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Abstract—In this paper, we consider the capacityC of the introduced in [4] also allowed analysis of the asymptotic as
binary deletion channel for the limiting case where the delgon 4 — 0; this work gave the best previous bound@f> 1 —

probability p goes to 0. It is known that for any p < 1/2, the ; ;
capacity satisfiesC' > 1 — H(p), where H is the standard binary 4#9]0 asp — O't.ollurtyvﬂikl; basdeq (:E a dlf‘_ferent technique,
entropy. We show that this lower bound is essentially tightm ©'erS an essentially ught bound in this regime.

the limit, by providing an upper bound C < 1— (1 —o(1))H (p), After this paper had orginally been submitted, a preprint by
where the o(1) term is understood to be vanishing ag» goes to Kanoria and Montanari was posted online [6], proving a ftesul
0. Our proof utilizes a natural counting argument that should  analogous to ours, in that they also show that the capaaity fo
prove helpful in analyzing related channels. the deletion channel has an upper boundof- o(1))H (p)

|. INTRODUCTION in the regime asp goes to 0. In private communication,
htgle authors also have explained that a weaker upper bound
of 1 + (3/4)plog,p + o(plog,p) can be derived from the

sender has an input ef bits, each of which is independently :
deleted by the channel with a fixed probabilitythe receiver framework provided by [2]. The proof of [6] makes use of an
entirely different approach to ours, and both should previd

obtains? < n bits, without error and in the order in which they " . . :
were sent. For example, if 10101010 was sent, the receiveEW insights in how to push forvyard on studying deletion
wold obtain 10011 if the third, sixth, and eight bits Werghannels and related synchronization channels.

deleted. The deletion channel, while simple to describs, ha Il. PROOF OF THEUPPERBOUND

proven remarkably challenging to analyze. Indeed, unlie t 5, proplem Statement and Notation

standard binary erasure and error channels, there is ayet
known closed form for the capacity of the binary deletiog
channel as a function gf, or even a computationally efficient
method for numerically calculating the capacity to a give
precision. See the survey [7] for more background.

In this paper we consider bounds on the capacity of t
deletion channel in the regime whepe— 0. There has long
been known a lower bound on the capacitylof H(p) for
p < 1/2, whereH is the standard binary entropy [1], [5], [10].

In this paper, we show that this lower bound is essentiallpink of a deletion patternl as an increasing subsequence of

tight in the limit, by providing an upper bourd < 1 — (1 — V7\1/ j {1’t2’a‘d' ‘I’ 7;”_}’ rep{tesr(?ontin%_ vythic_:h bits _aneot deleted. f
o(1))H (p), where theo(1) term is understood to be vanishing < genote aieletion patieriby a finite Increasing sequence o
ve integersA = aq, a9, ..., a,. The length of sequence

asp goes to 0. This result helps characterize the interestiHBS'tI i -
behavior of the deletion channel. Recent work has shown tfa en(A) = / and the number of.deletmnsqs: n—#{. The
in the regime where — 1, the deletion channel is “like” an set of deletion patterns of lengthis denoted by
erasure channel, in that the capacity can be bounded between p, ,, = {ay,az,...,a0 € [n] | a1 < az < ... < as}.
c1(1—p) andey(1—p) for appropriate constants, co < 1 [2],
[4], [8]. Here, we show that ags — 0 the deletion channel is
like a binary symmetric error channel, in terms of its capaci
in a much stronger sense. . -
Upper bounds for the binary deletion channel have onf{°S€n With probab|I|13(1n—p o
recently become the subject of study. The first upper bound or a stringX' € {0, _1} » Xa repres_ents the_ transmission
specifically for this channel were considered in [2], whittpa 0 X through a deletion channel with deletion pattedn

considered the asmyptotic regimeras- 1. Further techniques in the obV|9us_ way: theith bit Of, transm|§3|on 'SX‘“'_
Two transmissionsX 4 and Yp are identical if and only if

1Several works usé in place ofp for the deletion probability. Xa, = Y, for all i < len(A) = len(B). The model of

The binary deletion channel is modeled as follows: t

nThe capacityC' of the deletion channel, where each bit is
eleted with some fixed probabilify< 1/2, satisfies” > 1—

(p). Our goal is to show that this lower bound is essentially
tight in the limit wherep — 0. Specifically, we wish to show
o< 1—(1—o0(1))H(p), where theo(1) is understood to be
a term that is vanishing gs goes to 0.

