
STBCs FROM CODES OVERF,

In this section we construct multigroup decodable designs

..,xg and is 4-group decodable. The parameters anga codes overF,;. We give three procedures to obtain a

multigroup decodable design f@™*! antennas by using a
multigroup decodable design f&™ antennas. These con-
structions are then used to obtalrgroup decodable codes.
Lastly g-group decodable codes for arbitraryare constructed
from codes oveF,. These designs meet the rate-ML decoding
complexity tradeoff attainable by a class of CUWDs obtaieab
from Extended Clifford Algebras [10].

A. Construction A

Let us denotél,0,...,0] € F; @F}* by ,,. The following
proposition describes how to constructgagroup decodable
design for2m+! antennas using a-group decodable design
for 2™ antennas.

Proposition 6: Let [ € {0,1,2} and
{Si={yili=1,...,|T}li=1,...,9} be a2m™ x 2™
g-group decodable design of rafe Then{S;|li = 1,...,g}

is a2™t! x 2m+1 g-group decodable design of raiz where
Si = Si,A U Si.,B with

Sia=Alyi 0l7 =1,..., || }
Si,B = {[yi,jawl] + §m+1|j = 1, ey |F7,| }
9}

wt(y + z) is even for anyy, z € S;

If forany i € {1,...

It can be seen that for any two vectors in different groups thgen

weight of their sum is odd.

D. Square Orthogonal Designs

wt(y + z) is even for anyy, z € S;.

Proof: Consideri,j € {1,...,9} andi # j. It is

Square Orthogonal Designs_1[3] are square desigsaightforward to show thafS; 4 N'S; g = ¢ and for any

X(z1,...,xx) which satisfy the following equation

K
XX = (> a1
i=1

Such designs offer both single real symbol decodability and

full diversity when arbitrary real constellations are uded
encode each of the real symbals. Maximal rate square
orthogonal designs were given inl [3]. These designs are
dimensior2™ x 2™ and have a rate ak = ";—i} cspcu. These
designs are obtainable from codes olfgr There ar&m + 2
groups containing one vector each. These vec{aig are
given below. Fork = 1,...,m,

yr = [L{k is ever},0,...,0,w? w,...,wl,
yr+m = [1{k is ever},0,...,0,1,w, ..., w],
there beingn — k zeros in each vector and
Yom+1 = [1{m is ever},w, ..., w],

Yom+2 = [0,0, .. ,O]

y €S andz € S;, wt(y + 2) is odd. The second part of
the theorem is straightforward. This completes the pro®.

Lety = [\ &,...,&n] € Fo & FP* ando be any permuta-
tion on{1,...,m}. Definec : Fo ® F" — F2 & F}* as

U(y) = [/\7 50(1)1 e

o is thus a permutation of coordinatespfin terms of linear
(B'?persion matrices the action ef is to permute the order
in which the2 x 2 matrices appear in the Kronecker product
representation. The following proposition states tiafroup
decodability of a design is not disturbed by such a permutati
when it is applied to all the weight matrices.

Proposition 7: Let S C F; ¢ F* be ag-group decodable,
FD or FGD design and be any permutation ofil, ..., m}.
ThenS = {o(y)|y € S} is ag-group decodable, FD or FGD
design respectively.

Proof: The action of o on the vectors is just a
permutation of the coordinates. Thus for any € Fy, ¢ F}",
oly+z)=o0(y)+o(z) and wt(o(y)) =wt(y). Thus
wt(o(y) + o(z)) = wt(y + z). The desired result follows
from Definition[9. [

aga(m)]



Corresponding td = 0,1 and 2 in Proposition[6 andr B. Construction B

in Propositior. ¥ we get different constructions that giveaus Tpe following proposition gives a procedure to obtain

g-group decodable design far"*! antennas by using & group decodable designs fart! antennas using-group
group decodable design far" antennas. We now give SOMeyecodable designs f@” antennas.

constructions obtained from Propositibh 6 as examples. LetProposition 8- Let I c {0,1,2} and
X = ZfilxiAi be ag-group decodable design with all the{Sl_ ={yiilj=1,....,ITi}li=1,2} be a ’Qm x9m 9.
linear dispersion matrices ifi,, andW be an identical design ¢4 dacodable aesign which satisfies the following
in a different set of real variables. Then each of the follayvi ., 4ition for each — 1,2
designs isg-group decodable.

