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Abstract—To reduce computational complexity and delay in original fragments, it can decode and build up the origirel fi
randomized network coded content distribution (and for some  The information packets can be decoded whétinearly in-
other practical reasons), coding is not performed simultaeously dependent equations have been collected. For a large fiedd, t

over all content blocks but over much smaller subsets known trat d th ted b f ired i
as generations. A penalty is throughput reduction. We model Sral€gy reduces the expected number of required samplings

coding over generations as the coupon collectorérotherhood ~ from O(NN log N) to almostN (see for examplé [3]). However,
problem. This model enables us to theoretically compute the the expense to pay is the computational complexity. If the
expected number of coded packets needed for successful déew  information packets consist af symbols inGF(q), it takes
of the entire content, as well as a bound on the probability of O(Nd) operations inGF(q) to form a linear combination per
decoding failure, and further, to quantify the tradeoff between 3 9 . .
computational complexity and throughput. Interestingly, with a COdeg packet, an@.(N + N. d) opergtlons, or, equivalently,
moderate increase in the generation size, throughput quidg O(N“+Nd) operations per information packet, to decode the
approaches link capacity. As an additional contribution, we derive  information packets by solving linear equations.
new results for the generalized collector’s brotherhood poblem We refer to the number of information packets combined
which can also be used for further study of many other aspects in a coded packet as the degree of the coded packet. The
of coding over generations. . . . . X
complexity of computations required for solving the eqoiasi

. INTRODUCTION of information packets depends on the average degree oficode

In P2P systems, such as BitTorrent, content distributid?.ckets: To reduce computational complexity while mamtai
involves fragmenting the content at its source, and usitfgf the throughput gain brought by coding, several appresch

; : ; : been introduced seeking to decrease the average degree
swarming techniques to disseminate the fragments amc{;?/e o :
peers. Acquiring a file by collecting its fragments can be to coded packets [4].[5]L[6]. Nevertheless, itis hard tside

certain extent modeled by the classic coupon coIIector-pro‘?)'Str'bl"ted coding schemes with good throughput/compfexi

lem, which indicates some problems such systems may ha@@q%ﬁ that further combine coded packets.

For example, probability of acquiring a novel fragment drop _C_Zhou et aI.[]:V_] proposed to partition information packetsin
rapidly as the number of those already collected incredses diSi0intgenerationsand combine only packets from the same
eration. The performance of codes with random scheglulin

addition, as the number of peers increases, it becomesrhaffd'€rat , : .
to do optimal scheduling of distributing fragments to reees. of disjoint generations was first theoretically analyzed by

One possible solution is to use a heuristic that prioritizé\é""ymOunkov et al. in[[B], who referred to them alunked

exchanges of locally rarest fragments. But, when peers h §S Chur:jked CO((;GS aIIowd_<|:onve_n|§|nt fencodmg at '”te}fl'
only local information about the network, such fragmenteiof Mediate nodes, and are readily suitable for peer-to-peer fi

fail to match those that are globally rarest. The conseceendissemination. In[8], the authors used an adversarialddae
are, among others, slower downloads and stalled transf@r%.the network model and measured the code performance by

Consider file at a server that consists\dfpackets, and a client estimating the loss of “code density” as packets are conbine

that chooses a packet from the server uniformly at rand(ﬁﬁ'nter:med'aﬁ(e nodes throughout the netW(?rk. di ith
with replacement. Then the process of downloading the file!" thiS WO; , We propose a I\INay' to analyze coding wit
is the classical coupon collection, and the expected numigherations from a coupon collection perspective. Here, we
of samplings needed to acquire all coupons iKO(N log N) view the generations as coupons, and model the receiver who