We will consider codebook§ C {0,1}" consisting of
messages ofi bits and will be of sizeN = |C|. We may

The set of all patterns i®, = U?:o P,,,. Forp € (0,1), the
deletion channel can be thought of as choosing a pattern from

P, according to a distribution,, ,,, where each patterd is
)lcn(A)pnflcn(A)_



transmission is that a codewoid € C is chosen uniformly wherea is given by
at random, a patterd € P, is chosen according tg,, ,,,
and thenZ 4 is received. The decoding algorithm attempts to
recoverZ. Without loss of generality, we may assume that it
is deterministic, i.e., and say it computes a functi®rfrom
the set of received word to codewords. Buecess probability ~ While thelg o term in Theorem 11.2 is somewhat difficult,
is Pryz a[R(Z4) = Z]. some manipulation gives that when= pn, the result yields
Letlg(x) denote the logarithm aof base 2, and? denote the 1g N < n(1 — (1 — o(1))H (p)) as desired. To see this, note
standard entropy functiod/ (z) = —zlgz—(1—x)lg(1—=). thatthelg (") termisn(1—o(1))H (p) using standard results
We write Pr,.c,, s[T(x)] to denote the probability of predicate(see, e.g., q[9][Lemma 9.2]). Thz o term is dominated by
T holding, overz chosenuniformly at random from sefb. O(q-1glg(n/q)) = O(nplglg(1/p)), so the entire expression
We make use of the fact that the information capacity and1 — (1 — o(1))H (p)).
transmission capacity of the deletion channel are the s8ine [ We provide some high-level intuition behind the analysis.
Hence, to prove an upper bound on the capacity, we can simflyis worth first expressing the intuition in terms of the
show that a code of sufficiently high rate does not exist. Tls#andard binary symmetric error channel. The argument is
upper bound on the capacity therefore follows easily from thbased on a reduction. Suppose one had a codebook for this
following theorem, which implies that no code of rate greatehannel withN codewords of: bits and a decoding algorithm
thanl — (1 — o(1))H (p) can exist. that could correct for any collection qgfn errors perfectly.

. . .. We could use this codebook and decoding algorithm as a
Theorem Il.1. Suppose in the setting above there exists a . ) .
eans to represent information as follows. Since there are

decoding algorithm that succeeds with probability at Ieasr(Pn) ~ 2H®)" possible error sequences, one could encode

0 for a deletion channel with deletion probability and )rn
P Y (approximately, up to lower order term&(N2 (") bits

codeword lengthn > 121g(4/6)/p. Let ¢ = (1 n

where y — 312(4/6)7(np).g'(l'h/er)1/?he nur(rlwber o(f cJ(r)dWe)wgrdSOf information intOn. bits by taking a codeyvord, purpos_ely
N satisfies introducing a collection opn errors, and using the resulting
string to represent the information; one could recover the
original information by running the decoding algorithm to
determine the original codeword and the locations of thererr
introduced. Hence, we must have thgtN27®)") < n, or
% < 1—H(p). This argument, when made suitably rigorous

1 >3q/+1 and taking into account the possibility of decoding errigs

ne 3g+1
21 (6(3qlg7+1gg1> I |

ne
a=|3qlg—+1g
[ q Y q

n 4
IgN <n-np(l—7)-lg <np(1_7)) tlgs +1gf

whereg is given by

634" lg s lg 2
q/

slightly atypical but perfectly reasonable way of viewirgpt
standard Shannon bound.

