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Abstract—Convolutional network-error  correcting codes coding node of the network. Also, the use of convolutional
(CNECCs) are known to provide error correcting capability codes permits decoding using the Viterbi decoder, which
in acyclic instantaneous networks within the network codi@ 5 yaqdily available. CNECCs with similar advantages for
paradigm under small field size conditions. In this work, we f it-del i twork di g
investigate the performance of CNECCs under the error model memory-iree u_n' i e_ay agyc ic networks were discuss¢8]in
of the network where the edges are assumed to be statisticall and the benefit obtained in the performance of such CNECCs
independent binary symmetric channels, each with the same by using memory at the nodes of unit-delay networks was
probability of error p.(0 < p. < 0.5). We obtain bounds on the discussed in[9].
performance of such CNECCs based on a modified generating  the CNECCs off[7] were designed to correct network-errors
function (the transfer function) of the CNECCs. For a given hich dt dt of tt bsets of th
network, we derive a mathematical condition on how smallp. whic correspOI_'l 0a S_ of error patterns (subsets of the
should be so that only single edge network-errors need to be €dge set) once in a certain number of network uses (a network
accounted for, thus reducing the complexity of evaluating e use being the use of the edges of the network to transmit a
probability of error of any CNECC. Simulations indicate that number of Symbo|s equa| to the network code dimension)_
convolutional codes are required to possess different prasties o gimilar error model (with® being all subsets of the edge
to achieve good performance in lowp. and high p. regimes. itht ed idered in [4T[6]. While thi
For the low p. regime, convolutional codes with good distance set with¢ edges) was consi .ere. |.n [41-[6]. ] ,' e this error
properties show good performance. For the highp. regime, model allows code construction, it is less realistic beeghs
convolutional codes that have a goodslope (the minimum errors corresponding to any error patterndirare assumed to
normalized cycle weight) are seen to be good. We derive a lowe occur with equal probabilities.
boun_d on the slope of any rateb/c convolutional code with a A more realistic error model would be to assume every
certain degree. . . .

edgee in the network as a BSC with a certain cross-over
probability (p.) and with errors across different edges to be

[. INTRODUCTION i.i.d. In this paper, we assume such an error model (with

Network coding as a means of increasing throughput i being the same for all edges) and analyze CNECCs over
networks has been extensively studied ii [1]-[3]. Blocke binary field. Binary network codes together with this
network-error correction for coherent network codes hambeerror model were studied in_[10]. The decoding of BNECCs
studied in [4]-[6]. In all of these, the sufficient field size/nder a similar probabilistic setting was discussedLin .[11]
requirement for designing good block network-error cairgg  However, practical analysis and simulations of BNECCs unde
codes (BNECCs) is quite high. To be precise, the sufficieftProbabilistic error setting is difficult because of thgfield
field size requirement for constructing a BNECC along with $z€ demanded. On the other hand, the CNECCs developed in
network code which corrects network-errors due to aegiges [7] require small field sizes and thus facilitate analysieeT
of the network being in error once in evefynetwork uses is contributions and organization of this paper are as follows
such thay > |T]| J2|f|
requires every network-coding node of the network to penfor
multiplications of large degree polynomials over the basll fi
each time it has to transmit, and therefore is computatipnal
demanding. Moreover, the bound increases with the size of
the network. It is therefore necessary to study networkrerr
correcting codes which work under small field size condgion

Convolutional network-error correcting codes (CNECCS)
were introduced in[]7] in the context of coherent network
coding for acyclic instantaneous networks. The field size
requirement for the CNECCs of][7] is independent of the
number of edges in the network and in general much smaller
than what is demanded by BNECCs. Although the error
correcting capability might not be comparable to that @féer Fig- 1. Butterfly network
by BNECCs, the reduction in field size is a considerable
advantage in terms of the computation to be performed at eackh After briefly discussing CNECCs for the network coding

