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Abstract—A stochastic flow network is a directed graph with
incoming edges (inputs) and outgoing edges (outputs), tokens
enter through the input edges, travel stochastically in the network
and can exit the network through the output edges. Each node in
the network is a splitter, namely, a token can enter a node through
an incoming edge and exit on one of the output edges according
to a predefined probability distribution. We address the following
synthesis question: Given a finite set of possible splitters and an
arbitrary rational probability distribution, design a stochastic
flow network, such that every token that enters the input edge
will exit the outputs with the prescribed probability distribution.

The problem of probability synthesis dates back to von
Neummann’s 1951 work and was followed, among others, by
Knuth and Yao in 1976, who demonstrated that arbitrary
rational probabilities can be generated with tree networks; where
minimizing the expected path length, the expected number of coin
tosses in their paradigm, is the key consideration. Motivated
by the synthesis of stochastic DNA based molecular systems, we
focus on designing optimal-sized stochastic flow networks (the size
of a network is the number of splitters). We assume that each
splitter has two outgoing edges and is unbiased (probability %
per output edge). We show that an arbitrary rational probability
% with a < b < 2" can be realized by a stochastic flow
network of size n, we also show that this is optimal. We note
that our stochastic flow networks have feedback (cycles in the
network), in fact, we demonstrate that feedback improves the
expressibility of stochastic flow networks, since without feedback

only probabilities of the form 7 (a an integer) can be realized.

I. INTRODUCTION

The problem of probability synthesis dates back to von
Neummann’s 1951 work [1], where he considered the problem
of simulating an unbiased coin by using a biased coin with
unknown probability. He noticed that when a coin is tossed
twice, the events HT' (Heads and then Tail) and 7T'H (Tail and
then Heads) have identical probabilities, hence, in his simula-
tion algorithm HT produces the output O and T'H produces
the output 1. The other two events, namely HH and 1T, are
ignored. Knuth and Yao [2] gave a procedure to generate an
arbitrary probability distribution using an unbiased coin. They
use the concept of an edge-labeled tree called generating tree
and show that the expected number of coin tosses is upper-
bounded by the entropy of the target distribution plus two.

In this paper we generalize the concept of a generating
tree and consider general directed graphs. Specifically, we
introduce the concept of a stochastic flow network - it is

This work was supported in part by the NSF Expeditions in Computing
Program under grant CCF-0832824.

978-1-4244-7892-7/10/$26.00 ©2010 IEEE

Ho-Lin Chen

Department of Electrical Engineering  Center for Mathematics of Information

California Institute of Technology
Pasadena, CA 91125
holinc@gmail.com

1330

Jehoshua Bruck
Department of Electrical Engineering
California Institute of Technology
Pasadena, CA 91125
bruck @caltech.edu

a directed graph with incoming edges (inputs) and outgoing
edges (outputs), tokens enter through the input edges, travel
stochastically in the network and can exit the network through
the output edges. Each node in the network is a splitter,
namely, a token can enter a node through an incoming edge
and exit on one of the output edges according to a predefined
probability distribution.

One application of stochastic flow networks is the synthesis
of stochastic DNA based molecular systems [3], which is
becoming an alternative way to do computing and control.
In such systems, stochasticity plays an important rule. Hence,
a natural question is that how to manipulate this stochasticity
and synthesize desired probabilities in such systems. Note that
people still don’t know that how to implement memories using
molecular reactions, and usually these systems are used to
work as computing or control elements of a biological system,
without connecting with electrical devices. So we cannot
store some probabilities at first and then post-process them
using some mathematical methods (such as Knuth and Yao’s
scheme). Instead, we can construct stochastic flow networks,
where each splitter is implemented with two molecular species
such that one incoming token can react with either of the two
species with certain probabilities.

Fig. 1 depicts von Neumann’s algorithm in the language
of stochastic flow networks. Each node is a splitter and the
probabilities of the H and T edges are p and (1 — p),
respectively (the value of p is not known). A notation: A
splitter with two outgoing edges, with probabilities p and
(I — p) will be called a p-splitter. Assume that a token
starts flowing from the root of the tree, at each splitter, it
stochastically selects one edge (H with probability py or T’
with probability pr) to follow. Finally, the token will reach
one of the leaves of the tree, called outputs. In general, the
outputs of a stochastic flow network have labels denoted by
{1, B2, ..., Bm }. A token will reach an output 8, (1 < k < m)
with probability g, and we call {q1,q2,...,qm} the output
probability distribution of the network, where ", g = 1.