wt(y + z) is even for anyy, z € S;

X W N 5 _

(W X) (22) thenS; = 81714 USQ,B: Sy = §274U817B give agmtl x gmtl
2-group decodable desigfS;, S2} which satisfies for each
1=1,2

X-W 0 ’ . ~
( 0 X + W) (23) wt(y + z) is even for anyy, z € S;
where
(v %) 24) i =l 01} a0, 5 = ([}
Further the rates ofS;} and {S;} are same.
Propositio ¥ is used along with Propositidn 6 to arrive asth Proof: Similar to the proof of Propositiofl 6. u

constructions. Constructiof (23) can be used to obtainesing As particular examples we get the following recursive
complex symbol decodable square CIODs [6] by using sindt@nstructions. LeX and W be identical2-group decodable
real symbol decodable square orthogonal designs as byildifesigns in different variables with the weight matrices\ip.
blocks. Construction[{22) was first proposed [inl[30] and iset the designX be such that the corresponding vectors
known as ABBA construction. As an example we descriig F, ¢ F* satisfy the hypothesis of Propositidd 8. The
how ABBA construction is obtained from Propositigh 6. following designs are-group decodable.

Let {S;]i=1,...,9} be ag-group decodable design and

S=U7_,S;. Theng 1(S) = {Ay, ..., Ax} is the set of lin- (X ZW) (25)

ear dispersion matrices. Lk, ..., xx} and{ws,...,wk} WX

be two different sets of real variables. DefiKe= ZiK:l z; Aj X +iW 0

and W = Zfil w;A;. Let {Si|z' =1,...,9} be the design ( 0 X — Zw) (26)
constructed according to Propositibh 6 with= 0 and let

S = UL ,Si. Thenp~(S) is the set of linear dispersion ( X W) 27)
matrices corresponding to the new design. From Propodion -W X

it is clear thatS = S4 U Sp where These designs can be obtained from Proposifion 8 in the same

- way the ABBA construction was obtained from Proposifion 6.
Sa = {ly,0]ly € S} and

C. Construction C

S ={[y, 1]+ 6my1ly € S}. The following proposition gives a procedure to obtdin
group decodable designs f@™t! antennas usin@-group
Let o be the permutation on{l,...,m + 1} given by decodable designs f@™ antennas.

o(l) = m+1ando(k) = k-1 for & > 1. Using Proposition 9: Let {S; ={y;;li=1,...,|T|}i=1,2}
Propositio ¥ on the desigi®;|i = 1,..., g} we getag-group be a2™ x 2™ 2-group decodable design which satisfies for
decodable design with the set of linear dispersion matéseseachi = 1, 2

o too(S)=¢ too(Ss)Up ' oa(Sp). But we have _
wt(y + z) is even for anyy,z € S;

e loo(Sa)={L®Ali=1,...,K} = {<Al 0 )} then{S;|i = 1,...,4} is a2™+! x 21 4-group decodable

0 4 design where
. A, Si={lyrg &l So = {1y, &I}
o loo(8p) = {i(iX)RAli = 1,..., K} = { (_(1’4‘ 641) } ) ’ ) ’
’ Sz = {[y2,5: &3] + Om+1}, Sa = {[y2,5, €] + Om1}
Associating the variablegz; } with matrices inp~' o 0(S4) and§;, i =1,...,4 are distinct elements df,. Further the

and variables{—w;} with those inp~! o o(Sz) we get the rates of{S;} and{S;} are same.
design in [2R). Proof: Similar to the proof of Propositionl 6. [ ]



There are4! = 24 ways of choosingé;,i = 1,...,4 (iX WHH) (30)
from F4. However, it can be shown thafy, &, 83,841, -W —iX
{51752154153}' {52751153154} and {52751754753} all lead to . .
designs which are same upto relabeling of variables. Thus (ZXSH _WSH ,WH +iXp ) (31)
Proposition[® gives u$ constructions. However only of ~Wu +iXng  iXsu + Wsn
them are unique i.e. lead to non-equivalent designs. Twersth X W
can be obtained by permutation of columns and relabeling (—WH XH) (32)

of variables of one of thel designs. Thesd constructions

correspond 1t0{0, 1,w,w?}, {w,w? 0,1}, {1,w* 0,w} and The above constructions can be obtained in a way similar to

