
ar
X

iv
:1

00
2.

14
06

v3
  [

cs
.IT

]  
2 

Ju
n 

20
10

Collecting Coded Coupons over Generations
Yao Li

ECE Department, Rutgers University
Piscataway NJ 08854

yaoli@winlab.rutgers.edu

Emina Soljanin
Bell Labs, Alcatel-Lucent

Murray Hill NJ 07974, USA
emina@alcatel-lucent.com

Predrag Spasojević
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Abstract—To reduce computational complexity and delay in
randomized network coded content distribution (and for some
other practical reasons), coding is not performed simultaneously
over all content blocks but over much smaller subsets known
as generations. A penalty is throughput reduction. We model
coding over generations as the coupon collector’sbrotherhood
problem. This model enables us to theoretically compute the
expected number of coded packets needed for successful decoding
of the entire content, as well as a bound on the probability of
decoding failure, and further, to quantify the tradeoff between
computational complexity and throughput. Interestingly, with a
moderate increase in the generation size, throughput quickly
approaches link capacity. As an additional contribution, we derive
new results for the generalized collector’s brotherhood problem
which can also be used for further study of many other aspects
of coding over generations.

I. I NTRODUCTION

In P2P systems, such as BitTorrent, content distribution
involves fragmenting the content at its source, and using
swarming techniques to disseminate the fragments among
peers. Acquiring a file by collecting its fragments can be to a
certain extent modeled by the classic coupon collector prob-
lem, which indicates some problems such systems may have.
For example, probability of acquiring a novel fragment drops
rapidly as the number of those already collected increases.In
addition, as the number of peers increases, it becomes harder
to do optimal scheduling of distributing fragments to receivers.
One possible solution is to use a heuristic that prioritizes
exchanges of locally rarest fragments. But, when peers have
only local information about the network, such fragments often
fail to match those that are globally rarest. The consequences
are, among others, slower downloads and stalled transfers.
Consider file at a server that consists ofN packets, and a client
that chooses a packet from the server uniformly at random
with replacement. Then the process of downloading the file
is the classical coupon collection, and the expected number
of samplings needed to acquire allN coupons isO(N logN)
(see for example [1]), which does not scale well for largeN
(large files).

Randomized coding systems, such as Microsoft’s Avalanche
[2], attempt to lessen such problems in the following way.
Instead of distributing the original file fragments, peers pro-
duce linear combinations of the fragments they already hold.
These combinations are distributed together with a tag that
describes the coefficients used for the combination. When
a peer has enough linearly independent combinations of the
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original fragments, it can decode and build up the original file.
The information packets can be decoded whenN linearly in-
dependent equations have been collected. For a large field, this
strategy reduces the expected number of required samplings
fromO(N logN) to almostN (see for example [3]). However,
the expense to pay is the computational complexity. If the
information packets consist ofd symbols inGF (q), it takes
O(Nd) operations inGF (q) to form a linear combination per
coded packet, andO(N3 +N2d) operations, or, equivalently,
O(N2+Nd) operations per information packet, to decode the
information packets by solving linear equations.

We refer to the number of information packets combined
in a coded packet as the degree of the coded packet. The
complexity of computations required for solving the equations
of information packets depends on the average degree of coded
packets. To reduce computational complexity while maintain-
ing the throughput gain brought by coding, several approaches
have been introduced seeking to decrease the average degree
of coded packets [4], [5], [6]. Nevertheless, it is hard to design
distributed coding schemes with good throughput/complexity
tradeoff that further combine coded packets.

Chou et al. [7] proposed to partition information packets into
disjoint generations, and combine only packets from the same
generation. The performance of codes with random scheduling
of disjoint generations was first theoretically analyzed by
Maymounkov et al. in [8], who referred to them aschunked
codes. Chunked codes allow convenient encoding at inter-
mediate nodes, and are readily suitable for peer-to-peer file
dissemination. In [8], the authors used an adversarial schedule
as the network model and measured the code performance by
estimating the loss of “code density” as packets are combined
at intermediate nodes throughout the network.

