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Abstract

When multiple sources of data need to transmit theirrateless codedsymbols through a single relay to a common
destination, adistributed rateless codeinstead of several separate conventional rateless codes can be employed to
encode the input symbols to increase the transmission efficiency and flexibility.

In this paper, we proposedistributed rateless codes (DU-rateless)that can provideunequal error protection
(UEP) for distributed sources with different data block lengths and different importance levels. We analyze our
proposed DU-rateless code employingAnd-Or tree analysistechnique. Next, we design several sets of optimum
DU-rateless codes for various setups employing multi-objective genetic algorithms and evaluate their performances.

I. INTRODUCTION

Rateless codes[1], [2], [3] are modern and efficientforward error correction(FEC) codes. Each rateless
code is determined by adegree distribution, which is precisely designed to achieve a capacity-approaching
performance.

In distributed data transmission using rateless codes,r data sources need to transmit their rateless
encoded symbols to a destination through a common relay. In general,r sources may have different data
block lengths and different data importance levels, which necessitate the design of flexibledistributed
rateless codesthat can provideunequal error protection(UEP) of data for different sources. In this paper,
we proposedistributed UEP rateless codes(DU-rateless codes), which are a realization of such codes.

It has been shown that the efficiency of rateless codes increases as the data block length increases [1],
[2], [3], [4]. Thus, in distributed rateless codes it is advantageous tocombinethe incoming symbols in
the intermediate relay, which is equivalent to coding a larger data block. Moreover, by tuning coding
parameters in each data source and parameters of the relay, UEP property can be provided for different
data sources. The problem in DU-rateless codes is to optimally design different degree distributions for
each source and to design relaying parameters to realize thedesired UEP property and a minimal error
rate for all data sources.

Previously, two contributions [4] and [5] have studied distributed rateless codes. Authors in [4] have
designeddistributed LT codes. In the proposed scheme in [4], the relay combines all incoming symbols
that are coded atr ∈ {2, 4} sources with the same degree distribution. This coding degree distribution
is designed such that the degree distribution of the combined symbols at the relay follows an optimum
degree distribution calledRobust-Solitondegree distribution [1]. This algorithm cannot provide UEPfor
different sources and obligates sources to have the same data block lengths.

In [5], authors have also considered the case where the source nodes have the same data lengths,
and all source nodes perform the encoding with the same degree distribution. Authors have also studied
the case where the relay generates final output symbols with another independent degree distribution
that determines how many symbols should be combined in the relay to generate an output symbol. The
optimization for relaying and coding parameters has been performed separately in this paper, which may
result in suboptimal performance.

In this paper, we take several steps further compared to [4],[5], and propose DU-rateless codes that are
inspired by UEP rateless codes [6], [7]. DU-rateless codes are able to provide UEP for different sources
that may also have various data block lengths.

The paper is organized as follows. In Section II, we propose DU-rateless codes and analyze these codes
employingAnd-Or tree analysistechnique [8]. In Section III, we design and evaluate the performance
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of several ensembles of DU-rateless codes for different UEPsetups by optimizing degree distributions
for each source and relaying parameters along each other employing the state-of-the-artmulti-objective
genetic algorithmsNSGA-II [9]. Finally, Section IV concludes the paper.

II. DU-RATELESS CODES
Rateless codes can generate a limitless number of output symbols from k input symbols based on a

degree distribution{Ω1,Ω2, . . . ,Ωk}, whereΩi is the probability that an output symbol has degreei,
and

∑k

i=1Ωi = 1. This probability distribution can also be shown by its generator polynomialΩ(x) =
∑k

i=1Ωix
i. In rateless coding, first an output symbol degreed is randomly chosen fromΩ(x). Next, d

input symbols are chosen uniformly at random fromk input symbols and areXORed together to generate
an output encoded symbol.Ω(x) is usually finely tuned such thatk input symbols can be decoded from
any γk collected output symbols at decoder, whereγ is a number slightly larger than one and is called
coding overhead.

Rateless decoding process consists of one step: Find an output symbol such that the value of all but
one of its neighboring input symbols is known. The value of the unknown input symbol is computed by
a simple XOR. We apply this step until no more such output symbols can be found.

In DU-rateless coding, each source performs rateless coding with a distinct degree distribution on its
data block and forwards its output symbols to the relay. For the sake of simplicity in analytical expressions,
we consider a case withr = 2. Consider a distributed data transmission with two sourcess1 ands2, and
data block lengthsρk andk, respectively, where0 < ρ ≤ 1. s1 and s2 encode their input symbols with
degree distributionsΩ(x) andϕ(x) with the largest degreesB1 andB2, respectively, and forward them
to the relay (see Figure 1). RelayR receives output symbols from two sources and performs as follows.