{w,1,0,w%}. which ABBA construction was obtained from Propositioh 6

and by using the fact that; has Hermitian and\, has

skew-Hermitian matrices.

o : . Constructions in[[31] and [32] start witll = (1 + ix2).

f{?gr 2 S ?n]:tce)rnn;::ﬂ Zarlﬁeunsr:r;g me'glrol:l\'?h?cehcosdaat‘iglﬁecsje;"genConstructions in[[32] use eithe[{22) dr_{27) for the first

folllc;wiQng condition for eachs a 15 ' application of Step A and usds_{22) for each of the remaining
- k — 2 applications of Step A. The last step in_[32] is the

wt(y + z) is even for anyy, z € S; (28) application of

) . X -wH
Define Step A and Step B as the following steps. (33)

w XH
« Step A: Apply any one of thé constructions choosing
from Proposition§]6 anid 8 arid= 0, 1 or 2. Follow it by for Step B. This construction was first given in [33] and is
an application of Propositidnl 7 with any. known as the Doubling Construction. But this is same[ab (32)
« Step B: Apply any one of the constructions choosing upto relabeling of variables. Constructions if_|[31] uise) (27
from those provided by Propositidd 9. Follow it by arfor each of thek — 1 applications of Step A and (B2) for Step
application of Propositioh] 7 with any. B.
The construction procedure is as follows: Starting with the ) )
design{S1,S.} apply Step Ak — 1 times followed by one E: 9-9roup decodable designs for arbitragy
application of Step B. In this section we construgtgroup decodable designs with
Particular examples of this procedure are the construsticsrbitrary g for the case when the number of real symbols
given in [31] and [[32]. We now explain how these construdn each group is same and is equal to a power of two i.e.
tions are particular applications of the above algorithm. Tr = 29, Resulting designs are for number of transmit antennas
explain this we need the following proposition. 20, where
Proposition 10: Let {S;,S,} be a2-group decodable de- b> {g _ 1}
sign obtained through the application of any of the con- -
structions of Propositions| 6 & 8 on tfkegroup decodable | ¢t ys first consider the case wheie is even. Say

design{S1, Sz} If 51,52 have even and odd weight vectors; — o(,;, 4+ 1). We start with a square orthogonal design for

respectively, thers:, S; have even and odd weight vectors. om antennas. We already saw that square orthogonal designs
Proof: Straightforward. . _ B are obtainable frorfi, F7. Such a design has rafe= 2+t

Let M; =~ }(S:) be the i*" group of linear dispersion ang ha2m + 2 groups with one real symbol per group. Now

matrices. Both constructions,[31] and [32]_, start_vvnhlnhrqa_l we apply Propositiofi]6 on this designtimes. Each of the

design for one antenn& = (1 + iz»). This design satisfies gppjications can use any of the three constructions given in

the hypothesis of Propositidn]10. Thus, at the endief 1 proposition[® and can be followed with an application of

applications of Step A, the resulting codé&;, Sz} will be Propositior[¥ with arbitrary.

such thatM, has Hermitian and\, has skew-Hermitian  according to Propositiong]6 arfd 7 the resulting code will

matrices. In such a scenario the matrix representation®f g tor 9m+e gntennas withy = 2m + 2 groups and rate
four constructions in Propositidd 9 are given as follows.  p _ m+1 Number of real symbols will be

Let {S1,S,} be a two group decodable design satisfying >
the hypotheses of Propositidnls 9 10. Xebe the design K =2 x R x Number of antennas= 2(m + 1)2°.
obtained from{S;,S>} and let W be identical toX but
be composed of a different set of variables. Define for afjnerefore, the number of real symbols per graup- 2 as
square matrixd, Ay = 1(A+ A") andAgy = 3(A — AT). required. The rate in terms gfis R = 57.
These are the Hermitian and skew-Hermitian partsioffhe ~ Now consider the case whenis odd. Supposg = 2m +1

following 4-group decodable designs can be obtained frofr somem, defineg’ = g + 1 = 2m + 2. Sinceg’ is even
Propositior 9. we can construct g@’-group decodable design for= 2% as

XH W 29 described above. This design f5f+¢ antennas will havg+1
iWH X (29) groups. This is more than what is required. The desired desig

D. 4-group decodable designs
We now give a procedure to getlagroup decodable design



is obtained by removing any one group from this design. TH®, .., Vm, ¥m+vm } IS @ subgroup of; & FJ*. Because both

rate of the resulting design is F, andF, have characteristig, every element oF, © F}" is
1 7g g its own inverse.