_ e N We utilize the same type of argument here. We show for the
In particular, £= <1 — (1 — 0,(1))H(p), where theo,(1) deletion channel that if we had a codebookfcodewords

4
= /1E lo =
B (3ng,+g51<

term is understood as going to 0 @asgoes to 0. with a corresponding decoding algorithm, then when the
We point out no effort has been made to optimize tr@eletion probabilityp is suitably small, from the received
constants above. string and decoding algorithm we can also recover the aeleti
patternA itself with nonnegligible probability. Intuitively, this
B. Fixed-length deletion channel means that if one had a codebook of si¥e one could use it
For ease of analvsis. we first consider the case where to represent information in the same manner as above, so the
number of receivedybit’s is fixed in advance. We then relaiﬁea acity, give_zn by%, Is also bounded by (approlx.ima.tely)
' — H(p). This argument has a few more complexities in the

this result to the channel with i.i.d. deletions.

In this subsection, we assumg ¢ andq¢ = n — £ are
known and fixed. We define thé;,n) deletion channel in
the natural way: codeword € C and patternA € P, are
chosen uniformly at random, and, is received. A decoding
algorithm is successful when, on inpdty, it outputsZ. We
now prove the following:

setting of the deletion channel. For example, if one of the
codewords is the all O’s string, we learn nothing about the
deletion pattern from the received string. Hence, part of ou
argument is that there are not so many such “bad” strings
where we cannot recovet.

To begin we introduce theistancebetween two deletion
patterns of equal lengthd and B, denoted byA(A, B), by
Theorem 11.2. Letq < n and suppose there exists a decodingefining it to be the number of disagreements betwgeand
algorithm that succeeds on th@, n) deletion channel with b;:
probability at leasté > 0, wheren > 121g(2/6)/p. Then the A(A,B) = HZ | a; # bz}‘ )
size of the codebooKN = |C| satisfies

5 We do not define\ (A, B) for patterns of unequal length. This

IgN<n—q—Ig (”) +1g 5 +lga, definition has the following property.
q



Lemma Il.1. Take any two lengtli-deletion patternsA and [i, j] = (. The set of bit§n| can be partitioned into alternating
B. For uniformly randomX < {0, 1}", discrete blocks of all clean and all dirty bits (it may staithw
< 9-A(AB) a clean or dirty block). Let) = {d1,da,...,ds} den_ote the
= set of ¢ bits deleted byA. Clearly these are all dirty bits.
Proof: Consider picking the random bits df in order, Moreover, between any two clean blocks, there must be a bit
one at a time. We call each valuevith a; # b; a discrepancy. of Q. To see this, consider bits< j < k such thati and &
Each discrepancy imposes the constraintfor max(a;,b;) are clean ang is dirty. Now a; = b; anday, = by, and some
and j = min(a;, b;) that when bitX; is chosen, it must be bit betweeni and k must have been deleted from one of the
equal to bitX;. This happens with probability exactly/2, patterns or else; = b; andj would be clean. If a bit was
independent of which previous constraints have or havedeleted from patterd3, then a bit from pattermd must also
been satisfied. Moreover, each discrepancy imposes a cbave been deleted in order for the patterns to align at both
straint on a different bit, because each bit is constraimed andk. Thus, between each two clean blocks, there must be an
be equal to at most one of the previous bitsj ik j then element of@.
max(a;, b;) < max(a;,b;). By independence, the probability Hence, each dirty block contains at least one bit frgm

Pryc, 0,137 [Xa = X5]

that all constraints are satisfied 4s2(4.5), m with the possible exception of a dirty block containih@nd

A key technical step is bounding the number of patterr@s dirty block containingn. The setD(A, B) can then be
“close” to a given patterm. described by2(¢ + 1) nonnegative integers, say, 1, ..., 7,

: andly,ls, ..., 41, Where the dirty bits are
Lemma I1.2. For any patternA € P, and integert > 1, Li2)e oo bgrn, W "y bl
the number of pattern® € P, ,, such thatA(A4, B) <t is at D(A,B) = QU[l,ro]U[n—1l41+1,n]U
most a
(t+ 1)(2‘1”“) (‘1”). U (ds + 1,di + i) U [di — 1, ds — 1]).
2¢+1 q i=1