1) With probabilitiesp1 andp2 it relays the first and the second source’s output symbol to the destination
D, respectively.

2) With probabilityp3 = 1 − p1 − p2 it combines two incoming symbols and forwards the combined
symbol to the destination.

s2

D

s1
k

k
(p1, p2, p3)

R

Fig. 1. Adopted model for DU-rateless codes.s1, s2, R, andD represent distributed sources, relay, and destination, respectively.

The proposed DU-rateless code ensemble is specified by parameters (ρk, k,Ω(x), ϕ(x), p1, p2, p3, γ).
DU-rateless decoding is the same as rateless decoding. The decoding is successful when(1+ρ)γk output
symbols are received at the destination.

Following [3], we may view the input and output symbols as vertices of a bipartite graphG, where
the input symbols are the variable nodes and the output symbols are the check nodes. Without loss of
generality, throughout this paper we may assume that the symbols are binary symbols for simplicity.

In DU-rateless coding described above, the corresponding bipartite graph at the receiver has two types
of variable nodes (input symbols froms1 ands2), and three types of check nodes generated by the relay
as depicted in Figure 2.In this graph, the check nodes in the first group are generatedbased onΩ(x) and are only connected
to input symbols ofs1. Similarly, the check nodes in the second group are generated based onϕ(x) and
are only connected to input symbols ofs2. Finally, the check nodes in the third group are generated
using input symbols from boths1 ands2 with a degree distribution equal toΩ(x)×ϕ(x) [4]. It is worth
noting that a check node belongs to the first, second, and third group with probabilitiesp1, p2, and p3,
respectively.

To investigate the recovery probability of an input symbol in DU-rateless codes, we first extend And-Or
tree analysis [8], [3], [6] technique to fit our problem. Then, we map decoding of DU-rateless codes to
extended And-Or tree analysis, and evaluate the recovery probability of input symbols.
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k k

(1+ ) k output symbols

1st group 3rd group 2nd group

Input symbols

Fig. 2. The bi-partite graph representing input and output symbols for r = 2.

A. And-Or Tree Analysis Technique

Consider two And-Or trees [8]Tl,1 and Tl,2 with depth 2l. Assume thatTl,1 and Tl,2 have Type-X
and Type-Y OR-nodes and Type-I, Type-II, and Type-III AND-nodes. For each tree, the root of the tree
is at depth0, its children are at depth1, their children at depth2, and so forth. Each node at depth
0, 2, 4, . . . , 2l− 2 is anOR-node(and it evaluates logical OR operation on the value of its children), and
each node at depth1, 3, 5, . . . , 2l − 1 is called anAND-node(and it evaluates logical AND operation on
the value of its children). The root ofTl,1 is a Type-X OR-node, and the root ofTl,2 is a Type-Y OR-node
as depicted in Figures 3 and 4, respectively.

X

I

X

I

YY

YY

IIII

III III

X X X

III III

PSfrag replacements

ij

Fig. 3. Tl,1 And-Or tree with two types of OR-nodes and three types of AND-nodes with a Type-X OR-node root.

We assume that in bothTl,1 andTl,2, Type-X OR-nodes choosei ∈ {0, . . . , A1} and j ∈ {0, . . . , A1}
children from Type-I and Type-III AND-nodes with probabilities δi,1 and δj,1, respectively. Furthermore,
Type-Y OR-nodes choosei ∈ {0, . . . , A2} and j ∈ {0, . . . , A2} children from Type-II and Type-III
AND-nodes with probabilitiesδi,2 andδj,2, respectively.

Further, Type-I AND-nodes choosei ∈ {0, . . . , B1−1} children from Type-X OR-nodes with probability
βi,1, and Type-II AND-nodes choosei ∈ {0, . . . , B2−1} children from Type-Y OR-nodes with probability
βi,2.