In this work, we propose a way to analyze coding with
generations from a coupon collection perspective. Here, we
view the generations as coupons, and model the receiver who
needs to acquire multiple linear equations for each generation
as a collector seeking to collect multiple copies of the same
coupon. This collecting model is sometimes refereed to as
the collector’s brotherhoodproblem, as in [9]. As a classical
probability model which studies random sampling of a popu-
lation of distinct elements (coupons) with replacement [1], the
coupon collector’sproblem finds application in a wide range of
fields [10], from testing biological cultures for contamination
[11] to probabilistic-packet-marking (PPM) schemes for IP
traceback problem in the Internet [12]. We here use the ideas
from the collector’s brotherhood problem, to derive refined
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results for expected throughput for finite information length
in unicast scenarios. We describe the tradeoff in throughput
versus computational complexity of coding over generations.
Our results include the asymptotic code performance, by
proportionally increasing either the generation size or the
number of generations. The code performance mean con-
centration leads us to a lower bound for the probability of
decoding error. Our paper is organized as follows: Sec. II
describes the unicast file distribution with random scheduling
and introduces pertaining results under the coupon collector’s
model. Sec. III studies the throughput performance of coding
with disjoint generations, including the expected performance
and the probability of decoding failure. Sec. IV concludes.

II. CODING OVER GENERATIONS

A. Coding over Generations in Unicast

We consider the transmission of a file from a source to
a receiver over a unicast link using network coding over
generations.

The file is divided intoN information packets,p1, p2,
. . . , pN . Each packetpi(i = 1, 2, . . . , N) is represented as
a column vector ofd information symbols in Galois field
GF (q). Packets are sequentially partitioned inton = N

h

generationsof size h, denoted asG1, G2, . . . , Gn. Gj =
[p(i−1)h+1, p(i−1)h+2, . . . , pih] for j = 1, 2, . . . , n. The re-
ceiver collects coded packets from then generations. The
coding scheme is described as follows:

a) Encoding: In each transmission, the source first se-
lects one of then generations with equal probability. Assume
Gj is chosen. Then the source chooses a coding vectore of
length h, with each entry chosen independently and equally
probably fromGF (q). A new packetp̄ is then formed by
linearly combining packets fromGj by e: p̄ = Gje. The
coded packet̄p is then sent over the communication link to
the receiver along with the coding vectore and the generation
index j.

b) Decoding: The receiver gathers coded packets and
their coding vectors. We say that a receiver collects one more
degree of freedomfor a generation if it receives a coded packet
from that generation with a coding vector linearly independent
of previously received coding vectors from that generation.
Once the receiver has collectedh degrees of freedom for a
certain generation, it can decode that generation by solving a
system ofh linear equations inh unknowns overGF (q).

Note that the two extremes, generation sizesh = N and
h = 1, correspond respectively to full random linear network
coding(i.e. without generations) and not using coding at all(but
with random piece selection).

Since in the coding scheme described above, both the coding
vector and the generation whose packets are combined are
chosen uniformly at random, the code is inherently rateless.
We measure the throughput by the number of coded packets
necessary for decoding all the information packets.

c) Computational Complexity:It takesO(hd) operations
to form each linear combination ofh length-d vectors(packets)
in GF (q). The computational cost for encoding is thenO(hd)

per coded packet. Meanwhile, it takesO(h3+h2d) operations
in GF (q) to solveh linearly independent equations for the
h packets of one generation. Thus, the cost for decoding is
O(h2 + hd) per information packet.

B. Extension to a General Network

In a general network, intermediate nodes follow a similar
coding scheme except that previously received coded packets
are combined instead of the original information packets. We
leave out the details since the analysis of code performancein
general network topologies is beyond the scope of this paper.

C. Collector’s Problem and Coding Over Generations

In a coupon collector’s problem, a set of distinct coupons
are sampled with replacement. Consider then generations
as n distinct coupons, and collecting degrees of freedom
for generationGi is analogous to collecting copies of the
ith element in the coupon set. In the next section, we will
characterize the throughput performance of the code under the
coupon collector’s probability model.