R=§2m+a=2g7+1- Let i,j € {ABCD} and i # j. Let

. yi € & andy; € S;. Then there existu;,u; €S

Thus, for an arbitrary, a rate of and  wi, w; € {0, Yo, Vs Y + Vi } with w; # w;

__9 (34) such that y; =w;+uw;, and y; =w;+u;. Thus

ol 7% vi+y; =w;+wj+u;+u; =w+u for some ue Sy

is achievable. Since g-group decodable square orthogon@Ndw € {Ym, Vi, Vim + Vi }. Thusy; +y; is an element of
design exists only fo2/# 11 or more antennas, the construcUre{s,c,p}Sk and hence has odd weight. From Definitldn 9
tion procedure described above can be used togegioup the given design id-group decodable.

decodable designs for any number of transmit antertfas The number of elements if, is 2. Thus|S;| =2~
with b > [¢ — 1]. In [10] the rate-ML decoding complexity for j € {A, B, C, D}. It is straightforward to show that the
tradeoff of the class of CUWDs for which is a power of four subsets are mutually non-intersecting. Thus the rate o

2 was characterized. The maximum rate, as giveri in [10], Bf¢ proposed design is complex symbol per channel use.

any CUWD for a givery andr = 2 is precisely [34). This completes the proof. ]
Proposition 12: The design{S;, S»} is 2-group decodable.
VI. NEW FAST-GROUP-DECODABLE CODES Proof: Since{S4, Sz, Sc,Sp} was already shown to be

In this section we propose a new class of fast-group-group decodable in Propositidn]l1, it is enough to show
decodable and fast-decodable codes with raes- 1 for that for everyy; € S4 andy, € Sg, y1 + y2 has odd weight.
number of antennas that are a power2ofThe rate-decoding Now Sg is a coset of the additive subgroufy and hence
complexity tradeoff of this class of codes is derived. Wealsy, + 1y, € Sg. But every vector inSg has odd weight. This
show that codes with lower decoding complexity than thos®mpletes the proof. u
reported in [[20] can be obtained by simply using the sameFrom Proposition§—11 and 112 we see tHa&h, S} is a
design as in[[20] but by choosing the constellations calsefulfast-group-decodable design of rai¢4. The designsS, is
We also show that the STBC given in_[16] is a specific cas®nditionally 3-group decodable with the conditional groups
of STBCs obtained from codes ovEy. In the latter part of asSp, S¢ and Sp. For rateskR > 5/4, choose any subset
this section we show that some of the best known codes forC F, © F7* \ {S; U Sy} with |O] = 2™~ 1(4R — 5). This
2 and4 transmit antennas are obtainable from codes @\er can always be done as long & is less than or equal to

A. A new class of FD and FGD designs the maximum possible rat&™. The proposed design is

We first propose a new class of rafg/4 fast-group- S§=5§USUO. (35)

decodable designs._ These_ designs are then e>_<tended ta obtaIit is straightforward to show that the desigii(35) has
fast-decodable designs with rat& > 5/4. Designs of rate rate R. We now derive its ML decoding complexity for

IesLs :ht%mM arg obt?ltned by.tpunfturlng.wé > 1 Let arbitrary complex constellations for the case when e8gh
et the number of transmit antennas be, m = 1. L€ j €{A,B,C, D} has integral number of complex symbols.

€1,62 € F4 \ {0} and&; # &. Let & = & + &. Define This happens wheneven > 1. The complexity of decoding
Se, ={[0,C1y .-, Cl|G € {0,&} fori=1,...,m}, Sis
Sa = {y € S, |wt(y) is even} and M2191 % decoding complexity of5; US;.
Sp ={y € S¢,|wt(y) is odd }. Observing that{S;,S,} is 2-group decodable and, is

conditionally 3-group decodable, we see that the decoding

Let v, = [1{mis evenR,&,,...,&] and 6, = [1,0,...,0]. complexity ofS; U S, is

Define
%Qm—l 2m—1
Sc = tm + 84, Sp=m+Sps, andSg = G + Sa. Mz +3M
Thus the decoding complexity of the proposed design for

LetS; =S4 andS; = U; S;. Then we have the . i .
S, 2~ ZJelB.C.D.E}YO] arbitrary complex constellations is

following propositions.