Proof: Fix A. Let ¢ =n — ¢ be the number of deletions. Such a description is not unique (e.g., the above intervalg m
Call a biti € [n] cleanwith respect tod and B if there is some overlap), but there is always at least one such descriptian t
j € [f] such that; = b; = i, i.e., the bit is transmitted in both marks each dirty bit exactly once. That it, the description i
patterns, in the same position. Call a Bitty otherwise. Let frugal, meaningro + ;41 + > 1(r: + 1) = |D(A, B)| —¢. A
D(A, B) denote the set of dirty bits with respect to patterngell-known combinatorial fact is that the numberotuples
A and B. All deletions occur in the dirty bits. The idea is toof nonnegative integers that sum tois “Tri—l . Hence, if
upper bound the number sktsof dirty bits and then upper we fix the number of dirty bits to bé = |D(A, B)|, then
bound the number of deletion patterns within them. the number of frugal descriptions is at most the number of

Intuitively, the idea is that the there are not too many dirty2q + 2)-tuples that sum tal — ¢, or

bits and they all must lie “near” to the deletions4n since a

great many bits are clean. There is a simple upper bound on (2q t1l+d- q>.
the number of dirty bits: 2¢+1
A(A,B) <t = |D(A,B)| <g¢g+t. (1) As d < ¢+t from equation (1), the number of frugal

descriptions is at most
This is because, if there atediscrepancies, then there are

u bits that are dirty because they are deleted in both patterns (2q tit 1).

and at mosRu dirty bits corresponding to the discrepancies 2q+1
wherea; # b; (namelya; andb;). Hence there are at mostThe number of possible sets of dirty bits is then at most the
q+u < g+t dirty bits. number of possibilities fod € [¢, ¢ +t], which ist + 1, times
Next, we upper bound the number of possibilities for dil’t}he number of fruga| descriptions, which is at m()%”'“’l)_
q

setsD(A, B). In particular, we will show, that for any fixed This gives equation (2). i m

A, Again, our high-level goal is to show that if one can decode
HD(AB) | Be P, AA(A,B) < t}\ < ) one can also, with non-negligible probability, recover the
’ g+t deletion pattermrd |t§elf. So far we have shown that_ there are
(t + 1)< > not too many deletion patterns close to any deletion pattern
2q+1 Now we will use this to show that, for most codewords, we can
Together with (1), this implies that the number of possibleecover the deletion pattern based on the received sequence
patterns B within ¢ of A is at most(t + 1)(232ﬁ1) (q;rt), Naturally, this will lead us to an upper bound on the number
because ally deleted bits occur within the set of dirty bits,of possible codewords.
there are at mositt + 1) (*4F,1") such sets, and each set is of Of course, there are certainly bad possible codewords, like
size at mosy + ¢. the all O’s string, where we cannot recover the deletionepatt
It remains to show equation (2). For integérs j, denote based on the received sequence. To begin, we show there are

by [i,j] the discrete block{:,i + 1,...,5}. Fori > j, let nottoo many such strings.



Definition I.1. For¢ > 1, We sayX € {0,1}" is t-bad by Lemma I1.2 and again the fact th&}) < (ne/k)*, the
if there exist two deletion patternd, B € P, such that number of such patterns is at most

A(A,B) ztand X4 = Xp. ( _1)<2q+t) (q+t—1)

For example, the all 0’s and all 1's strings are both bad for 2¢+1 q
allt§£ (e2q+t>2q+1 <€q—|—t—1)q
Lemma I1.3. For any ¢ > 1, there are at most(Z)QQ"—t - 2q+1 q
different¢-bad stringsX € {0, 1}". < (Gt)3q+1
Proof: It is equivalent to show that the probability that a B q .

randomX is t-bad is at mos(Z)QTt. For any fixed lengti- Recall that, as given in the statement of the theorems
patternsA, B of distanceA (A, B) > t, the probability that a ; (6t datl
randomX hasX 4 = Xp is at most2~* by Lemma Il.1. By

. .
. . Conditioned on the decoding suceeding and the codeword
the union bound over all pairs of patterns,

not beingt-bad, each deletion pattern is equally likely, and
n\ 2 hence the lexicographically first pattern is correct witblya-
2715 . 1 .
; bility at leasta.*. Hence, the total success probability of the

Pryc, (o1} |[3A, B € Py X4 = Xp| < (
guesser is at least

q
proving the lemma. ] .