(see for example€ [1]), which does not scale well for large needs to acquire multiple linear equations for each geioerat
(large files) as a collector seeking to collect multiple copies of the same
Randomized coding systems, such as Microsoft’s AvalanchguPon- Th|’s collecting model is som_et|mes refereed_to as
[2], attempt to lessen such problems in the following wadh€ collector's brotherhoodproblem, as in[[9]. As a classical
Instead of distributing the original file fragments, peers-p prqbablflg modellwhlch studies randomhsarr}pllng of a popu-
duce linear combinations of the fragments they already.ho'é‘t'On ot distinct ? ements (_coupons) W't. rep acngh,tl[Iiﬂa
These combinations are distributed together with a tag tHzuPoON coIIectorsjro_bIem_flnds_ application in a wide range of
describes the coefficients used for the combination. Wh Ids [10], from testing biological cultures for contanioa

: ; Co to probabilistic-packet-marking (PPM) schemes for IP
a peer has enough linearly independent combinations of
P g y P traceback problem in the Intern€t[12]. We here use the ideas

This work is supported by NSF CNS Grant No. 0721888. from the collector’s brotherhood problem, to derive refined
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results for expected throughput for finite information léng per coded packet. Meanwhile, it tak@$h? + h2d) operations

in unicast scenarios. We describe the tradeoff in throughpo GF(q) to solve h linearly independent equations for the
versus computational complexity of coding over generation: packets of one generation. Thus, the cost for decoding is
Our results include the asymptotic code performance, G)(h* + hd) per information packet.

proportionally increasing either the generation size & ﬂb. Extension to a General Network

number of generations. The code performance mean con- ] ) o
centration leads us to a lower bound for the probability of IN @ general network, intermediate nodes follow a similar
decoding error. Our paper is organized as follows: $dc. GPding scheme except that previously received coded packet

describes the unicast file distribution with random schiegul &€ combined instead of the original information packets. W
and introduces pertaining results under the coupon colfsct leave out the details since the analysis of code performiance

model. SedTll studies the throughput performance of CIB)O",general network topologies is beyond the scope of this paper
with disjoint generations, including the expected perfante C. Collector's Problem and Coding Over Generations
and the probability of decoding failure. S&cl] IV concludes. In a coupon collector’s problerma set of distinct coupons

II. CODING OVER GENERATIONS are sampled with replacement. Consider thegenerations
A. Coding over Generations in Unicast asn d|st|n<_:t coupons, and collecting d_egrees pf freedom
) o . for generationG; is analogous to collecting copies of the
We consider the transmission of a file from a source g, element in the coupon set. In the next section, we will
a receiver over a unicast link using network coding OV&h,acterize the throughput performance of the code uheer t

generations. , , , coupon collector’s probability model.

The file is divided intoN information packetsp;, po,

.., pn. Each packep;(i = 1,2,...,N) is represented as  !ll. THROUGHPUT OFCODING OVER GENERATIONS
a column vector ofd information symbols in Galois field We next study the throughput performance of coding over
GF(q). Packets are sequentially partitioned into = % generations in the simplest single-server-single-usenato
generationsof size h, denoted as7;, G2, ..., G,. G; = by using thecollector's brotherhoodnodel [9]. Recall that,
[PGi—1)h+1>P(i—1)ht2, - - -»Pin] TOr j = 1,2,...,n. The re- to successfully recover the file, the receiver has to coltect
ceiver collects coded packets from the generations. The degrees of freedom for each generation. Fer1,...,n, let
coding scheme is described as follows: N; be the number of coded packets sampled fi@puntil h

a) Encoding: In each transmission, the source first sedegrees of freedom are collected. Thahs are i.i.d. random
lects one of the: generations with equal probability. Assumevariables with the expected valU€ [3]
G; is chosen. Then the source chooses a coding vectdr h—1
length i, with each entry chosen independently and equally E[N;] = Z 1 . (1)
probably fromGF(q). A new packetp is then formed by L—qgi=h
linearly combining packets frondz; by e: p = Gje. The A
coded packep is then sent over the communication link to

j=0
pproximating summation by integration, frof (1) we get

. . . . h—1
1 1
_the receiver along with the coding vectoand the generation E[N] S/ do +
index j. ~ Jo 1—g*h 1—q 1
b) Decoding: The receiver gathers coded packets and gt 1—qgh
their coding vectors. We say that a receiver collects oneemor =h+ 1—¢1 +log, T—q @

degree of freedorfor a generation if it receives a coded packet
from that generation with a coding vector linearly indepemtd
of previously received coding vectors from that generatio
Once the receiver has collectéddegrees of freedom for a
certain generation, it can decode that generation by splain
system ofh linear equations irh unknowns oveiGF(q).