Proposition 11: {S4,Sp,Sc,Sp} is a4-group decodable, = M2"TPUAR=E) o (g2 a2
rate 1 design.

Proof: It must be noted thatS, is a subgroup of

the abelian groupF, © F)* and Sp = 7, +Sa, where = 302" P4R=3) for ;> 1, R > § (36)
Ym =1[0,0,...,0,&]. Thus Sg, S¢ and Sp are cosets of 4
the subgroupS, and are obtained by the translates,, The ML decoding complexity can be further reduced by
v and v, + v, respectively. It is straightforward to seeusing carefully chosen constellations without affectindl f
that all three cosets have only odd weight vectors. Aldtiversity. We now show how to choose constellations for this

~ 3]\/[2’”’14—2’"’2(4}%—5)



TABLE |
COMPARISON OFDECODING COMPLEXITIES: A - ARBITRARY CONSTELLATION, B - CAREFULLY CHOSEN CONSTELLATION* - LEAST KNOWN

COMPLEXITY
Transmit AntennasV | Rate &2 New codes in Sec VI-A EAST Codes Pavan et al[[20]| New codes in Sec VI-B| FGD Code -
A B Sinnokrot et al.[[14]| A B Ren et al.[[16]

2 2 *2 M3 *3M?

5/4 *3M? *3M 15 2M2-5 2M?

2 *3M° *3M*5 4M> 5M5-5
4 17/8 *3M°® | x3M?° 5M6

3 *3M°9 *3M8-5

4 *3M13 | x3M12:5

5/4 *3M* *3M3-5 2M5 2M4-5

2 3M10 3M9-5 4M10 *2 M3 *2M 75

17/8 3M1L 3M105 *2 M85 *2 M8
8 3 *3M18 | «3M17-5 AM18

4 *3M26 | 37255 4026

5 *«3M3% | «3M33-5

6 *3M*2 | «3M12-5

purpose and derive the ML decoding complexity for this cas€onsider any two symbols;; andz,, one from each of the
Assume thain > 1 andR > 5/4. Letz,z2,23 andz, be four two groups. Since the linear dispersion matrices are ynitar
real symbols one each fro8y, Sg, Sc andSp respectively. the weight matricesi;, A, of the symbolsr; andz, satisfy
Since the corresponding weight matricés are unitary, the
atisty ponding weig ® y, they A Ay + A A, = 0.
" " o We can use Theorefd 6 to use regular PAM on two variables
A7 A+ A7 A =0for 1 <i<j<4 x; and z, without losing full diversity property. Decoding

By using Theoreml6 we see that each of the symbg|s = complexity now becomes

1,2,3,4 can be assigned values from a regular PAM. During opM2" T R=0.5 (41)
decoding, when values are proposed for all real symbolsxxce . R . .
24,0 = 1,2,3, 4, these four symbols can be decoded via simpfé' Code in [16] as a specific case of STBCs via codes over

scaling and rounding off. In this case the decoding commex#F4

of the code is It was shown in Section TV-D that square orthogonal designs
B 5 belong to the class of codes obtainable from codes Byer
3M?" TAR=3)=05 for iy > 1, R > T (37) Consider the case of, = 2. A square orthogonal design @t

antennas hasvectors each forming a group on its own. One of
Similarly it can be shown that for rate< R < 5/4 the the vectors is the all zero vector. Thus the remairdingctors
designs obtained by puncturing the vectorsSp give rise are of odd weight. Le© be the set of thesevectors. Consider
to decoding complexities which have the same expressionthe following 2-group decodable desigfs;, S2} where

in 36) and [(3V). 9 .
Thus, the rate-ML decoding complexity tradeoff of the given S1=A[0,--,0}, & = {y € F> ©Fa|wi(y) is odd}. (42)
class of codes foR > 1 is Thus O C S,. Further O, when considered as a design by
s itself, is single real symbol decodable ®group decodable.
MR > (38) Thus the design in[{42) is fast-group-decodable. Sinée

vectors are of odd weight of the total 8 vectors inF, @ F?,
|S2| = 16. Hence, the above design has a raté©® complex
symbols per channel use.

