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NEAR MDS POSET CODES AND DISTRIBUTIONS

ALEXANDER BARG AND PUNARBASU PURKAYASTHA

Abstract. We study q-ary codes with distance defined by a partial order
of the coordinates of the codewords. Maximum Distance Separable (MDS)
codes in the poset metric have been studied in a number of earlier works. We
consider codes that are close to MDS codes by the value of their minimum
distance. For such codes, we determine their weight distribution, and in the
particular case of the “ordered metric” characterize distributions of points in
the unit cube defined by the codes. We also give some constructions of codes
in the ordered Hamming space.

1. Introduction

A set of points C = {c1, . . . , cM} in the q-ary n-dimensional Hamming space
F
n
q is called a Maximum Distance Separable (MDS) code if the Hamming distance

between any two distinct points of C satisfies d(ci, cj) ≥ d and the number of points
is M = qn−d+1. By the well-known Singleton bound of coding theory, this is the
maximum possible number of points with the given separation. If C is an MDS
code that forms an Fq-linear space, then its dimension k, distance d and length n
satisfy the relation d = n − k + 1. MDS codes are known to be linked to classical
old problems in finite geometry and to a number of other combinatorial questions
related to the Hamming space [19, 1]. At the same time, the length of MDS codes
cannot be very large; in particular, in all the known cases, n ≤ q+2. This restriction
has led to the study of classes of codes with distance properties close to MDS codes,
such as t-th rank MDS codes [22], near MDS codes [6] and almost MDS codes [5].
The distance of these codes is only slightly less than n − k + 1, and at the same
time they still have many of the structural properties associated with MDS codes.

In this paper we extend the study of linear near MDS (NMDS) codes to the case
of the ordered Hamming space and more generally, to poset metrics. The ordered
Hamming weight was introduced by Niederreiter [16] for the purpose of studying
uniform distributions of points in the unit cube. The ordered Hamming space in the
context of coding theory was first considered by Rosenbloom and Tsfasman [18] for a
study of one generalization of Reed-Solomon codes (the ordered distance is therefore
sometimes called the NRT distance). The ordered Hamming space and the NRT
metric have multiple applications in coding theory including a generalization of the
Fourier transform over finite fields [10, 14], list decoding of algebraic codes [17], and
coding for a fading channel of special structure [18, 9]. This space also gives rise
to a range of combinatorial problems. In the context of algebraic combinatorics, it
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supports a formally self-dual association scheme whose eigenvalues form a family
of multivariate discrete orthogonal polynomials [13, 3, 2].

A particular class of distributions in the unit cube Un = [0, 1)n, called (t,m, n)-
nets, defined by Niederreiter in the course of his studies, presently forms the subject
of a large body of literature. MDS codes in the ordered Hamming space and their
relations to distributions and (t,m, n)-nets have been extensively studied [18, 20,
7, 11]. The ordered Hamming space was further generalized by Brualdi et al. in
[4] which introduced metrics on strings defined by arbitrary partially ordered sets,
calling them poset metrics.

The relation between MDS and NMDS codes in the ordered metric and distri-
butions is the main motivation of the present study. As was observed by Skriganov
[20], MDS codes correspond to optimal uniform distributions of points in the unit
cube. The notion of uniformity is rather intuitive: an allocation of M points forms
a uniform distribution if every measurable subset A ⊂ Un contains a vol(A) pro-
portion of the M points (in distributions that arise from codes, this property is
approximated by requiring that it hold only for some fixed collection of subsets).
Skriganov [20] observes that distributions that arise from MDS codes are optimal in
some well-defined sense. In the same way, NMDS codes correspond to distributions
that are not far from optimal (they are characterized exactly below). Although the
primary motivation is to study NMDS codes in the ordered metric, the calculations
are easily generalized to the poset metric. We will hence derive the results in the
general case of the poset metric, and mention the results in the ordered metric as
specific cases.

The rest of the article is organized as follows. In the next section we provide
basic definitions and some properties of near-MDS codes. We will also have a chance
to discuss generalized Hamming weights of Wei [22] in the poset metric case. In
Section 3 we show a relationship between distribution of points in the unit cube
and NMDS codes. In Section 4 we determine the weight distribution of NMDS
codes, and finally in Section 5, we provide some constructions of NMDS codes in
the ordered Hamming space.