III. T HROUGHPUT OFCODING OVER GENERATIONS

We next study the throughput performance of coding over
generations in the simplest single-server-single-user scenario
by using thecollector’s brotherhoodmodel [9]. Recall that,
to successfully recover the file, the receiver has to collecth
degrees of freedom for each generation. Fori = 1, . . . , n, let
Ni be the number of coded packets sampled fromGi until h
degrees of freedom are collected. Then,Nis are i.i.d. random
variables with the expected value [3]

E[Ni] =

h−1
∑

j=0

1

1− qj−h
. (1)

Approximating summation by integration, from (1) we get

E[Ni] /

∫ h−1

0

1

1− qx−h
dx+

1

1− q−1

=h+
q−1

1− q−1
+ logq

1− q−h

1− q−1
.

Note thatNi ≤ s means theh × s matrix formed bys
coding vectors of lengthh as columns is of full row rank.
For s < h, Pr[Ni ≤ s] = 0. For s ≥ h, Pr[Ni ≤ s] equals
the probability that for eachk = 1, 2, . . . , h, the kth row in
the matrix is linearly independent of rows1 through(k − 1).
Hence,

Pr[Ni ≤ s] =
h−1
∏

k=0

((

qs − qk
)

/qs
)

=
h−1
∏

k=0

(1− qk−s). (2)

We have the following Lemma 1 upper bounding the comple-
mentary cumulative distribution function (CCDF) ofNi.

Lemma 1:There exist positive constantsαq,h and α2,∞

such that, fors ≥ h,

Pr[Ni > s] = 1−

h−1
∏

k=0

(1− qk−s)

< 1− exp(−αq,hq
−(s−h)) < 1− exp(−α2,∞q−(s−h)).



Proof: Please refer to Appendix.
Let T (n,m) be the number of coded packets collected when

for the first time there are at leastm(≥ 1) coded packets from
every generation in the collection at the receiver. The total
number of coded packets needed for accumulatingNi(≥ h)
coded packets of each generationGi is then greater or equal
to T (n, h).

The collector’s brotherhood problem[9], also referred to as
the double dixie cup problem[13], investigates the stochastic
quantities associated to acquiringm(≥ 1) complete sets ofn
distinct elements by random sampling.

A. Results From The Collector’s Brotherhood Problem

For anym ∈ N, we defineSm(x) as follows:

Sm(x) =1 +
x

1!
+

x2

2!
+ · · ·+

xm−1

(m− 1)!
(m ≥ 1) (3)

S∞(x) = exp(x) andS0(x) = 0. (4)

Theorem 2:Consider uniformly random sampling ofn dis-
tinct coupons with replacement. Suppose for someA ∈ N,
integersk1, . . . , kA andm1, . . . ,mA satisfy 1 ≤ k1 < · · · <
kA ≤ n and m1 > · · · > mA ≥ 1. For convenience of
notation, letm0 = ∞ and mA+1 = 0. Then, the expected
number of samplings needed to acquire at leastm1 copies of
at leastk1 coupons, at leastm2 copies of at leastk2 coupons,
and so on, at leastmA copies of at leastkA coupons in the
collection is

n

∫ ∞

0

{

enx− (5)

∑

(i0,i1,...,iA+1):

i0=0,iA+1=n

kj≤ij≤ij+1
j=1,2,...,A

A
∏

j=0

(

ij+1

ij

)

[

Smj
(x) − Smj+1(x)

]ij+1−ij}

e−nxdx

Proof: Our proof generalizes the symbolic method of
[13]. Please refer to Appendix.

SettingA = 1, k1 = k andm1 = m in Theorem 2 gives
the following corollary:

Corollary 3: The expected number of samplings needed to
collect at leastk of then distinct coupons for at leastm times
is n

∫∞

0

{

∑k−1
i=0

(

n
i

)

Sn−i
m (x) [ex − Sm(x)]

i
}

e−nxdx.
In the context of coding over generations, this corollary

gives us an estimation of the growth of the size of decodable
information. It is also helpful to the study of a coding scheme
with a “precode” as discussed in [8].