The work of Knuth and Yao reasons about a generating
tree as an algorithm that is maximizing the expected number
of desired random bits generated per coin toss. However,
motivated by the synthesis of stochastic DNA based molecular
systems, we focus on designing optimal-sized stochastic flow
networks (the size of a network is the number of splitters).
This goal is different from the goal in the related literature:
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Fig. 1. A network that realizes distribution {%, %

where p is unknown.

}, with two p-splitters,

Elias [4] demonstrated a construction in which the expected
number of unbiased random bits generated per coin toss is
asymptotically equal to the entropy of the biased coin. Pae
and Loui [5] further proved that the mapping function used
by Elias is optimal among all n-randomizing functions and
is computable in polynomial time. Han and Hoshi [6] and
Abrahams [7] considered the case when the tossed coin is a
general biased M -sided coin. Blum [8] have studied a general
situation that simulating an unbiased coin using sequences
produced by an unknown Markov Chain. Gill [9] discussed
the problem of generating rational probabilities using a se-
quential state machine. However, the state machine needs to
run for an infinitely long time to get an accurate desired
probability. Wilhelm and Bruck [10] proposed a procedure
for synthesizing stochastic relay circuits to realize desired
binary probabilities. Inspired by PCMOS technology, Qian and
Riedel [11] considered the synthesis of of decimal probabilities
using combinational logic. However, none of the foregoing
approaches considered the problem of generating arbitrary
rational probabilities, using a token based approach, while
optimizing the network size.

In this paper, we address the following synthesis question:
Given a finite set of possible splitters and an arbitrary rational
probability distribution, design a stochastic flow network,
such that every token that enters the input edge will exit
the outputs with the prescribed probability distribution. We
assume, without loss of generality, that the probability of each
splitter is % (since von Neumann’s construction in Fig. 1
can use any p-splitter to simulate a %-splitter). Our goal is
to realize the desired probabilities by constructing a network
of minimal size. In addition, we study the expected latency,
namely the expected number of splitters a token need to pass

before reaching the output.

The main contributions of the paper are

1) General optimal construction: For any desired rational
probability, an optimal size construction of stochastic
flow network is provided (Section III).

2) The power of feedback: With feedback (loops), stochas-
tic flow networks can generate much more probabilities
than those without feedback (Section III).

3) Constructions with well-bounded expected latency: Two
additional constructions with a few more splitters than
the optimal construction are proposed such that their ex-
pected latencies are well-bounded by a constant (Section
V).

II. ABSORBING MARKOV CHAINS

Let’s consider a flow network with n splitters and m
outputs, in which each splitter is associated with a state
number in {1,2,...,n} and each output is associated with a
state number in {n+1,n+2,...,n+m}. When a token reaches
splitter ¢ with 1 < ¢ < n, we say that the current state of this
network is . When it reaches output £ with 1 < k < m, we
say that the current state of this network is n+ k. Note that the
current state of the network only depends on the last state, and
when the token reach one output it will stay there forever. So
we can describe token flow in this network using an absorbing
Markov chain. If the current state of the network is 7, then the
probability of reaching state j in the next instant of time is
given by p;;. Here, p;; = pr (pi; = pr) if and only if state ¢
and state j is connected by an edge H (7).

Clearly, we have

n+m
Zj:l pij =1
pij =0
Pii =1

i=1,2,...n+m
Vi >mn and i # j
Vi >n

Then the network with n splitters and m outputs with
different labels can be described by an absorbing Markov
chain, where the first n states are transient states and the last
m states are absorbing states. The transition matrix of this
Markov chain is given by

P= n
m

where () is an n X n matrix, R is an n X m matrix, 0 is an
m X n zeros matrix and [ is an m X m identity matrix.