Moreover, inTl,1, Type-III AND-nodes choosej ∈ {0, . . . , B1 − 1} and i ∈ {1, . . . , B2} children from
Type-X and Type-Y OR-nodes with probabilitiesβj,1 andβi,3, respectively. Note that Type-III AND-nodes
in Tl,1 should have at least one child from Type-Y OR-nodes, since otherwise it is a Type-I AND-node. In
addition, inTl,2, Type-III AND-nodes can choosej ∈ {0, . . . , B2 − 1} andi ∈ {1, . . . , B1} children from
Type-Y and Type-X OR-nodes with probabilitiesβj,2 and βi,4, respectively. Similar to Type-III AND-
nodes inTl,1, Type-III AND-nodes inTl,2 need to have at least one child from Type-X OR-nodes to be
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Fig. 4. Tl,2 And-Or tree with two types of OR-nodes and three types of AND-nodes with a Type-Y OR-node root.

distinguished from Type-II AND-nodes.
Finally, we assume that in bothTl,1 andTl,2 the ratio of the number of AND-nodes of Type-I, Type-II,

and Type-III isp1, p2, andp3 = 1− p1 − p2, where0 ≤ pi ≤ 1, ∀i.
Type-X and Type-Y OR-nodes at depth2l are independently assigned a value of0 with probabilities

y0,1 and y0,2, respectively. Also OR-nodes with no children are assumed to have a value0, whereas
AND-nodes with no children are assumed to have a value1. We are interested in findingyl,1 and yl,2,
the probabilities that the root nodes ofTl,1 andTl,2 evaluate to0, respectively, if we treat the trees as a
Boolean circuits. Lemma 1 formulatesyl,1 andyl,2.

Lemma 1:Let yl,1 andyl,2 be the probabilities that the roots of And-Or treesTl,1 andTl,2 evaluate to
0, respectively. Then

yl,1 = δ1

(

1− p′1

B1−1
∑

i=0

βi,1(1 − yl−1,1)
i−

p′3

B1+B2−2
∑

d=0

d
∑

j=0

[βj,1(1− yl−1,1)
jβd−j+1,3(1 − yl−1,2)

d−j+1]

)

,

yl,2 = δ2

(

1− p′2

B2−1
∑

i=0

βi,2(1 − yl−1,2)
i−

p′4

B1+B2−2
∑

d=0

d
∑

j=0

[βj,2(1− yl−1,2)
jβd−j+1,4(1 − yl−1,1)

d−j+1]

)

,

(1)

with δ1(x) =
A1
∑

i=0

δi,1x
i, δ2(x) =

A2
∑

i=0

δi,2x
i, p′1 = p1

1−p2
, p′3 = 1−p1−p2

1−p2
= p3

1−p2
, p′2 = p2

1−p1
and p′4 =

1−p1−p2
1−p1

= p3
1−p1

.
Proof: The proof is straight forward and similar to the proof of [7, Lemma 2], and is not included

in this paper due to space limit.
The relation between the above analysis and the error probabilities for DU-rateless codes is given in

the following.

B. Analysis of DU-rateless Codes

In this section, we examine the DU-rateless codes under iterative decoding. LetG denote the bipartite
graph corresponding to a DU-rateless code at the receiver. In [2], [3], [7], [6], authors have shown that
iterative belief propagation decoding of rateless codes can be rephrased as following. At every iteration
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of the algorithm, messages (0 or 1) are sent along the edges from check nodes to variable nodes,and
then from variable nodes to check nodes.

A variable node sends0 to an adjacent check node if and only if its value is not recovered yet. Similarly,
a check node sends0 to an adjacent variable node if and only if it is not able to recover the value of
the variable node. In other words, a variable node sends1 to a neighboring check node if only if it has
received at least one message with value1 from its other neighboring check nodes. Also a check node
sends0 to a neighboring variable node if only if it has received at least one message with value0 from
its other neighboring variable nodes. Therefore, we see that variable nodes indeed do the logical OR
operation, and the check nodes do the logical AND operation.

Consequently, we can use the results of Lemma 1 on a subgraphGl,1 of G to find the probability that
a s1 variable node is not recovered afterl decoding iterations (its value evaluates to zero). We choose
Gl,1 as following. Choose an edge(v, w) uniformly at random from all edges inG with one end among
variable nodes ofs1. Call the variable nodev the root ofGl,1. SubgraphGl,1 is the graph induced byv
and all neighbors ofv within distance2l after removing the edge(v, w). It can be shown thatGl,1 is a
tree asymptotically [8]. We can map encoded symbols froms1, encoded symbols froms2, and combined
encoded symbols inGl to Type-I, Type-II, and Type-III AND-nodes inTl,1, respectively. Further, variable
nodes ofs1 ands2 in Gl,1 can be mapped to Type-X and Type-Y OR-nodes inTl,1, respectively.

In the same way, to find the probability that as2 variable node is not recovered afterl decoding
iterations, we choose a subgraphGl,2 of G similar to Gl,1 except that we choose the edge(v, w) such
that it has an end among variable nodes ofs2. Gl,2 can be mapped toTl,2 in the same way thatGl,1 is
mapped toTl,1.