The decoding complexity of the code {42) is the sum of the
decoding complexities af; andS,. The decoding complexity
of S is M=z. When decodingS,, for each set of values
assigned to the real variables correspondingsio\, O, the
real variables correspondingcan be conditionally decoded
The codes in[20] arg-group decodable with unitary weightyyith a complexity of5M 3. The net complexity of decodings

matrices and rat& = 2™ 2 + QLM In [20] decoding complex- would be the product of this term with7 2(152\2D) which is

ity was given only for arbitrary complex constellations,ieh 573 773 (2*~5) = 5373(17-5) = 5176, Thus the complexity
IS B of decoding the cod€#2) M °+ M= ~ 5M6. This design
2M*" R, (40) was the one proposed in [16].

for arbitrary complex constellations and

3M27”*2(4R—3)—0.5 m>1 (39)

)

for appropriately chosen constellations.

B. Complexity reducing constellations for designs(inl [20]



D. Comparison of decoding complexities In [21] the three groups are encoded as follows. Let

From [38), [3D),[[@0) and (#1) it is clear that the new clas& = S&.I T 5k.Q: k=1,2,3,4 _take values |ndepend§nt|¥
of designs described in Secti6i VI-A yield lower decodin§©M @ rotated QAM constellation. The angle of rotation is
complexity than the codes in [20] whenev@r < 3/2 or optimized for coding gain. Encode, i = 1,...,8 as follows
R >2m=2 4 L In fact these codes have the least known 1 1/1 =1\ (s1s
complexity for these values dt when the number of antennas ( > D) <1 1 ) (Sl’Q) ’
is2™. Forrates3/2 < R <2m~2 4 2% the proposed codes in ’

Section[VI-B have the least known complexity. TaBle | sum- (173) 1 ( 1 1) (82,1) and
marizes the comparison of the decoding complexity of known T4 2\-1 1/ \s20 ’
codes and the new ones of this paper. Only rates higher than

T2

1 are considered. Comparison is done with EAST(Embedded x5 1 -11 1 S4.1
Alamouti Space-Time) codes from_[142-group decodable T6 | _ I I §3,Q
codes from[[20] and the FGD code from [16]. The entry Zor x7 2v2 (1 1 1 -1 $31
antennas with rat@ and arbitrary constellation is that of the T8 1 -1 1 §4,Q

code given in[[22] and [23]. In Sectign VI-E2, it is shown thatne resulting design in terms df;} is

this code belongs to the proposed class of STBCs. It must be .

noted that the proposed code ft = 4, R = 5/4 has lower ( s tiszg €™/ (54,1 + z’s3,Q)> (43)
decoding complexity than the code from [19], [20]. The code e/ (—su4,q +iss,1) —81,Q t1iS2,1

for N = 4, R = 17/8 has lower decoding complexity than e .Y :
the code from([T6]. Similarly, forV — 8 and R — 5/4 the The STBC presente.d in_[21] }%(]43) multiplied on the right
proposed codes have the least complexity. hand side by the unitary matri ,

EE | f ED codes in literat btainable f d 2) The HTW-PGA CodeThis is a rate2 code for2 transmit
err%amp €so codes in fiterature obtainable from Coleg,ennas. It was was independently discovered by Hottinen,
4

Tirkkonen and Wichmar [22] and by Paredes, Gershman and
1) Rate2 Codes from Pavan et all [21]in [21] rate 2 Alkhansari[23]. Its decoding complexity is of the order/af
codes were given far and4 transmit antennas with the largesfor arbitrary constellations and/? for QAM symbols [21].
known coding gain. Both these codes are fast-decodableeThg/e now show that this code is obtained from an design with
codes can be obtained from Pauli weight matrices by usimgwli Weight matrices. Specifically the rafedesign for2
appropriate signal sets. We emphasize that these codes heagsmit antennas described in Secfion VI-A leads to thikeco

low ML decoding complexity because the underlying design The HTW-PGA code in complex symbols, so, s3, 54 iS
comes fromA,,,. As an example we now show how thex 2