Note that the two extremes, generation sizess N and
h = 1, correspond respectively to full random linear network s s .
coding(i.e. without generations) and not using coding b PIN; < s] = H ((¢" = d") /a") = H(l -7
with random piece selection). k=0 k=0

Since in the coding scheme described above, both the cod{g have the following Lemmi 1 upper bounding the comple-
vector and the generation whose packets are combined B@ntary cumulative distribution function (CCDF) &f;.
chosen uniformly at random, the code is inherently rateless Lemma 1:There exist positive constants, and as .
We measure the throughput by the number of coded packd¥sh that, fors > h,

Note that N; < s means theh x s matrix formed bys
coding vectors of lengtth as columns is of full row rank.
For s < h, PAN; < s] = 0. For s > h, PiN; < s] equals
the probability that for eactk = 1,2, ..., A, the kth row in
the matrix is linearly independent of rowsthrough(k — 1).
Hence,

h—1 h—1

necessary for decoding all the information packets. h—1
¢) Computational Complexitytt takesO(hd) operations PIN; > s] =1 — H(l —q¢"*)
to form each linear combination éflength+« vectors(packets) k=0

in GF(q). The computational cost for encoding is th@hd) <1 —exp(—agng M) <1 —exp(—ageqg ).



Proof: Please refer to Appendix. | Theorem 5:([14]) Whenn — oo,
LetT(n, m) be the number of coded packets collected when
for the first time there are at least(> 1) coded packets from E[T(n,m)] = nlogn + (m — 1)nloglogn + Cnn + o(n),

every generation in the collection at the receiver. TheltOt@/hereCm = y—log(m—1)!, v is Euler's constant anh € N.

number of coded packets needed for accumulafiRG> h) Form > 1, on the other hand, we have [13]
coded packets of each generati@n is then greater or equal ' ’

to T'(n, h). E[T(n,m)] — nm. @)
The collector’s brotherhood probleff], also referred to as , L
the double dixie cup problefii3], investigates the stochastic What is worth mentioning is that, as the number of coupons

quantities associated to acquiring> 1) complete sets of, " " % for_the first complete set of coupons, th? num-
distinct elements by random sampling ber of samplings needed ©@(nlogn), while the additional

number of samplings needed for each additional set is only
A. Results From The Collector’s Brotherhood Problem O(nloglogn).
In addition to the expected value @f(n,m), the concen-

For anym € N, we defineS,, (x) as follows: i ! ] !
tration of T'(n,m) around its mean is also of great interest

o zm! to us. We can derive from it an estimate of the probabilit
S(2) =1+ = 4 = oo p >1 3 : p y
(z) * 1! * 2! Tt (m—1)! (m=1) @ of successful decoding after gathering a certain number of
Soo(7) =exp(z) and Sp(z) = 0. (4) coded packets. The generating functionfn,m) and its

) ) ) ) probability distribution are given i [9], but it is quitefticult
Theorem 2:Consider uniformly random sampling efdis- {5 evaluate them numerically. We will instead look at the
tinct coupons with replacement. Suppose for same N,  asymptotic case where the number of coupens cc. Erdos
integersky, ..., ka andms,...,my satisfyl <k <--- < and Renyi have proven i [16] the limit law &F(n, m) as
ka < mnandmy > --- > ms > 1. For convenience of ,, _, o, Here we restate Lemma B frofn [14] by Flatto, which

notation, letmg = oo andmay; = 0. Then, the expected iy addition expresses the rate of convergence to the limit la
number of samplings needed to acquire at leastcopies of Lemma 6:[14] Let

at leastk; coupons, at leash, copies of at least, coupons, )
and so on, at leastr4 copies of at leask4 coupons in the Y (n,m) = — (T(n,m) — nlogn — (m — 1)nloglogn).
collection is n

oo Then,
n/o {e ; ®) e Y loglogn
+O0(—""—1.