, WhereT is the set of sinks. This
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setup (Sectiofll), we present the error model for the neB” (of size |£| x n for every sinkT € T), each having el-
work. If the edge cross-over probabilipy << 0.5, then ements fromFs. Further details on the structure of these
it is sufficient to compute only single edge network-erramatrices can be found iri|[3]. The network transfer matrix
probabilities in the network thereby reducing the concorresponding to a sink’ is ann x n binary matrix M
putations required to study the performance of CNECCsuch that for any input € F%, the output at sinkl’ € T is
For any network with a given number of edges, we deriveM = x AF BT .

a bound on how small thi. should be so that this

assumption of ignoring multiple edge network-errors cag- CNECCs

be made safely. (Sectidnllll) For a given set of error patterns and for somek < n,

» Expressions for the upper bound on the bit error probabd- method of constructing rate/n convolutional codes was
ity of CNECCs are obtained based on a modified versigiven in [7] such that these CNECCs will correct network-
of the augmented path generating functi@( D, I)) of errors which correspond to the patternsdn For a given
the CNECC being used. (Sectibnl V) network with a network code, the definitions for the input

« We analyze the performance of CNECCs on networksd output convolutional code are as follows.
with a probabilistic error model using simulations with Definition 2: An input convolutional codeC;, correspond-
the butterfly network (Fid.]1) as an example. Simulatioring to an acyclic network is a convolutional code of rate
on the butterfly network indicate that different criterid/n(k < n) with ainput generator matrixG;(z) implemented
apply for CNECCs to be good under low and higlat the source of the network.
pe conditions. We therefore suggest different types of Definition 3: The output convolutional codeCr corre-
CNECCs under these two conditions. (Secfidn V) sponding to a sink nod& in the acyclic network is thé&/n

« For highp,. conditions, it is seen that those codes perforgonvolutional code generated by thatput generator matrix
better which have a high value of slope, which is define@o,r(z) which is given byGo r(z) = Gr(z)Mr, with Mr
as follows. being the full rank network transfer matrix correspondiog t
Definition 1 ( [12]): Given a minimal encoder of a ratean n-dimensional network code.

R = b/c convolutional code, the minimum normalized It was shown in[[7] that errors corresponding ¢ocan be

cycle weight corrected at all sinks as long as they are separated by ancerta
number of network uses. Moreover, a sink can achieve this

= min {U’H (0)} (1) error correcting capability by choosing to decode on either

ocO\o1 | (o) the input or the output convolutional codes depending upon

their distance properties.

Example 1: Table[l shows the network transfer matrices of
the butterfly network of Fig.]1 and an example of a CNECC
along with the output convolutional codes at the two sinks.

among all cycles € O(the set of all cycles) in the state
transition diagram of the encoder, except the zero aycle
in the zero state, is called the slopef the convolutional
code C. Here w, (o) indicates the Hamming weight
accumulated by the output sequence while traversing the TABLE |

Cyc|e o, andl(o) is the |ength of the Cyc]e im-tup]es' BUTTERFLY NETWORK OFFIG.[QWITH TH2E INPUT2CONVOLUTIONAL

« We derive a lower bound on the slope of any rafe CODEG(2) = [L+2+2" 1427,

convolutional code over any finite field (Section VI), and | Sink | Network transfer | Output convolutional code
conclude with a short discussion of the paper and several mat”f I
directions for future research (Section V). Ty | Mp = ( 0 1 ) Gor(2)=[1+z+2" 4

While CNECCs only ovef, are considered for the analyses | 1, | ap, — ( i (1) ) Gom(x) =z 1+
and simulations of this paper, CNECCs over any field size can
be studied using similar methods.

IIl. NETWORK-ERRORS IN THEBSCEDGE ERROR MODEL

Il. CONVOLUTIONAL CODES FOR NETWORKERROR Any edgee € £ in the network is assumed to be a binary
CORRECTION symmetric channel with probability of error being and

errors on different edges are assumed to be i.i.d. A network-

error is a vectow € ]F‘f' with 1s at those positions where the
An acyclic network can be represented as an acyclic directegiresponding edge is in error. The probability of a network

multi-graph (a graph that can have parallel edges betwesmorw < 15"25‘ is thenpe (“’)(1 — pe)Elm v (W),

nodes)g = (V, ) whereV is the set of all vertices andl is Let e, denote the random error vector at sifik The

the set of all edges in the network. Every edge in the directpebbability thate,. = y € F% is as follows.