Let B;; be the probability that an absorbing chain will be
absorbed in the absorbing state j+n if it starts in the transient
state 7. Then B is an n X m matrix, and

B=(I-Q)'R

n m
Q R
0 I

Assume this markov chain starts from state 1 and let S; be
the probability that it will be absorbed in the absorbing state
j +n. Then S is the distribution of the network

S =1[1,0,..,00B=e;(I -Q)" 'R

III. OPTIMAL CONSTRUCTION WITH FEEDBACK

In this section, we consider the scenario that the splitter
probability is % and we want to demonstrate the importance of
feedback (loops) in networks to generate desired probabilities.

A. Loop-free networks

Here, we want to study the expressive power of loop-free
networks. We say that there are no loops in a network, that
means no token will appear at the same position for more
than one time in the given network. For loop-free networks,
we have the following theorem:

Theorem 1. For a loop-free network with n %-splitters, all
probability 5 with integer (0 <z < 2") can be realized,
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and only probability 55 with integer x(0 < x < 2™) can be
realized.

Proof: (for short) a) For any probability 57 with integer
(0 < 2z < 2™), we can construct a stochastic flow networks
with n splitters using Knuth and Yao’s scheme.

b) For a network without loops, the probability for a token
to reach a given output is P = ), Py, where P is the path
gain of a forward path from the root to the output. Given n
splitters, the length of each forward path should be at most n.

T

So for each k, P can be written as g% for some xy. [ |

B. Networks with loops

Now, we introduce feedback into networks. We will show
that feedback (loops) can play an important rule to enhance
the expressibility of flow networks. For any desired rational
probability ¢ with integers 0 < a < b < 2", we have the
following theorem:

Theorem 2. For a network with n %—splitters, all rational

probability % with integers 0 < a < b < 2" can be realized ,
and only rational probability ¢ with integers 0 < a < b < 2"
can be realized.

Proof: a) We prove that all rational probability § with
integers 0 < a < b < 2" can be realized. When b = 27", the
problem becomes trivial due to the result of Theorem 1. In the
following proof, we only consider the case that 2"~ < b < 27
for some n.

We first prove that all probability distributions {57, 2%, 57 }
with integers z,y, z s.t. (z+y+2z = 2™) can be realized with
n splitters. Now we construct this network iteratively.

When n = 1, by enumerating all the possible connections,
the following probability distributions can be realized:

11 1 1 11
{0707 1}7 {0’ 170}7 {1a070}’ {0’ 57 5}7{5707 5}7 {E’ 570}

So all probability distributions {&, %, 5} with integers x,y, 2
s.t. (x+y+ z = 2) can be realized.

Assume that all probability distribution {7, 5%, 57 } with
integers x,y,z s.t. (x +y + 2 = 2%) can be realized by a
network with & splitters. Then we show that any desired prob-
ability distribution {5&+, 58+, 757} st @ +y + 2z = 28!
can be realized with one more splitter. Since z+y+z = 2F+1,
we know that at least one of z,y, z is even. W.Lo.g, we let x
be even. Then either both y and z are even, or both y and 2
are odd.

When both y and z are even, the problem is trivial
since the desired probability distribution can be written as
{%, ’42—67 ZQ# , which can be realized by a network with k
splitters based on our assumption.

When both y and z are odd, W.l.o.g, we assume that z <
y. In this case, we construct a network to realize probability
distribution {962#, (y;fc)/ 2, 7 } with k splitters. By connecting
the last output with probability 5% to an additional splitter,
we can get a new network in Fig. 2(a), whose probability
distribution is { 5%, 551, 57 )-

(a) (b)

Fig. 2. (a) The network to realize {#, 2,‘%, ﬁ} iteratively. (b) The
network to realize {3,1 — 7 }.

Iteratively, for any probability distribution {57, 3%, 57 }
with z + y + 2z = 2™, we can always construct a network
with n splitters to realize it.

In order to realize probability § with 2nl < p o< 27,
we can construct a network with probability distribution

9 1’2_—“, %} with n splitters, then connect the last output
(output 2) to the starting point of the network, as shown in
Fig. 2(b). Using the method in Section II, we can get that in
this new network the probability for a token to reach output
0is 7.

b) Now we prove that with n splitters, only rational proba-
bility % with integers 0 < a < b < 2" can be realized. For any
flow network with n splitters to generate a probability, it can
be described by an absorbing Markov chain with n transient
states and 2 absorbing states, whose transition matrix P can
be written as

P11 Pin  Pi(n+1) Pi(n+2)

Pn1 Pnn pn(n+1) pn(n+2) - 0 I
0o ... 0 1 0
0o ... 0 0 1

where each row consists of two % entries and n zeros entries.
Then the probability distribution of the network can be written
as e1(I — Q) 'R.