2. Definitions and basic properties

2-A. Poset metrics. We begin with defining poset metrics on q-ary strings of a
fixed length and introduce the ordered Hamming metric as a special case of the
general definition. Entries of a string x = (x1, x2, . . . ) are indexed by a finite set

N which we call the set of coordinates. Let
−→
P be an arbitrary partial order (≤)

on N. Together N and
−→
P form a poset. An ideal of the poset is a subset I ⊂ N

that is “downward closed” under the ≤ relation, which means that the conditions
i, j ∈ N , j ∈ I and i ≤ j imply that i ∈ I. For the reasons that will become clear
below, such ideals will be called left-adjusted (l.a.).

A chain is a linearly ordered subset of the poset. The dual poset
←−
P is the set

N with the same set of chains as
−→
P , but the order within each of them reversed.

In other words j ≤ i in
←−
P if and only if i ≤ j in

−→
P . An ideal in the dual poset

will be termed right-adjusted (r.a.). For a subset S ⊆
−→
P we denote by 〈S〉 = 〈S〉−→

P

the smallest
−→
P -ideal containing the set S (we write S ⊆

−→
P to refer to a subset

S ⊆ N whose elements are ordered according to
−→
P ). The support of a sequence x

is the subset suppx ⊆ N formed by the indices of all the nonzero entries of x. The



NEAR MDS POSET CODES AND DISTRIBUTIONS 3

set 〈supp x〉 ⊆
−→
P will be called the l.a. support of x. The r.a. support is defined

analogously.

Definition 2.1. (Brualdi et al. [4]) Let
−→
P be a poset defined on N and let x, y ∈

F
|N |
q be two strings. Define the weight of x with respect to

−→
P as w(x) = |〈supp x〉|,

i.e., the size of the smallest
−→
P -ideal that contains the support of x. The distance

between x and y is defined as d−→
P
(x, y) = w(x − y) = |〈supp(x− y)〉|.

A code C of minimum distance d is a subset of F
|N |
q such that any two distinct

vectors x and y of C satisfy d−→
P
(x, y) ≥ d. It is similarly possible to consider codes

whose distance is measured relative to
←−
P . In this paper we will be concerned with

linear codes over a finite field by which we mean linear subspaces of F
|N |
q . Given a

linear code C ⊂ F
|N |
q its dual code C⊥ is the set of vectors {y ∈ F

|N |
q : ∀x∈C

∑

i xiyi =
0}. The weights in the dual code C⊥ are considered with respect to the dual poset
←−
P .

A subset of F
|N |
q is called an orthogonal array of strength t and index θ with

respect to
−→
P if any t l.a. columns contain any vector z ∈ F

t
q exactly θ times. In

particular, the dual of a linear poset code is also a linear orthogonal array.

For instance, the Hamming metric is defined by the partial order
−→
P which is a

single antichain of length n = |N | (no two elements are comparable). Accordingly,
the distance between two sequences is given by the number of coordinates in which

they differ. In this case,
−→
P =

←−
P .

2-B. Ordered Hamming metric. The ordered Hamming metric is defined by a

poset
−→
P which is a disjoint union of n chains of equal length r. Since we work with

this metric in later sections of the paper, let us discuss it in more detail. In this
case N is a union of n blocks of length r, and it is convenient to write a vector
(sequence) as x = (x11, . . . , x1r, . . . , xn1, . . . , xnr) ∈ F

r,n
q . According to Definition

2.1, the weight of x is given by

w(x) =

n
∑

i=1

max(j : xij 6= 0).

For a given vector x let ei, i = 1, . . . , r be the number of r-blocks of x whose
rightmost nonzero entry is in the ith position counting from the beginning of the
block. The r-vector e = (e1, . . . , er) will be called the shape of x. For brevity we
will write

|e| =
∑

i

ei, |e|′ =
∑

i

iei, e0 = n− |e|.

For I = 〈supp x〉 we will denote the shape of the ideal I as shape(I)= e. By analogy
with the properties of ideals in the ordered Hamming space, we use the term “left

adjusted” for ideals in general posets
−→
P .

An (nr,M, d) ordered code C ⊂ F
r,n
q is an arbitrary subset of M vectors in F

r,n
q

such that the ordered distance between any two distinct vectors in C is at least
d. If C is a linear code of dimension k over Fq and minimum ordered distance d,
we will denote it as an [nr, k, d] code. The dual of C, denoted as C⊥, is defined as
C⊥ = {x ∈ F

r,n
q : ∀c∈C

∑

i,j xijcij = 0}. The distance in C⊥ is derived from the

dual order
←−
P , i.e., from the r.a. ideals.