code is obtained fromh; . X — < 51 32> n ( 53 34) (3) 01> (49
Choose weight matrices from; as —S2 81 —S4 83 -
A =1, A;=X where s1, so are independent complex symbols aggl s,
Ay = Z’ AZ _ ZjX are obtained from independent complex symbejsz, via
Ay = ily, Ar—iX a unitary matrixtU/
Ay =iZ, As=iZX.
! * (S3> U (Z?’) . (45)
The corresponding vectors are 54 “4
g =[0,0], ys=1[1,1] Let si, = si,1 + isk, for k =1,2,3,4. The weight matrices
Yo — [1’w]’ Vo = [vaé] Ap.1, Ay g of the real symbolsy, 1,s1.¢, Upto a sign change,
y3_[170]7 y7:[071]7 are A1[:IQ AlQ:’LZ
Ya = [0,&)], Yys = [17(“)2]' ’ : ’ !

As1=2X, Ayg=1X,

The resulting desigiX = Zle x;A; is A1 =2, Azq = Z:I’
A47[:X, A4_]QZ’LZX.

((:171 +ax2) +i(xs +xq) (w54 x6) +i(x7 + x8)>

(w5 — 76) + (w7 — 28) (21 — T2) + (3 — T4) This code uses all th& elements ofA, as weight ma-

trices. From [(4b), we see that the encoding groups are:
Note that the ratel design {y1,y1,ys,ya} IS two group {si,1,s1,0}.{s2,1,52.0} and{ss 1,s3.0,84,1, 54,0} Since the
decodable with the two groups beifg:,y2} and {ys,y4}. combined encoding ofss 1, 3.0, sa,1, 54,0} does not affect
When the symbols in the desighi are encoded ir3-groups the fast-decodability offered by the design, the decodimg-
{z1, 22}, {73,724} and{xs, v, x7, 25} We see that the result- plexity of the code i M3 for arbitrary complex constellations
ing STBC is conditionally2-group decodable, the two groupsand4M? for complex constellations. However, it was already
being {1, 22} and {z3,24}. This leads to low complexity shown in Sectioli VI-A that the decoding complexity can be
ML decoding. further reduced t@M? when using square QAM.



VII.

The approach of this paper is inspired and similar to that of
[18]. In this paper we provided a framework for constructing
low decoding complexity STBCs from codes ovér. New  [17]
FD and FGD codes were provided based on this approach.
However, only square designs faf* number of antennas is [18]
considered. Thus the designs obtained fin® F}* for arbi-
trary number of antennas, by deletion of select columnd, wif;g,
not be delay optimal. In_[8] delay optimal codes are provided
also for the case when number of transmit antennas is not[é’;b]
power of2. These codes can not be obtained friBmd Fy".
Also the Doubling construction given in_[33] for multigroup
decodable codes is general and it was applied in that work

D IsScUSSION [16] T.P.Ren,Y.L. Guan, C. Yuen and R. J. Shen, “Fast-Gibapedable
Space-Time Block Code,” accepted in IEEE Information Thedbrk-
shop, (ITW 2010), Cairo, Egypt, Jan. 6-8, 2010, availablénenat
http://www1.i2r.a-star.edu.sg/ cyuen/publications.html

Babak Hassibi and Bertrand M. Hochwald, “High-Rate €ad@hat Are
Linear in Space and Time,” IEEE Trans. Inf. Theory., vol. 48, 7,
pp. 1804-1824, Jul. 2002.

A. R. Calderbank, E. M. Rains, P. W. Shor and N. J. A. Stpan
“Quantum error correction via codes over GF(4),” IEEE Trdnform.
Theory, vol. 44, pp. 1369-1387, July 1998.

C. Yuen, Y. L. Guan, and T. T. Tjhung, “On the search fogthrate
quasi-orthogonal space-time block code,” Int. J. Wirelegsrmation
Network (IJWIN), vol. 13, pp. 329-340, Oct. 2006.

K. Pavan Srinath and B. Sundar Rajan, “High-Rate, 2u@rd/L-
Decodable STBCs fo2™ Transmit Antennas,” Proceedings of IEEE
International Symposium on Information Theory, (ISIT 2p0Seoul,
South Korea, June 28- July 03, 2009, pp. 2008-2012.