A. Network model and network code

multi-graph representing the network has ucdipacity (can w. (w o (w

carry utmost one symbol from). Pe, (y) = Z (1= p)Ela ) ()
Let n be the mincut between the sourseand the set weFy wFBT =y

of sinks 7 and the dimension of the network code. An €] ‘ .

n-dimensional binary network code can be described by =Zai,ypé(1—pe)|5‘_Z

three matricesA (of sizen x |€]), F (of size|&| x |&]),and i=1



whereg; ,, indicates the number of network-error vectors from Let S be defined as
IF‘f' with weight ¢, such that they result in the error vectgr E=Y

at sinkT". S = Z ( m )p2j _< m )p2j+1
For any given network, it is essential to calculate the error = 2j 2j+1

probability of e,. being anyy € F4 for each sinkT' € T

in order to analyze the performance of any CNECC over Therefore the R.H.S of[6) becomes

the network. Equatior{2) indicates that this involves adar m . .
number of computations even if the given network is small. E ; (=1)'p' = S+ pm if m is even
However, if p. << 0.5, then it is sufficient to compute i=2 p

only single edge network-error probabilities for any pamar ¢ ¢ > () the lemma is proved. Now every element inside the
error vector at any sink, thereby reducing the number gf ymation ofS is of the form

computations. In particular, suppose

€| (7)731'_(1,7:1)pi+1:(?)pi<1—TJ:1ip())
7

argpe(l =) 2N | Y gm0 -p) )@

=2
m—1i m 7 m—i
for any errory at any sinkT' with a; ,, # 0, for some\ > 0. If (1 eS| p) > 0, then < i >p (1 S p) >0,
We then have the following upper bound. Sincep < L, we have
< —1 _ |5‘71 n . o
peT(y) _al,y(1+)\ )pe(l pe) VyEFQ\{O} 1- m Zp >(1- ’ITL Z.l >0
(4) i+ 1 i+1 m

The probability of the error vectatr being0 € F% is upper This means that every element in the summatio & non-

bounded independent of as follows. negative, which means that> 0, hence proving the lemma.
[ |

Pe,(0) <1-— > arype(1—pe)'¥I™"  (5) We now state and prove Propositioh 1 which gives the upper
y€F\{0}:a1,47#0 bound onp, for @) to hold.

Proposition 1: For any errory at any sinkI” with a; o # 0,

If p. is small enough so thdfl(3) holds for some lakgéhen tg']S following holds

the upper bounds of(4) anld (5) become tight, and hence sin

edge network-errors alone can be considered in the network 1]
without any significant loss of generality. a1.ype(1 = pe)lE171 > A Zai,ypi(l — pe)lEI=
=2
A. An upper bound op,. if )
In this subsection, we obtain a sufficient upper bound on Pe < E =D NE[ AT 1)

p. for a given network for[{8) to hold so that only single
edge network-error probabilities need to be calculateds Th
bound obtained holds for any network with a given number _ _ _ -
of edges and is independent of the network code chosenspending to such an errgr as considered in the proposition,
is seen that this bound gn. is inversely proportional to the it is sufficient to consider the following case
number of edges in the network. This is a reasonable result &
because among the network-errors which result in some error |€]—1 €] i €] —i

. . ; 1-— > A . 1-—
vector at a sink, the difference between the number of nialtip pe(l = pe) - Z pe(l=pe)
edge network-errors and the number of single edge network-
errors would in general increase with the increase in né&twdio get the bound op.. Hence, we have
size, thus lowering the value of upto which [3) would hold. €|
Towards calculating this bound, we first prove the followin _ & ; —i
lemma. g P gpe(l _pe)‘gl ! > A Z ( | | )pé(l _pe)lg‘ !