4 ALEXANDER BARG AND PUNARBASU PURKAYASTHA

The notion of orthogonal arrays in the ordered Hamming space is derived from
the general definition. They will be called ordered orthogonal arrays (OOAs) below.
We write (t, n, r, q) OOA for an orthogonal array of strength t in F

r,n
q . Combinatorics

of the ordered Hamming space and the duality between codes and OOAs was studied
in detail by Martin and Stinson [13], Skriganov [20], and the present authors [2].

2-C. NMDS poset codes. We begin our study of NMDS codes in the poset
space with several definitions that are generalized directly from the corresponding
definitions in the Hamming space [22, 6]. The t-th generalized poset weight of a
linear [n, k] code C is defined as

dt(C) , min{|〈suppD〉| : D is an [n, t] subcode of C},

where suppD is the union of the supports of all the vectors in D. Note that
d1(C) = d, the minimum distance of the code C. Generalized poset weights have
properties analogous to the well-known set of properties of generalized Hamming
weights.

Lemma 2.2. Let C be a linear [n, k] poset code in F
n
q . Then

(1) 0 < d1(C) < d2(C) < · · · < dk(C) ≤ n.
(2) Generalized Singleton bound: dt(C) ≤ n− dim(C) + t, ∀t ≥ 1.
(3) If C⊥ is the dual code of C then

{d1(C), d2(C), . . . , dk(C)} ∪ (n+ 1− {d1(C
⊥), d2(C

⊥), . . . , dn−k(C
⊥)}) = {1, . . . , n}.

(4) Let H be the parity check matrix of C. Then dt(C) = δ if and only if

(a) Every δ − 1 l.a. columns of H have rank at least δ − t.
(b) There exist δ l.a. columns of H with rank exactly δ − t.

Proof. (1) Let Dt ⊆ C be a linear subspace such that |〈suppDt〉| = dt(C) and
rank(Dt) = t, t ≥ 1. Let Ω(Dt) denote the maximal elements of the ideal 〈suppDt〉.
For each coordinate in Ω(Dt), Dt has at least one vector with a nonzero component
in that coordinate. We pick i ∈ Ω(Dt) and let Di

t be obtained by retaining only
those vectors v in Dt which have vi = 0. Then

dt−1(C) ≤ |〈suppD
i
t〉| ≤ dt(C)− 1.

(2) This is a consequence of the fact that dt+1 ≥ dt + 1 and dk ≤ n.
(3) This proof is analogous to [22]. The reason for giving it here is to assure

oneself that no complications arise from the fact that the weights in C⊥ are measured
with respect to the dual poset.

We show that for any 1 ≤ s ≤ n− k − 1,

n+ 1− ds(C
⊥) /∈ {dr(C) : 1 ≤ r ≤ k}.

Let t = k + s− ds(C
⊥). We consider two cases (one of which can be void), namely,

r ≤ t and r ≥ t+ 1 and show that for each of them, n+ 1− ds(C
⊥) 6= dr(C).

Take an s-dimensional subcode Ds ⊆ C
⊥ such that |〈suppDs〉←−

P
| = ds(C

⊥). Form
a parity-check matrix of the code C whose first rows are some s linearly independent
vectors from Ds. Let D be the complement of 〈suppDs〉 in the set of coordinates.
Let the submatrix of H formed of all the columns in D be denoted by H [D]. The
rank of H [D] is at most n − k − s and its corank (dimension of the null space) is
at least

|D| − (n− k − s) = n− ds(C
⊥)− n+ k + s = k + s− ds(C

⊥).
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Then dt(C) ≤ |D| = n− ds(C
⊥) and so dr(C) ≤ n− ds(C

⊥), 1 ≤ r ≤ t.
Now let us show that dt+i(C) 6= n + 1 − ds(C

⊥) for all 1 ≤ i ≤ k − t. Assume
the contrary and consider a generator matrix G of C with the first t + i rows
corresponding to the subcode Dt+i ⊆ C with |〈suppDt+i〉−→

P
| = dt+i(C). Let D be

the complement of 〈suppDt+i〉 in the set of coordinates. Then G[D] is a k × (n−
dt+i(C)) matrix of rank k− t− i. By part (2) of the lemma, n− dt+i(C) ≥ k− t− i,
so

dimker(G[D]) ≥ n− dt+i(C)− k + t+ i

= s+ i − (ds(C
⊥) + n− dt+i(C))

= s+ i − 1,

where the first equality follows on substituting the value of k and the second one
by using the assumption. Hence ds+i−1(C

⊥) ≤ |D| = ds(C
⊥)− 1, which contradicts

part (1) of the lemma.
(4) Follows by standard linear-algebraic arguments.