Furthermore, by settingk = n in Corollary 3, we recover
the following result of [13]:

Corollary 4: The expected sampling size to acquirem
complete sets ofn coupons is

E[T (n,m)] = n

∫ ∞

0

[

1− (1− Sm(x)e−x)n
]

dx (6)

(6) can be numerically evaluated for finitem andn.
The asymptotic ofE[T (n,m)] for large n has been dis-

cussed in literature such as [13], [14] and [15].

Theorem 5:([14]) Whenn → ∞,

E[T (n,m)] = n logn+ (m− 1)n log logn+ Cmn+ o(n),

whereCm = γ−log(m−1)!, γ is Euler’s constant andm ∈ N.
For m ≫ 1, on the other hand, we have [13]

E[T (n,m)] → nm. (7)

What is worth mentioning is that, as the number of coupons
n → ∞, for the first complete set of coupons, the num-
ber of samplings needed isO(n log n), while the additional
number of samplings needed for each additional set is only
O(n log logn).

In addition to the expected value ofT (n,m), the concen-
tration of T (n,m) around its mean is also of great interest
to us. We can derive from it an estimate of the probability
of successful decoding after gathering a certain number of
coded packets. The generating function ofT (n,m) and its
probability distribution are given in [9], but it is quite difficult
to evaluate them numerically. We will instead look at the
asymptotic case where the number of couponsn → ∞. Erdös
and Rényi have proven in [16] the limit law ofT (n,m) as
n → ∞. Here we restate Lemma B from [14] by Flatto, which
in addition expresses the rate of convergence to the limit law.

Lemma 6: [14] Let

Y (n,m) =
1

n
(T (n,m)− n logn− (m− 1)n log logn) .

Then,

Pr[Y (n,m) ≤ y] = exp

(

−
e−y

(m− 1)!

)

+O

(

log logn

logn

)

.

Remark 1: (Remark 2, [14]) The estimation in Lemma 6 is
understood to hold uniformly on any finite interval−a ≤ y ≤
a. i.e., for anya > 0,
∣

∣

∣

∣

Pr[Y (n,m) ≤ y]− exp

(

−
exp(−y)

(m− 1)!

)
∣

∣

∣

∣

≤ C(m, a)
log logn

logn
,

n ≥ 2 and −a ≤ y ≤ a. C(m, a) is a positive constant
depending onm anda, but independent ofn.

B. Throughput

The number of coded packetsT the receiver needs to collect
for successful decoding is lower bounded byT (n, h), and so
E[T ] is lower bounded byE[T (n, h)]. Also, by Lemma 1,Ni

is well concentrated nearh for largeq, and soT (n, h) could
be a good estimate forT for finite n. In addition, from Thm. 5
and (7) we observe that, whenn ≫ 1 or m ≫ 1, E[T (n,m)]
is linear in m. Thus, we could substituteE[Ni] for m in
these expressions to roughly estimate the asymptotic expected
number of coded packets needed for successful decoding.

From Lemma 6, we obtain the following lower bound to
the probability of decoding failure asn → ∞:

Theorem 7:When n → ∞, the probability of decoding
failure whent coded symbols have been collected is greater
than1−exp

[

− 1
(h−1)!n(logn)

h−1 exp
(

− t
n

)

]

+O
(

log log n
logn

)

.



Proof: The probability of decoding failure after acquiring
t coded packets equals Pr[T > t]. SinceT ≥ T (n, h),

Pr[T > t] ≥Pr[T (n, h) > t]

=1−Pr

[

Y (n, h) ≤
t

n
− logn− (m− 1) log logn

]

The result in Theorem 7 follows directly from Lemma 6.