In order to prove the result in the theorem, we only need
to prove that (I — Q)™ R can be written as A with b < 2",
where A is an integer matrix.

Let K =1 — @, we know that K is invertible if and only
det(K) # 0. In this case, we have

K.
K—l P J
( i det(K)
where Kj; is defined as the determinant of the square matrix
of order (n — 1) obtained from K by removing the i*" row
and the j** column multiplied by (—1)"+7.
Since each entry of K is chosen from {0, 3,1}, Kj; can

be written as 2’fffl for some integer kj; and det(K) can be
written as 2% for some integer b. According to the appendix in
[13], we have 0 < det(K) < 1, which leads us to 0 < b < 2"
(note that det(K) # 0).

Then, we have that

ki1 koy kn1
. 2| k2 koo kn2
S IR s
ki kon Enn
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L 1}, we know that

Since each entry of R is also in {0, 5,

11 Ti2
21  T22
2R =
Tn1 Tn2
is an integer matrix.
As a result
ki1 ko kn1
2R | K12 koo kpna
K'R = = ) . .
b : : :
kln k2n knn
A
b
where each entry of A is an integer. [ ]

Using the method in the theorem above, we can realize any
arbitrary rational probability with optimal size. For example,
if we want to realize probability é—g, we can first generate a
probability distribution {%, %, % , which can be realized by
adding one splitter to a network with probability distribution
{%, %, %} Iteratively, we can get a network to generate
probability distribution {%, %, %} where only 5 splitters are
used. After connecting the last output to the starting point, we
can get probability %. Comparing the results in Theorem 2
with those in Theorem 1, we can see that introducing loops
into networks can strongly enhance the expressibility of the
network.

IV. CONSTRUCTIONS WITH BOUNDED EXPECTED
LATENCY

In this section, we consider the expected latency as another
important issue. Here, the expected latency indicates the ex-
pected number of splitters a token need to pass before reaching
one of the outputs. Assume the desired probability is ¢ with
2n=1 < h < 2" for some integer n. First, we analyze the
expected latency of the optimal construction (called scheme
A). Then we give two other constructions (scheme B and
C) and compare their network sizes and expected latencies
with those of scheme A. Table I shows the summary of the
results in this section, from which we can see that there is
a tradeoff between the upper-bound of the network size and
the upper-bound of the expected latency. However, it is not
easy to say one of the schemes performs absolutely better
than the others. Generally, for practical use, we can try all the
schemes and choose the best one among them according to
our requirements.

A. Scheme A

For the optimal construction described in the section above,
we can get the upper bound of its expected latency.

Theorem 3. Given a network with probability 3 (2t <
b < 2™) constructed using the optimal scheme (scheme A), its

Scheme A Scheme B Scheme C
Network size <n <n-+3 <2(n-—1)
Expected latency | < (32 + 1)2° | <62" | <3.5852"

TABLE 1 N
THE COMPARISON OF DIFFERENT SCHEMES. HERE 27 < 2.

expected latency ET is bounded by '

3n 1.2 3n 1

ET§(4+4)b <5 t3

Proof: For scheme A, we first prove that the expected

latency of the network with distribution {37, b; a2, %} is
bounded by %" + %.

Let’s prove this by induction. When n = 0 or n = 1, this
conclusion is true. Assume when n = k, this conclusion is
true, we want to show that the conclusion is also true for
n = k+2. Note that in scheme A, a network with size k+2 and
three outputs can be constructed by adding two more splitters
to a network with size k. Let T} denote the latency of the
network with size k, then

E[Tyt2] = E[Tk] + p1 + p2

where p; is the probability for a token to reach the first
additional splitter and p- is the probability for a token to reach
the second additional splitter. Assume the distribution of the
network with size k is {q1, g2, 3}, then

N W

pr+po < max(gi + (£ + qj)) <
i#£j 2

So the conclusion is true for n = k + 2. By induction, we
know that it holds for all n € {0,1,2,...}.