PrY (n,m) < y| = exp <_m logn

i1 Tjp1—1
S (2) = Sy ne g o .
Z H ( ij ) [ (@) sl } }e * Remark 1:(Remark 2,[[I4]) The estimation in Lemrh 6 is

(i0i1,viap1): =0

i0=0.ia1=n understood to hold uniformly on any finite intervab < y <
550 a. i.e., for anya > 0,
Proof: Our proof generalizes the symbolic method o exp(—y) loglogn
[13]. Please refer to Appendix. m |PlY(n,m) <yl —exp (‘ (m — 1);)‘ < C(m,a) logn
Setting A = 1, k; = k andm; = m in Theoren{® gives . -
the following corollary: n > 2and —a < y < a. C(m,a) is a positive constant

Corollary 3: The expected number of samplings needed f#¢pending onn anda, but independent of.
collect at leask of then distinct coupons for at least times

i oo —1 (n\ gn—i m i B. Throughput
isn [, {Zf:ol (.)Sm () [e® — Spm(x)] }e dz.

The number of coded packeétsthe receiver needs to collect

In the context of coding over generations, this corollar oF
g J g, successful decoding is lower boundedByn, h), and so

gives us an estimation of the growth of the size of decoda .
information. It is also helpful to the study of a coding schaemE T] is lower bounded by[T'(n, h)]. Also, by LemmdlLN;
with a “precode” as discussed ifl [8] is well concentrated nedr for large g, and soT'(n, h) could

: : be a good estimate far for finite n. In addition, from Thm[b
Furthermore, by setting = n in Corollary[3, we recover '
the following resu)llt OfﬂIB@]' " e and [T) we observe that, when> 1 or m > 1, E[T(n,m)]
Corollary 4: The expected sampling size to acquine is linear in m. Thus, we could substituté&[N;] for m in
complete sets of, coupons is these expressions to roughly estimate the asymptotic éegbec
number of coded packets needed for successful decoding.
> —z\n From Lemmdb, we obtain the following lower bound to
E|T = 1—-(1-5n, d 6 - : . .
[T m)] n/o [t (z)e*)"} dz(6) the probability of decoding failure as — oc:
@) can be numerically evaluated for finite and . Theorem 7:Whenn — oo, the probability of decoding

The asymptotic ofE[T'(n,m)] for large n has been dis- failure whent coded symbols have been collected is greater
cussed in literature such ds [13], [14] and|[15]. thanl —exp [—ﬁn(bgn)h*l exp (—%)} +0 (%g)

2



Proof: The probability of decoding failure after acquiringThis is particularly meaningful to communication netwonks

t coded packets equals[Pr> t]. SinceT > T'(n, h), shared media, in which contention occurs frequently, asd al
to networks of nodes with medium computing power.
PAT > 8] 2 PT(n, h) > 1] Figure[J(B) shows the estimate of the probability of decod-
ing failure versug'. As pointed out in RemaiK 1, the deviation
of the CDF ofT’(n, m) from the limit law forn — oo depends
H loglogn : ; ;
The result in Theorerfl 7 follows directly from Lemifta am N 7 and is on the order of(=32%=), which is quite slow.
This is also implied in our observation from Figue 1(a) that

N=1000 Thm.[8 gives a good estimate &[T (n,m)] only for very

‘ ‘ small values ofm(compared ton).