0 50 100 150
1000

2000

3000

4000

5000

6000

7000

8000

Generation Size h

T
 E

st
im

at
es

N=1000

 

 

E[T(n,h)] theoretical
simulation mean
n−>∞ asymptotic
h−>∞ asymptotic

(a)

0 2000 4000 6000 8000 10000 12000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

# of Coded Packets Collected

P
ro

ba
bi

lit
y 

of
 D

ec
od

in
g 

F
ai

lu
re

N=1000

 

 
h=1, simulation
h=5, simulation
h=10, simulation
h=1, theoretical
h=5, theoretical
h=10, theoretical

(b)

Fig. 1. (a)Estimates ofT , the number of coded packets needed for
successful decoding when the total number of information packetsN = 1000:
E[T (n, h)]; average ofT in simulation (q = 256); n → ∞ asymptotic
Theorem 5;m ≫ 1 asymptotics (7). (b)Estimates of probability of decoding
failure versus the number of coded packets collected: Theorem 7 along with
simulation results (q = 256).

Figure 1(a) shows several estimates ofT for fixed N =
nh = 1000 versus generation sizeh. It is worth noting that,
for fixed N , E[T (n, h)] drops significantly ash is increased
to a relatively small value. For the exampleN = 1000,
when each generation includes1/10 of all the information
packets, the expected overhead required for successful de-
coding is below16%. In such scenarios as assumed in our
model, where feedback is minimal, the benefit of coding on
throughput is pronounced even when it is done in relatively
small information block length. In effect, communication
overhead due to the exchange of control messages makes way
for moderate computational complexity at individual nodes.

This is particularly meaningful to communication networksin
shared media, in which contention occurs frequently, and also
to networks of nodes with medium computing power.

Figure 1(b) shows the estimate of the probability of decod-
ing failure versusT . As pointed out in Remark 1, the deviation
of the CDF ofT (n,m) from the limit law forn → ∞ depends
on m and is on the order ofO( log logn

logn
), which is quite slow.

This is also implied in our observation from Figure 1(a) that
Thm. 5 gives a good estimate ofE[T (n,m)] only for very
small values ofm(compared ton).

IV. CONCLUSION AND FUTURE WORK

We investigated the throughput performance of coding over
generations in the unicast scenario under the classical yetever-
useful coupon collector’s model. We derived a general formula
(Theorem 2) to compute the expected number of samplings
necessary for collecting multiple copies ofn distinct coupons.
The formula can be applied in various ways to analyze a
number of different aspects of coding over generations. Here
in particular, we used a special case of this result, namely,the
expected number of samplingsE[T (n, h)] needed to collecth
complete sets ofn distinct coupons to estimate the expected
number of coded packets necessary for successful decoding
whenN information packets are encoded overn generations
of size h each. Apart from results for finite information
lengthN , the asymptotics ofE[T (n, h)] can also be used to
estimate the performance of coding when either the number of
generationsn or the generation sizeh go to inifinity. We also
gave a lower bound for the probability of decoding failure by
using the limit law forT (n, h) asn → ∞.

The general result expressed in Theorem 2 has proved
its usefulness to the analysis of coding over overlapping
generations in our recent work [17]. Further, we have been
able to derive in [18] the exact expression, as well as an upper
bound, for the expected number of coded packets necessary for
successful decoding. We expect to extend our analysis under
the coupon collection framework to many other aspects of
coding over generations.
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APPENDIX

Proof of Lemma 1

For i = 1, 2, . . . , n and anys ≥ h, we have

lnPr
{

Ni ≤ s
}

=

h−1
∑

k=0

ln(1− qk−s) = −

h−1
∑

k=0

∞
∑

j=1

1

j
q(k−s)j

=−

∞
∑

j=1

1

j

h−1
∑

k=0

qj(k−s) = −

∞
∑

j=1

1

j
q−js q

jh − 1

qj − 1

=− q−(s−h)
∞
∑

j=1

1

j
q−(j−1)(s−h) 1− q−jh

qj − 1

>q−(s−h)
∞
∑

j=1

1

j

1− q−jh

1− qj
= q−(s−h) lnPr

{

Ni ≤ h
}

>q−(s−h) lim
h→∞,q=2

lnPr
{

Ni ≤ h
}

The claim is obtained by setting

αq,h = − lnPr
{

Ni ≤ h
}

, α2,∞ = − lim
h→∞,q=2

lnPr
{

Ni ≤ h
}

.