Definition 2.3. A linear code C[n, k, d] is called NMDS if d(C) = n − k and
d2(C) = n− k + 2.

Closely related is the notion of almost-MDS code where we have only the con-
straint that d(C) = n−k and there is no constraint on d2(C). In this work, we focus
only on NMDS codes. The next set of properties of NMDS codes can be readily
obtained as generalizations of the corresponding properties of NMDS codes in the
Hamming space [6].

Lemma 2.4. Let C ⊆ F
n
q be a linear [n, k, d] code in the poset

−→
P .

(1) C is NMDS if and only if

(a) Any n − k − 1 l.a. columns of the parity check matrix H are linearly

independent.

(b) There exist n− k l.a. linearly dependent columns of H.

(c) Any l.a. n− k + 1 columns of H are full ranked.

(2) If C is NMDS, so is its dual C⊥.

(3) C is NMDS if and only if d(C) + d(C⊥) = n.
(4) If C is NMDS then there exists an NMDS code with parameters [n− 1, k−

1, d] and an NMDS code with parameters [n− 1, k, d].

Proof. (1) Parts (a) and (b) are immediate. Part (c) is obtained from Lemma 2.2.
(2) From Lemma 2.2 we obtain

{n+ 1− dt(C
⊥), 1 ≤ t ≤ n− k} = {1, . . . , n− k − 1, n− k + 1}.

Hence d(C⊥) = k and d2(C
⊥) = k + 2.

(3) Let d(C) + d(C⊥) = n. Then

d2(C
⊥) ≥ d(C⊥) + 1 = n− d(C) + 1,

but then by Lemma 2.2(3), d2(C
⊥) ≥ n− d(C) + 2. Next,

n ≥ dn−k(C
⊥) ≥ d2(C

⊥) + n− k − 2 ≥ 2n− k − d,

which implies that d ≥ n− k. This leaves us with the possibilities of d = n− k or
n − k + 1, but the latter would imply that d(C) + d(C⊥) = n + 2, so d = n − k.
Further, d2(C) ≥ n−d(C⊥)+2 = n−k+2, as required. The converse is immediate.
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(4) To get a [n − 1, k − 1, d] NMDS code, delete a column of the parity check
matrix H of C preserving a set of n− k l.a. linearly dependent columns. To get a
[n− 1, k, d] NMDS code, delete a column of the generator matrix G of C preserving
a set of k + 1 r.a. columns which contains k r.a. linearly dependent columns.

Lemma 2.5. Let C be a linear poset code in
−→
P with distance d and let C⊥ be

its dual code. Then the matrix M whose rows are the codewords of C⊥ forms an

orthogonal array of strength d− 1 with respect to
−→
P .

Proof. Follows because (1), C⊥ is the linear span of the parity-check matrix H of
C; and (2), any d− 1 l.a. columns of H are linearly independent.

3. NMDS codes and distributions

In this section we prove a characterization of NMDS poset codes and then use
this result to establish a relationship between NMDS codes in the ordered Hamming
space F

r,n
q and uniform distributions of points in the unit cube Un. In our study

of NMDS codes in the following sections, we analyze the properties of the code
simultaneously as a linear code and as a linear orthogonal array.

Define the I-neighborhood of a poset code C with respect to an ideal I as

BI(C) =
⋃

c∈C

BI(c),

where BI(x) = {v ∈ F
n
q : supp(v − x) ⊆ I}. We will say that a linear k-dimensional

code C forms an I-tiling if there exists a partition C = C1 ∪ · · · ∪ Cqk−1 into equal
parts such that the I-neighborhoods of its parts are disjoint. If in addition the
I-neighborhoods form a partition of Fn

q , we say C forms a perfect I-tiling.