To complete DU-rateless codes analysis, we only need to compute the probabilitiesβi,1, βi,2, βi,3, βi,4,
and functionsδ1(x) andδ2(x), which are given in the following Lemma.

Lemma 2:Consider treesTl,1 andTl,2 that are derived based on a (ρk, k,Ω(x), ϕ(x), p1, p2, p3, γ) DU-
rateless code graphG. The probabilitiesβi,1, βi,2, βi,3, βi,4, and functionsδ1(x) and δ2(x) are given
as

δ1(x) = e(1−p2)µ1γ
(1+ρ)

ρ
(x−1), δ2(x) = e(1−p1)µ2γ(1+ρ)(x−1),

βi,1 =
(i + 1)Ωi+1

Ω′(1)
, βi,2 =

(i+ 1)ϕi+1

ϕ′(1)
,

βi,3 = ϕi, andβi,4 = Ωi,

whereµ1 = Ω′(1) andµ2 = ϕ′(1) are the average degrees of the two coding degree distributionsΩ(x)
andϕ(x).

Proof: We haveβi,1 is the probability that a randomly chosen edge inTl,1 is connected to a Type-I
or a Type-III AND-node withi children among Type-X OR-nodes. This is the probability that the edge
is connected to a Type-I or Type-III AND-node of degreei + 1 (excluding edges connected to Type-Y
OR-nodes from Type-III AND-nodes). It can be seen that out ofγρkΩ′(1) total edges connected to Type-I
and Type-III AND-nodes from Type-X OR-nodes,γρk(i+1)Ωi+1 edges are connected to AND-nodes of
degreei + 1. Therefore, we haveβi,1 = (i+1)Ωi+1

Ω′(1)
. Similarly, we haveβi,2 = (i+1)ϕi+1

ϕ′(1)
. Moreover,βi,3 is

the probability the a randomly chosen edge inTl,1 is connected to a Type-III AND-node withi children
in the Type-Y OR-node. This simply givesβi,3 = ϕi. In the same way,βi,4 = Ωi.

We haveδi,1 is the probability that the variable node connected to a randomly selected edge has degree
i + 1 given that the variable node belongs to Type-X OR-nodes. Thetotal number of edges connected
to Type-X OR-nodes isµ1γk(1− p2)

(1+ρ)
ρ

out of which (i+ 1)λi+1,1k edges are connected to OR-nodes
of degreei + 1, whereλi+1,1 is the probability that a variable node ofs1 has degreei + 1. We observe
that λd,1 =

(

(1−p2)µ1γk(1+ρ)
d

)

( 1
ρk
)d(1− 1

ρk
)(1−p2)µ1γk(1+ρ)−d sinceµ1(1 + ρ)γk(1− p2) edges are connected

uniformly at random tos1’s variable nodes. Therefore, we haveδi,1 =
(i+1)λi+1,1

µ1γ(1−p2)
(1+ρ)

ρ

. After substitution,

we haveδ1(x) = e
(1−p2)µ1γ

(1+ρ)
ρ

(x−1). Similarly, we haveδ2(x) = e(1−p1)µ2γ(1+ρ)(x−1).
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Lemma 1 and Lemma 2 give two sequences{yl,1}l and{yl,2}l, which are decreasing and convergent
with respect to the number of decoding iterations,l [7], [6]. Let BER1 and BER2 denote the corresponding
fixed points. These fixed points are the probabilities that Type-X and Type-Y OR-nodes are not recovered
after l decoding iterations. In other words, these fixed points are the final decoding error rates of a
(ρk, k,Ω(x), ϕ(x), p1, p2, p3, γ) DU-rateless code.

III. DU- RATELESS CODES DESIGN

In this section, we employ our analytical results in the previous section to designoptimal DU-rateless
code parametersfor different setups. For DU-rateless coding withr = 2, two error rates BER1 and BER2
are defined. The values of these two error rates aredependant, i.e. improving one error rate by modifying
DU-rateless code parameters may result in degrading the other error rate. In other words, we are dealing
with two dependant error rates. Consequently, if we consider error rates as conflicting objective functions,
we have a multi-objective optimization problem.

Since we have more than one objective functions to minimize,we need to employpareto optimality
concept. In Figure 5, we have depicted a simple minimizationproblem with twoconflicting objective
functions and two decision variables. Assume that shaded area in decision space is mapped to the shaded
area in objective space. We can observe that, three sets of variables shown on the decision space result in
F1’s andF2’s that no other decision variables can concurrently surpass. These solution are calledpareto
optimal or non-dominatedsolutions, and their mapping to objective space is calledpareto front. We can
observe that in contrast to single objective optimizations, we can have infinite number of optimum decision
variables.

x1

x2

F1(x1,x2)

F2(x1,x2)

Decision space

Dominated solution

Pareto

front

Objective space

Pareto-optimal solutions

Fig. 5. Concept of pareto optimality, pareto front, and domination for a two-objective minimization problem with two decision variables,
x1 andx2.