The following easy lemma proves useful for bounding the Przeycaepp, . [9(Z4) = (2, A)] 2 6o /2.
probability of both successfully decoding and recovering t yowever, using Lemma 11.4 with the sefs= C x P;,, and
deletion pattern. T = {0,1}*, we also have that this probability is at most

14 .
Lemma 1l.4. Let p by a joint distribution overS x T', for NQ(n)- Rearranging terms, we have
finite setsS, T, such that the marginal distribution oveét is !

uniform. Letg : T'— S be a function. Then, lgN </(—1lg <”> + 1g2 +lga.
< q 3
7|
Pr(qp)~p[9(b) = a] < S| u

Proof: This follows from the fact thay(b) = « if and c. Pr_oof of Theorem I1.1
only if a is in the range ofj, which has size at mosf’|, and Going from the exact case of Theorem I1.2 to the case where

hence happens with probability at mdgt/|S|. m the number of deletions is itself random as in Theorem 1.1
We are now prepared to prove Theorem I1.2. merely involves taking advantage of the concentration ef th

Proof of Theorem 11.2:We create a hypotheticgliesser Number of deletions around its mean _
that, givenZ, for Z € C and A € P,,, chosen uniformly at Proof of Theorem I1.1: Suppose we have a decoding
random, will be able to guess bathand A with nonnegligible algorithm for the deletion channel that succeeds on codeboo
probability. Letg = n — ¢ be the number of deleted bits. Také® With probability § > 0. We lety = \/31g(4/9)/(np).
t=[3qlg ™ +1g 2. Assuming as in the theorem statement that 121g(4/5)/p,

On input X, the guesser can run the decoding algorithi{€ havey < 1/2. Standard multiplicative Chernoff bounds
to compute the proposed decodii{X), and then outputs (such as [9][Corollary 4.6]) guarantee thgt, with probiapil
g(z) = (R(X),B), where B is the lexicographically first at leasté/2, a random deletion pattern will h_a\qe_e [(1-—
pattern that satisfieB(X ) = X if one exists, or is the pattern )P (1 +v)pn]. Hence there must be some in this range
B = 1,2,...,¢, otherwise. The success probability of théuch that the success probability of the ex@ct ») deletion
guesser may be lower-bounded as follows. Let the uniformf?annel is at least/2.

random codeword and deletion patternbe C andA € P,n, Let a* be given by

CotewordZ < C s notr-bag with probstily at kst o — (341 g (6”@* CraR] ) "
Przc,c[R(Za) = ZAZ is nott-bad > 6— (Z>22;t >3- By Theorem II.2

This holds because the probability of success,ithe prob- IlgN<n-—¢"—lg (n*) + lgé +lga™.

ability of a¢t-badC € C is at most(Z)QQ"‘t/N by Lemma q 0

1.3, and by our choice of parameters. To see this, note tH4@ting thata™ is maximized for the largest possible value of
(n)2 < (ne/q)?? and if N > 2n~41&("/9)  then the above in- q* in the range and the other terms are maximized for the
q — ey 1

equality above holds. IN < 27~4918("/9) the inequality may smallest values of” we have

not hold, but in this case the theorem follows trivially. Byet n 4
definition oft-bad, B must satisfyA(4, B) < t— 1. However, N <n—lg (np(l — 7)) —np(l =) +1g 5 le



where

ne 4 3¢'+1
6[3¢'1g Fa lg 5]

ql

4
AP
B =3q gq,+g51

andq’ = (1 + v)np. To conclude, note that

18 (it y) = PHE)+ or(p)

and that, similarly to as we have described previously, tisé fi
two termsn —Ig (np(f_v)) dominate the right hand side of the
equation; thég 5 term can be seen to i&(np loglog(1/p)) =
o(nH (p)). Dividing through byn we obtain% <l1-(1-
0p(1))H (p).

IIl. CONCLUSION

We have considered deletion channels in the limit as the
deletion probabilityp — 0 and shown that its capacity
is at mostl — (1 — o(1))H(p). The intuition behind our
argument is simple; one could use a code for such a channel
to store information in both the message and deletion patter
which can be recovered with non-trivial probability given a
decoding algorithm. This necessarily limits the capacity o
the underlying code. In the full version of the paper, we
consider the natural generalizations to insertion chanaetl
other related channels.
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