Theorem 3.1. Let C ⊆ F
n
q be an [n, k, d] linear code in the poset

−→
P . C is NMDS

if and only if

(1) For any I ⊂
−→
P , |I| = n− k + 1, the code C forms a perfect I-tiling.

(2) There exists an ideal I ⊂
−→
P , |I| = n − k with respect to which C forms an

I-tiling. No smaller-sized ideals with this property exist.

Proof. Let C be NMDS and let I be an ideal of size n − k + 1. Let H [I] be the
submatrix of the parity-check matrix H of C obtained from H by deleting all the
columns not in I. Since rk(H [I]) = n− k, the space ker(H [I]) is one-dimensional.
Let C1 = ker(H(I)) and let Cj be the jth coset of C1 in C, j = 2, . . . , qk−1. By
Lemma 2.5 the code C forms an orthogonal array of strength k − 1 and index q in
←−
P . Therefore, every vector z ∈ F

k−1
q appears exactly q times in the restrictions of

the codevectors c ∈ C to the coordinates of J = Ic. Thus, c′[J ] = c′′[J ] for any
two vectors c′, c′′ ∈ Ci, i = 1, . . . , qk−1 and c′[J ] 6= c′′[J ] c′ ∈ Ci, c

′′ ∈ Cj , 1 ≤ i <
j ≤ qk−1. This implies that C forms a perfect I-tiling, which proves assumption 1
of the theorem. To prove assumption 2, repeat the above argument taking I to be
the support of a minimum-weight codeword in C.

To prove the converse, let I ⊆
−→
P , |I| = n−k+1 be an ideal and let C1, . . . ,Cqk−1

be a partition of C with |Ci| = q for all i, that forms a perfect I−tiling. This implies
that c′[Ic] 6= c′′[Ic], c′ ∈ Ci, c

′′ ∈ Cj , 1 ≤ i < j ≤ qk−1. In other words, C forms an

orthogonal array with respect to
←−
P of index q and strength k−1. We conclude that
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d(C⊥) = k or k + 1. If it is the latter, then C⊥ is MDS with respect to
←−
P and so is

C with respect to
−→
P , in violation of assumption 2. So d(C⊥) = k and d(C) ≤ n− k.

If the inequality is strict, there exists an ideal I of size < n−k that supports a one-
dimensional subcode of C. Then C forms an I-tiling which contradicts assumption
2.

It remains to prove that d2(C) = n− k+2. Assume the contrary, i.e., that there

exists a 2-dimensional subcode B ⊂ C whose l.a. support forms an ideal I ⊂
−→
P of

size n − k + 1. The q2 vectors of B all have zeros in Ic which contradicts the fact
that C forms an orthogonal array of index q.

Next, we use this characterization to relate codes in the ordered Hamming space
F
r,n
q to distributions. An idealized uniformly distributed point set C would satisfy

the property that for any measurable subset A ⊂ Un,

1

|C|

∑

x∈C

1(x ∈ A) = vol(A).

Distributions that we consider, and in particular (t,m, n)-nets, approximate this
property by restricting the subsets A to be boxes with sides parallel to the coordi-
nate axes.

Let

E ,

{

E =

n
∏

i=1

[

ai
qdi

,
ai + 1

qdi

)

: 0 ≤ ai < qdi , 0 ≤ di ≤ r, 1 ≤ i ≤ n

}

be a collection of elementary intervals in the unit cube Un = [0, 1)n. An arbitrary
collection of qk points in Un is called an [nr, k] distribution in the base q (with
respect to E). A distribution is called optimal if every elementary interval of volume
q−k contains exactly one point [20]. A related notion of (t,m, n)-nets, introduced
by Niederreiter [16], is obtained if we remove the upper bound on li (i.e., allow that
0 ≤ li < ∞) and require that every elementary interval of volume qt−m contain
exactly qt points.

An ordered code gives rise to a distribution of points in the unit cube via the
following procedure. A codevector (c11, . . . , c1r, . . . , cn1, . . . , cnr) ∈ F

r,n
q is mapped

to x = (x1, . . . , xn) ∈ Un by letting

(3.1) xi =

r
∑

j=1

cijq
j−r−1, 1 ≤ i ≤ n.

In particular, an (m − t, n, r, q) OOA of index qt and size qm corresponds to a
distribution in which every elementary interval of volume qt−m contains exactly
qt points, and an (m − t, n,m − t, q) OOA of index qt and size qm gives rise to a
(t,m, n)-net [12, 15].