Proof of Theorem 2

Our proof generalizes the symbolic method of [13]. LetE be
the event that, in the acquired collection, there are at least m1

copies of at leastk1 coupons, at leastm2 copies of at leastk2
coupons, and so on, at leastmA copies of at leastkA coupons.
For t ≥ 0, let E(t) be the event thatE has occurred aftert
samplings, and let1Ē(t) be the indicator that takes value1 if
E(t) does not occur and0 otherwise. Then random variable
W = 1Ē(0) + 1Ē(1) + . . . equals the waiting time forE to
occur. Fort ≥ 0, let πt = Prob[Ē(t)]; we then have

E[W ] =
∑

t≥0

πt. (8)

To deriveπt, we introduce an operatorf acting on ann-
variable polynomialg. For a monomialxw1

1 . . . xwn
n , let ij be

the number of exponentswu amongw1, . . . , wn satisfying
wu ≥ mj, for j = 1, . . . , A. f removes all monomials
xw1
1 . . . xwn

n in g satisfying i1 ≥ k1, . . . , iA ≥ kA and
i1 ≤ · · · ≤ iA. Note thatf is a linear operator, i.e., ifg1
and g2 are two polynomials in the samen-variables, anda
andb two scalars, we haveaf(g1) + bf(g2) = f(ag1 + bg2).

Each monomial in(x1 + · · · + xn)
t corresponds to one

of the nt possible outcomes aftert samplings, with the
exponent ofxi being the number of collected copies of the
ith coupon. Hence, the number of outcomes counted inĒ(t)
equalsf((x1 + · · ·+ xn)

t) evaluated atx1 = · · · = xn = 1.

πt =
f((x1 + · · ·+ xn)

t)

nt
|x1=···=xn=1,

and thus, by (8),E[W ] =
∑

t≥0

f((x1+···+xn)
t)

nt |x1=···=xn=1.

Making use of the identity 1
nt = n

∫∞

0
1
t!y

te−nydy, and
because of the linearity of operatorf , we further have

E[W ] =n

∫ ∞

0

∑

t≥0

f ((x1 + · · ·+ xn)
t)

t!
yte−nydy

=n

∫ ∞

0

f
(

∑

t≥0

(x1y + · · ·+ xny)
t

t!

)

e−nydy

=n

∫ ∞

0

f (exp(x1y + · · ·+ xny)) e
−nydy (9)

evaluated atx1 = · · · = xn = 1.
We next need to find the sum of the monomials in the

polynomial expansion ofexp(x1 + · · · + xn) that should be
removed underf . If we choose integers0 = i0 ≤ i1 ≤ · · · ≤
iA ≤ iA+1 = n, such thatij ≥ kj for j = 1, . . . , A, and then
partition indices{1, . . . , n} into (A+1) subsetsI1, . . . , IA+1,
whereIj(j = 1, . . . , A+ 1) hasij − ij−1 elements. Then

A+1
∏

j=1

∏

i∈Ij

(Smj−1(xi)− Smj
(xi)) (10)

equals the sum of all monomials inexp(x1 + · · ·+ xn) with
(ij − ij−1) of then exponents smaller thanmj−1 but greater
than or equal tomj, for j = 1, . . . , A+1. (HereS is as defined
by (3-4).) The number of such partitions of{1, . . . , n} is equal
to

(

n
n−iA,...,i2−i1,i1

)

=
∏A

j=0

(

ij+1

ij

)

. Finally, we need to sum
the terms of the form (10) over all partitions of all choices of
i1, . . . , iA satisfyingkj ≤ ij ≤ ij+1 for j = 1, . . . , A:

f (exp(x1y + · · ·+ xny)) |x1=···=xn=1 = exp(ny)−

∑

(i0,i1,...,iA+1):

i0=0,iA+1=n

kj≤ij≤ij+1
j=1,2,...,A

A
∏

j=0

(

ij+1

ij

)

[

Smj
(y)− Smj+1(y)

]ij+1−ij
.

(11)

Bringing (11) into (9) gives our result in Theorem 2.

http://www.informaworld.com/10.1080/15326349708807412
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