Secondly, we prove that if the expected latency of the net-
work with distribution {q1, ¢2, g3} is ET’, then by connecting
its last output to its starting point (feedback), we can get a
network such that its expected latency is ET" = 41E$€;2' This
conclusion can be obtained immediately from

ET' = ET + ¢3(ET)
The theorem holds based on the two conclusions above. B

B. Scheme B

In the subsection above, we showed that the expected la-
tency of the optimal construction may increase as the network
size increases. Here, we propose another construction (scheme
B) with a few more splitters than the optimal one, such that
its expected latency is well-bounded by a constant.

Assume a and b are relative prime numbers, and let ¢ =
b —a. Then a and c can be expressed using binary extension.

n n
a:E aiZZ,c:b—azg ;2"
i=0 i=0

By makin% scheme A more sophisticated, we can reduce the upper bound
o (5+H%
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Fig. 3. The network to realize probability ¢ when 2"~ < b < 2.

b

Starting from the structure in Fig. 3, we connect A; with
1 <i<n+1tooneof By, By, B3 and output 2, such that the
probability distribution of the outputs is { 5%, 21’,,,,1“1 , %}
Based on the values of a;, ¢; with 0 <7 < n — 1, we have the
following rules for these connections:

1) If a; = ¢; = 1, connect A,,_; with By.

2) If a; = 1,¢; = O,connect A,,_; with Bs.

3) If a; = 0,¢; = 1, connect A,,_; with Bs.

4) If a; = ¢; = 0, connect A,,_; with output 2.
5) Connect A,11 with output 2.

So far, the distribution of the network is

SRET s ;;—fl, %} Similar as Theorem 2, by connecting
the output 2 to the starting point (feedback), we can get a
new network with probability . Note that comparing with
the optimal scheme, 3 more splitters are used to realize the
desired probability. For this network, we can get the upper

bound for its expected latency:

Theorem 4. Given a network with probability ¢ 2"t <b<

2") constructed using scheme B, its expected latency E'T is
bounded by

n

2
ET§6?<12

C. Scheme C

In this subsection, we propose another scheme, called
scheme C, which is similar to Scheme A. Both Scheme A and
Scheme C is try to realize the distribution {7, ”21”’, 2;; b
first. However, the difference is that in Scheme C, this dis-
tribution is realized by applying Knuth and Yao’s scheme
[2]. Generally, Knuth and Yao’s scheme can be described
as follows [12]. Assume we want to realize the distribution
{p1, p2, ...}. Let the binary expansion of the probability p; be

pi = 2321 pgj ), where pl(-j ) = 277 or 0. Then the atoms of

the expansion are {pl(.]> ci=1,2,...,m,j > 1}

Since > , pi = 1, the sum of the probabilities of these atoms
is 1. Now, we allot all the atoms to leaves of a tree such that
the depth of atom 277 is j. We can see that all the depth
of these atoms satisfy the Kraft inequality, and hence we can

always construct such a tree.

Knuth and Yao showed that the expected number of fair
bits required by the procedure above to generate a random
variable X with distribution {p1,p2, ...} lies between H(X)
and H(X) + 2. Based on this result, we have the following
theorem about Scheme C.

Theorem 5. Given a network with probability 7 (2"t <b<
2™) constructed using scheme C, its network size is bounded
by 2(n — 1) and its expected latency ET is bounded by

n

2
ET < (log23 + 2)? <72

Proof: Let’s first consider the network with distribution
{2%, b;n“, 27;; 1 which is constructed using Knuth and Yao’s
scheme.

1) The network size is bounded by 2(n—1). That is because
for each 7 with 2 < j < n, there are at most two atoms with
value 277, If 7 = 1, there are at most one atom with value
277 (except that the target distribution is {3, 1}).

2) The expected latency ET" of the network with distri-
bution {2, %5, 2=} is bounded by ET" < (logs3 + 2).
That is because that this expected latency ET’ is equal to
the expected number of fair bits required. According to the
result of Knuth and Yao’s scheme, it is not hard to get this
conclusion.

Now we can get a new network by connecting the last output
to the starting point (feedback). We can see that the network
size keeps unchanged and the expected latency of the new

network is BT = ET'2". L
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