Proposition 3.2. (Skriganov [20]) An [nr, k, d] MDS code in the ordered metric

exists if and only if there exists an optimal [nr, k] distribution.

Skriganov [21] also considers the concept of nearly-MDS codes whose distance
asymptotically tends to the distance of MDS codes, and shows how these codes can
give rise to distributions.

The next theorem whose proof is immediate from Theorem 3.1 relates ordered
NMDS codes and distributions.
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Theorem 3.3. Let C be a linear [nr, k, d] code in F
r,n
q and let P (C) be the corre-

sponding set of points in Un. Then C is NMDS if and only if

(1) Any elementary interval of volume q−(k−1) has exactly q points of P (C).
(2) There exists an elementary interval

∏n

i=1

[

0, q−li
)

of volume q−k containing

exactly q points and no smaller elementary intervals of this form containing

exactly q points exist.

Corollary 3.4. An [nr, k, d] NMDS code C in the ordered Hamming space forms a

(k− 1, n, r, q) OOA of index q. The corresponding distribution P (C) ⊂ Un forms a

(k − r, k, n)-net for k − 1 ≥ r.

Remark 3.5. Distributions of points in the unit cube obtained from NMDS codes
have properties similar to those of distributions obtained from MDS codes. In
particular, the points obtained from an [nr, k, d] MDS code in F

r,n
q satisfy part (1)

of Theorem 3.3 and give rise to a (k − r, k, n)-net for k ≥ r [20].

4. Weight distribution of NMDS codes

Let Ω(I) be the set of maximal elements of an ideal I and let Ĩ , I \ Ω(I).

Let C be an NMDS [n, k, d] linear poset code. Let AI , {x ∈ C : 〈supp x〉 = I}
be the number of codewords with l.a. support exactly I and let As =

∑

I:|I|=sAI .

Theorem 4.1. The weight distribution of C has the following form:

(4.1) As =
∑

I∈Is

s−d−1
∑

l=0

(−1)l
(

|Ω(I)|

l

)

(qs−d−l − 1) + (−1)s−d
∑

I∈Is

∑

J∈Id(I),J⊇Ĩ

AJ ,

n ≥ s ≥ d,

where Is , {I ⊆
−→
P : |I| = s} and Is(I) , {J : J ⊆ I, |J | = s}.

Proof. The computation below is driven by the fact that ideals are fixed by
the sets of their maximal elements. Additionally, we use the fact that any k − 1
r.a. coordinates of the code C support an orthogonal array of strength k − 1.

The number of codewords of weight s is given by As = | ∪I∈Is C ∩ SI |, where

SI , {x ∈ F
n
q : 〈suppx〉 = I} is the sphere with l.a. support exactly I. The above

expression can be written as
∣

∣

∣

⋃

I∈Is

C ∩ SI

∣

∣

∣
=
∑

I∈Is

(

|C ∩B∗I | −
∣

∣

⋃

J∈Is−1(I)

C ∩B∗J
∣

∣

)

,

where BI , {x ∈ F
n
q : 〈supp x〉−→

P
⊆ I} and B∗I , BI \ 0. We determine the

cardinality of the last term using the inclusion-exclusion principle.

(4.2)
∣

∣

∣

⋃

J∈Is−1(I)

C ∩B∗J

∣

∣

∣ =
∑

J∈Is−1(I)

|C ∩B∗J | −
∑

J1 6=J2∈Is−1(I)

|C ∩B∗J1
∩B∗J2

|+ · · ·

+ (−1)|Ω(I)|−1
∑

J1 6=···6=J|Ω(I)|∈Is−1(I)

∣

∣

∣

∣

C ∩
(

⋂

i

B∗Ji

)

∣

∣

∣

∣

.

Since C⊥ has minimum distance k, C forms an orthogonal array of strength k − 1

with respect to the dual poset
←−
P . This provides us with an estimate for each

individual term in (4.2) as described below. For distinct J1, . . . , Jl ∈ Is−1(I), we
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let J , ∩li=1Ji. Using the fact that J does not contain l maximal elements of I, we
get

∣

∣

∣

{

{J1, . . . , Jl} : Ji distinct, Ji ∈ Is−1(I), i = 1, . . . , l
}∣

∣

∣ =

(

|Ω(I)|

l

)

.