t
=1—-Pr|Y(n,h) < — —logn — (m —1)loglogn
n

800

E[T(n,h)] theoretical
7000 + simulation mean || IV. CONCLUSION AND FUTURE WORK
1 asymplote We investigated the throughput performance of coding over
o h—>00 asymptotic ) : - ; ”
generations in the unicast scenario under the classicavget
useful coupon collector's model. We derived a general fdamu
4000/ ] (TheoremR) to compute the expected number of samplings
necessary for collecting multiple copies+ofistinct coupons.
The formula can be applied in various ways to analyze a
2000 ] number of different aspects of coding over generationseHer
By H in particular, we used a special case of this result, narttedy,
1000 s s0 w0 150 expected number of sampling§T (n, h)] needed to colleck
Generation Size h complete sets of, distinct coupons to estimate the expected
(@) number of coded packets necessary for successful decoding
N=1000 when N information packets are encoded ovegenerations
! oL smulaton of size h each. Apart from results for finite information
LI e ] length IV, the asymptotics of2[T'(n, k)] can also be used to

= = = h=10, simulation

el estimate the performance of coding when either the number of
= =10, theoretical generations: or the generation sizk go to inifinity. We also
gave a lower bound for the probability of decoding failure by
using the limit law forT'(n, h) asn — oo.

The general result expressed in TheorEm 2 has proved
its usefulness to the analysis of coding over overlapping
generations in our recent work [17]. Further, we have been
able to derive in[[188] the exact expression, as well as anmuppe
bound, for the expected number of coded packets necessary fo
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o ded Do ots o acted successful decodlng. We expect to extend our analysis under
the coupon collection framework to many other aspects of
(®) coding over generations.
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t>0
APPENDIX
(z1y + - + ny)'\ n
Proof of Lemmdll :”/O f(z )e Ydy
t>0
Fori=1,2,...,n and anys > h, we have 0o
h—1 h—=1 oo 1 :n/ f (exp(xly +eee *Tny)) einydy (9)
) _ k- s (k s) 0
InPr{N; < s} = kz_oln(l q kzozl evaluated atr; = --- = z,, = 1.
- ! We next need to find the sum of the monomials in the
_ Z Z j(k—s) _ Z 1q_7sq7 -1 polynomial expansion ofxp(z; + -+ + z,,) that should be
*J ¢ —1 removed undeyf. If we choose integer8 =ip <i; < --- <
= i ia <iaq1 =mn,suchthat; > k; for j=1,..., A, and then
— g (=R Z ~G-1(s-—m =g partition indices{1,...,n} into (A+1) subsetSZl, coy Tast,
¢ —1 whereZ;(j =1,..., A+ 1) hasi; —i;_; elements. Then
11— qgih A+1
S 19 —(s—h) .
Z T ¢ InPr{N; < h} IT T (Sm, (i) = S, (1)) (10)
o j=1 i€z,
—(s= ; < L .
=4 haléifé:z In Pr{N’ - h} equals the sum of all monomials ixp(z; + - - - + z,,) with
The claim is obtained by setting (i; —i;—1) of the n exponents smaller tham;_, but greater
than or equal ton;, forj = 1,..., A+1. (HereS is as defined
agn =—IPH{N; <h}, aze = — lim _InPr{N; <h}. by (@H).) The number of such partitions ff, ..., n} is equal
hea=2 0 (") =11 (“+*). Finally, we need to sum
Proof of Theorenil2 the terms of the forrriIlO) over all partitions of all choicds o

Our proof generalizes the symbolic method[of [13]. 2be i1, ---,ia satisfyingk; <i; <i;iq forj=1,... A
the event that, in the acquired collection, there are at leas

X X explziy +---+x —=g,=1 = €Xp(NY)—
copies of at least; coupons, at leasti, copies of at least f (explany n¥)) ler==razt p(ny)

coupons, and so on, at least, copies of at least 4 coupons. Z H <1J+1) (y) - S ( )} i1
Fort > 0, let E(t) be the event thaf’ has occurred after o T 0 " it '
samplings, and let ;,) be the indicator that takes valueif i0=0.ia1=n

E(t) does not occur and otherwise. Then random variable Ry

W = 1p@ + 15 + ... equals the waiting time foE to (11)
oceur. Fort > 0, letm, = ProE(¢)]; we then have Bringing {I3) into [9) gives our result in Theordrh 2.

Wl=> m. (8)

t>0
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