Multi-objective optimization methods such asNSGA-II [9] search to find solutions that result in pareto
front.

A. DU-rateless Codes Design Employing NSGA-II

We fix the parametersγ = 1.05 andB1 = B2 = 100, and employ the state-of-the-art multi-objective
genetic algorithm NSGA-II [9] to find the optimum value forΩ(x) andϕ(x) along with relaying parameters
p1, p2, and p3 that minimize BER1 and BER2 for various values ofη = BER2

BER1
and ρ ∈ {0.3, 0.5, 1}. In

other words, we have a problem including two objective functions, BER1 and BER2, with 202 independent
decision variables, i.e.̄x = {Ω1,Ω2, . . . ,Ω100, ϕ1, ϕ2, . . . , ϕ100, p1, p2}.

The resulting pareto fronts forρ ∈ {0.3, 1} are depicted in Figure 6 in objective space.
Note that each point in Figure 6 embodies two degree distributions and three relaying parameters, and

none of these points dominate another member in the pareto front. One should choose an appropriate
point according to a desiredη (UEP parameter), and employ the corresponding DU-ratelesscode. Since
optimization results cannot be reported in the paper due to huge number of members, they are made
available online at [10] forρ ∈ {0.3, 0.5, 1}. Note thatη = 1 corresponds toequal error protection(EEP)
case where data froms1 ands2 are equally protected.
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(a) The pareto front forρ = 1.
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(b) The pareto front forρ = 0.3.

Fig. 6. The resulting pareto fronts for DU-rateless codes design. Each point represents one set of DU-rateless codes parametersΩ(x),
ϕ(x), and relaying parametersp1, p2, andp3 for γ = 1.05 andρ ∈ {0.3, 0.5, 1}.

B. Performance Evaluation of Designed Codes

From the sets of optimized degree distributions available at [10], we choose DU-rateless codes for
η ∈ {10, 100} and ρ = 1 and evaluate their performance in Figure 7. For comparison,we have also
providedBER1 andBER2 for EEP case (η = 1).
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(a) BERs forη = 10.
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(b) BERs forη = 100.

Fig. 7. The resulting BERs with optimized sets of parametersfor η ∈ {10, 100}, γ = 1.05, andρ = 1.

Figure 7 illustrates that the expected UEP property is fulfilled for γ = 1.05 with the minimal values of
BER1 andBER2. The parameters of a DU-rateless code forρ = 1 andη = 10 are given asp1 = 0.4822,
p2 = 0.1173, p3 = 0.4005,

Ω(x) = 0.039x1 + 0.492x2 + 0.094x3 + 0.09x4 + 0.096x5

+ 0.002x6 + 0.055x7 + 0.019x8 + 0.033x9 + 0.014x10

+ 0.004x20 + 0.006x27 + 0.005x31 + 0.005x43 + 0.005x78

+ 0.005x86 + 0.014x95 + 0.007x100
,

and
ϕ(x) = 0.072x1 + 0.48x2 + 0.055x3 + 0.051x4 + 0.063x5

+ 0.059x6 + 0.037x7 + 0.026x8 + 0.025x9 + 0.036x10

+ 0.005x15 + 0.003x28 + 0.005x37 + 0.002x44 + 0.002x70

+ 0.002x77 + 0.003x83 + 0.004x93 + 0.052x95 + 0.002x97
,

We can see that to achieve an optimum distributed coding40.05% of generated symbols should be
combined in the relay. The performance of this code is illustrated in Figure 7(a).
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We emphasis that the interesting point of our approach is optimizing all codes’ parameters along each
other using multi-objective genetic algorithms. Note thatconventional linear programming optimization
methods may not be able to optimize all parameters of our codeat the same time resulting in suboptimal
code design.

Further, finding a general analytical expression forr > 2 is the next step in our future research.

IV. CONCLUSION

In this paper, we proposed distributed rateless codes withunequal error protection(UEP) property.
Besides providing UEP property, DU-rateless codes do not need that all sources to have equal data block
lengths. First, we analyzed DU-rateless codes employing And-Or tree analysis technique, and then we
designed several optimum sets of DU-rateless codes using multi-objective genetic algorithms. Finally,
we evaluated the designed codes employing simulation results. Simulation results show that DU-rateless
codes fulfill the expected UEP property with minimal error rates.
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