STBCs from Division Algebras [34]. In this paper we only

8y

obtain its application to codes with Pauli weight matrices.
Further the relationship between the presented clasg- of
group decodable designs and those obtainable from Extendﬁg]
Clifford Algebras remains to be explored.
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such that for any € Zg, x -+ x Zg,, The above polynomial equation is not identically zero
i.e., hyw(z) € C[z]\ {0}. This can be shown by con-

pr—1((ur,uz, ... un)) = (ur,uz, - .. Un—1) sidering two cases
The proof is by induction o), ;. First we show that the a) Whenp, (u) # pn(v), we haveh, ,(an+1[tn+1])
theorem is true forQ,.; = 1. Then the induction step is n
proved' = d6t n+1 Z a; U’L i anJrl[unJrl]AnJrl)
Let Q.+1 = 1. ChooseA,,+1 = {a,+1[0]} wherea,,11[0] i1
is any element ofR. Let u,v € Zg, X --- X Zq, x Z; and = det(Cy[pn(w)] = Crlpn(v)])

u # v. Since there is only one element i; we have £0
that p,(u) # pn(v). Using this along with the hypothe-
sis thatC(X,, 41 x --- x A,) offers full-diversity we have b) Whenp, (u) = p,(v), we haveh,, ,(z)

det(Crya[u] = Cppa[v ]) n
n+1 = det(C’n+1[u] - Z a; [Uz]Az - ZAnJrl)
=det( ) (ailui]A; — a;[vi]A;)) i1
i=1 = det(an-i—l[un-i—l]An-i—l - ZAn-i—l)
n o _ N
= det(z (ai [uz]Al — a; [’Ul]Al)) - (an+1[un+1] ) det(AnJrl)
i=1 e Clz]\ {0}
= det(Cnlpn(u)] — Cnlpn(v)]) 4) u,1 =k andwv,1 # k : In this casea,1[k] € R
#0 must not be a solution of the polynomial equation
In order to prove the induction step, we assume that the — det(C - 0
theorem is true fo€),, ;1 = k with the real constellationt;, | | Juw(2) = det(Cnpa[v Z aifu —2An41) =
for some positive integek. We prove that the theorem is true =t (47)
for C?nJrl =k +1 by appending another I00imn+1[1k] eR The above polynomial equation is not identically zero
to A;, .. Thusa,1[k] must not be an element of; ;. In i.e., gu(2) € C[2] \ {0}. The proof of this is similar to
order to guarantee full diversity it must satisfy an addigb the proof in last case.
criterion which is, for anyu,v € Zg, x -~ X Zq, X Li+1  ThusC(Xpsq, A % - - x Any1) will offer full-diversity if

andu # v, det(Cpy1[u] — Cpy1[v]) # 0. There are four cases
given below. For each of these cases this criterion trazslat " 1) ] ¢ A’
into some condition om,, 11 [k]. The point to be chosen must An+1 n+1

satisfy all these criteria and must not be an elementof ;. 2) an1[k]is notaroot ofh, , (2) for anyu, v from cases,
) 3) an+1[k] is not a root ofg,, ., (z) for anyu, v from caset.
1) up+1 #k andwv, 41 # k : In this case '

Any non-zero polynomialf(z) € C[z] has only finitely
Chny1[u], Cpy1[v] € C(Xng1, AL X - x AL L) many solutions inC and hence only finitely many solutions
in R. There are only finitely many such non-zero equations
in the above criteria. Also there are only finite number of
elements inA; , ;. Thus there are |nf|n|tely many choices of
an+1[k] that can mak€ (X, 11, A1 X -+ x A,,4+1) offer full-

+1]k] satisfies all of the following conditions

Since C(Xp41, A1 X -+ X A,41) offers full-diversity
this case does not impose any conditionagn 1 [k].
2) upy1 = vpp1 = k @ Together withu # v we have

pu(u) # pu(v). Thusdet(Cp1[u] — Crpa [v]) diversity. This proves the existence of full-diversityngle
n+1 real symbol encodable codgX,,11,41 X -+ X A,41) for
= det(z (a;|ui]A; — a;|vi]4;)) Qn+1 =k + 1. Thus the induction step is provell.
=1

= det(z (a;[ui]A; — a;[vi] A;))
= det(Cy[pn(u)] — Cplpn(v)])
#0

Even this case does not impose any condition on
an_i,_l[k].

3) upt1 # k andv,1 = k : In this casea,+1[k] € R
must not be a solution of the polynomial equation

<.
=

hu,v (Z) = det n+1 Z a”L - n+1) 0
=1
(46)
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