For any s ≥ d + 1 consider the complement Ic of an ideal I ∈ Is. Since |Ic| ≤
n− d− 1 = k − 1, the code C supports an orthogonal array of strength n− s and
index qs−d in the coordinates defined by Ic. Since ∩li=1B

∗
Ji

= B∗J and since B∗J does
not contain the 0 vector, we obtain

∣

∣

∣C ∩
(

l
⋂

i=1

B∗Ji

)

∣

∣

∣ = qs−d−l − 1, 1 ≤ l ≤ s− d− 1.

Finally, for l = s− d we obtain |C ∩ (∩li=1B
∗
Ji
)| = AJ , and

∣

∣

∣

∣

⋃

J∈Is−1(I)

C∩B∗J

∣

∣

∣

∣

=
s−d−1
∑

l=1

(−1)l−1
(

|Ω(I)|

l

)

(qs−d−l− 1)+
∑

J∈Id(I),J⊇Ĩ

(−1)s−d−1AJ ,

which implies

∑

I∈Is

|C ∩ SI | =
∑

I∈Is

(

(qs−d − 1)−

( s−d−1
∑

l=1

(−1)l−1
(

|Ω(I)|

l

)

(qs−d−l − 1)

+
∑

J∈Id(I),J⊇Ĩ

(−1)s−d−1AJ

)

)

.

As a corollary of the above theorem, we obtain the weight distribution of NMDS
codes in the ordered Hamming space F

r,n
q . By definition, the number of vectors

of ordered weight s in a code C ∈ F
r,n
q equals As =

∑

e:|e|′=s Ae, where Ae is the

number of codevectors of shape e.

Corollary 4.2. The weight distribution of an ordered NMDS code C ∈ F
r,n
q is given

by

(4.3) As =

s−d−1
∑

l=0

(−1)l





∑

e:|e|′=s

(

|e|

l

)(

n

e0, . . . , er

)



 (qs−d−l − 1)+

+ (−1)s−d
∑

e:|e|′=d

Ns(e)Ae, s = d, d+ 1, . . . , n,

where

Ns(e) ,
∑

f :|f |′=s

(

er−1
fr − er

)(

er−2
(fr + fr−1)− (er + er−1)

)

· · ·

(

e0
|f | − |e|

)

.

Proof. Recall that the shape of an ideal I is shape(I) = e = (e1, . . . , er), where
ej, j = 1, . . . , r is the number of chains of length j contained in I. We obtain
|Ω(I)| = |e| and

∑

I∈Is

(

|Ω(I)|

l

)

=
∑

e:|e|′=s

(

|e|

l

)(

n

e0, . . . , er

)

.
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Figure 1. To the proof of Corollary 4.2

To determine the last term in (4.1), we rewrite it as
∑

I∈Is

∑

J∈Id(I),J⊇Ĩ

AJ =
∑

J∈Id

|{I ∈ Is : Ĩ ⊆ J ⊆ I}|AJ

=
∑

e:|e|′=d

Ns(e)
∑

J:shape(J)=e

AJ ,

where Ns(e) = |{I ∈ Is : Ĩ ⊆ J ⊆ I, J fixed, shape(J) = e}|.
Clearly,

∑

J:shape(J)=eAJ = Ae, and so we only need to determine the quantity

Ns(e) in the above summation. Let J be an ideal as shown in Fig. 1. The ideals
I which satisfy the constraints in the set defined by Ns(e) have the form as shown
in Fig. 1. Letting f = shape(I), we note that the components of the shape f must
satisfy

fr ≥ er,

fr + fr−1 ≥ er + er−1 ≥ fr,

...

f1 + · · ·+ fr = |f | ≥ |e| = e1 + · · ·+ er ≥ f2 + · · ·+ fs,

and |f |′ = s.

It is now readily seen that the cardinality of the set

{I ∈ Is : Ĩ ⊆ J ⊆ I, J fixed, shape(J) = e}

is given by the formula for Ns(e) as described in (4.3).

Remark: For r = 1 we obtain |e| = |e|′ = e1 = d, |f | = f1 = s and Ns(e) =
(

n−d
s−d

)

. Thus we recover the expression for the weight distribution of an NMDS code

in Hamming space [6]:

(4.4) As =

s−d−1
∑

l=0

(−1)l
(

s

l

)(

n

s

)

(qs−d−l − 1) + (−1)s−d
(

n− d

s− d

)

Ad.
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Unlike the case of poset MDS codes [11], the weight distribution of NMDS codes
is not completely known until we know the number of codewords with l.a. support
J for every ideal of weight J of size d. In particular, for NMDS codes in the ordered
Hamming space we need to know the number of codewords of every shape e with
|e|′ = d. This highlights the fact that the combinatorics of codes in the poset space
(ordered space) is driven by ideals (shapes) and their support sizes, and that the
weight distribution is a derivative invariant of those more fundamental quantities.

As a final remark we observe that, given that d(C) = n − k, the assumption
d(C⊥) = k (or the equivalent assumption d2(C) = n− k + 2) ensures that the only
unknown components of the weight distribution of C correspond to ideals of size d.
If instead we consider a code of defect s, i.e., a code with d(C) = (n−k+1)−s, s ≥ 2,
it will be possible to compute its weight distribution using the components AJ , d ≤
|J | ≤ n−d(C⊥) (provided that we know d(C⊥)). In the case of the Hamming metric
this was established in [8].

5. Constructions of NMDS codes

In this section we present some simple constructions of NMDS codes in the
ordered Hamming space for the cases n = 1, 2, 3. We are not aware of any general
code family of NMDS codes for larger n.

n=1: For n = 1 the construction is quite immediate once we recognize that
an NMDS [r, k, d] code is also an OOA of r.a. strength k − 1 and index q. Let Il
denote the identity matrix of size l. Let x = (x1, . . . , xr) be any vector of l.a. weight
d = r − k, i.e. xd 6= 0 and xl = 0, l = d + 1, . . . , r. Then the following matrix of
size k × r generates an NMDS code with the above parameters

(5.1)

[

x1 . . . xd 0 0

M 0 Ik−1

]

,

where the 0s are zero vectors (matrices) of appropriate dimensions and M ∈

F
(k−1)×d
q is any arbitrary matrix.

n=2: Let Dl =

[

0 ... 1
.
.. . .

. .
..

1 ... 0

]

be the l× l matrix with 1 along the inverse diagonal

and 0 elsewhere. Let u and v be two vectors of length r in F
r,1
q and l.a. weights

r− k1 and r− k2 respectively and let K = k1 + k2. The following matrix generates
a [2r,K, 2r −K] linear NMDS code in F

r,2
q ,









u1 . . . ur−k1−1 ur−k1 0 0 v1 . . . vr−k2−1 vr−k2 0 0

0 0 1 0 0 0 1 0
0 0 0 Ik1−1 Er(k1, k2) 0 0 0

Er(k2, k1) 0 0 0 0 0 0 Ik2−1









,

where Er(i, j) is an (i − 1)× (r − j − 1) matrix which has the following form:

Er(i, j) =























[

Dr−j−1

0(i+j−r)×(r−j−1)

]

, i+ j > r,

[

0(i−1)×(r−i−j) Di−1

]

, i+ j ≤ r.

From the form of the generator matrix it can be seen that any K − 1 r.a. columns
of the above matrix are linearly independent. But the last k1 and k2 columns from
the first and the second blocks respectively are linearly dependent. This implies
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that it forms an OOA of r.a. strength exactly K−1. Hence the dual of the code has
distance K. Finally, the minimum weight of any vector produced by this generator
matrix is 2r −K. Hence by Lemma 2.4, this matrix generates an NMDS code.

n=3: For n = 3, we have an NMDS code with very specific parameters. Let
u, v, w ∈ F

r,1
q be three vectors of l.a. weight r − 2 each. Then the matrix shown

below is the generator matrix of a [3r, 6, d] code in base q ≥ 3. It is formed of three
blocks, corresponding to the three dimensions given by n. Here 0 is a 1 × (r − 6)
zero vector.

















u1 . . . ur−6 ur−5 ur−4 ur−3 ur−2 0 0
0 0 0 0 0 1 0
0 0 1 0 0 1 0
0 1 0 0 0 0 1
0 0 1 0 0 0 1
0 0 0 1 0 0 0

































v1 . . . vr−6 vr−5 vr−4 vr−3 vr−2 0 0
0 0 0 0 0 1 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 1
0 1 0 0 0 0 1

































w1 . . . wr−6 wr−5 wr−4 wr−3 wr−2 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0
0 0 1 0 0 0 1
0 0 0 1 0 0 0
0 1 0 0 0 0 1

















.
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