Lemma 1:For any integetn > 1 andV 0 < p <1,

. & .
Proof: Sincea;, < |Z.| Vi and a;, > 1 corre-

=2

=2

_ |€]—1 _ _ lE|-1 _ _ €|
(1—p)™ > 1—mp. Pe(l = po) E71 > A (1= [Elpe(1 = po)€11 = (1= po)}¥)

(8)
Proof: For anyp > 1.1 —mp < 0, and the proof is = (1 — p.) €171 (AJE] + L)pe + ML = pe)) > A (9)
obvious. Therefore we prove the lemma only foK % ) ] ) ]
We have By Lemmd, the inequality of19) holds if the following holds

. "\ (1= (€] = 1)pe) (V€] + Dpe + A1 = po)) = A
(1=2) —1—mp—§;(i)<44p © S a-(E- D) e - A= Dpe+ X =0 10)



Probability of error vector [1 0] at Sink Tl

10*(Sum of probability of multiple edge _
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Fig. 2. Thresholdp. for the butterfly network at Sink;

Simplifying (I0), we get code needs to be modified to capture everits transmitted

1 at once.

(€ =D NE[— A+ 1) Therefore, we use the place-holddps, for the branches

of the state transition diagram with the output vector being

v € Fp\{0}. The modified augmented generating function,
(Dooo..015 --» D111..11, I), is thus the transfer function of the

convolutional encoder with the state transition diagrarthwi

the branches weighted with appropridbg I°.

The bit error probability for a given rate/n CNECC for

Pe <

The bound of Propositiohl 1 holds for any network wit
|€| edges for a choseh and in general is loose as indicate
by Fig.[2. Having chosem\ = 10, Fig. [2 shows the single
edge network-error probabilities and) times the multiple
ec_zlge network-error_probabllltles obt('_;uned using simalzi a sinkT is then bounded as
with respect to varying., corresponding to the error vector
[1 0] at SinkT} of the butterfly network. The threshold is Py < 19T (Dooo..015 -+ D111, 1)
approximately0.0135, which is the lowest computed for any T Tk oI
error vector at Sinkl;. A similar value can be computed for
Sink T5. This is approximately an order of magnitude greater
than what the bound of Propositibh 1 indicatgs € 0.00154
for the butterfly network which ha$ edges).

(11)

I=1,Dy=Zy,T

Ly = Z \/peT (y)peT (y +v)

yely

is the Bhattacharyya bound on the pairwise error probgbilit
IV. BOUND ON THE BIT ERROR PROBABILITY OF A between0 andwv, with p._(y) being the probability that the
CNECC error vector obtained at sirik after applying the inverse of the

We can bound the bit error probability of a CNECC follown€twork transfer matrixX/7) is y. The partial derivative of
ing [13] upon a slight modification of its augmented geneti (11) can be upper bounded according to the numerical upper
function T(D, I), which is a polynomial inD and I where bound [12) shown at the top of the next page.
any element ofl'(D, I), say bDI’, indicatesb number of Example 2:Fig. [Z _shows the state transition d|agram cor-
paths which are unmerged with the all-zero codeword wiflgSPonding to a minimal encoder (controller canonical form
a Hamming distance off and i number of input 1s being ©f the convolutional code generated by the maflixt- z +
encoded into the unmerged codeword segment. We compare 1+ 2°]. The modified augmented generating function can
the bound thus obtained with simulations on the butterfR obtained as
network in Subsectioh ViB. T(De Do Dor ) — I’D%, (D%, — D%,) + 1D}, Dy

However, because the network coding channelfjamputs (Do1, Dio, Di1, I) = 1+ I2(D2, — D2,) — 21Dy,
andFy outputs, the generating function of the convolutional (13)
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Fig. 4. State diagram of the code generated by z + 22

It can be noted that wittD,, = D“=®) in [@3), the usual
augmented generating functidh(D, I) of the code can be

obtained.

code, depending on their performance at the giyevalue.
Decoding on the output convolutional code is advantageous
to any sink because it does not have to perform the network
transfer matrix inversion before having to decode everetim

it receives the incoming symbols.

TABLE I
2 CNECCs FOR THE BUTTERFLY NETWORK(FIG.[I) WITH THE OUTPUT
CONV. CODES AT THESINK T%.

Input convolutional code
generator matrix

Output convolutional code
generator matrix at Sink T2

1+z 1] (C)

[z 1] (Com)

1 2] ()

1+2 2] (Cb’Tz)

1+ 22).

V. INFERENCE VIA SIMULATION RESULTS

A. Decoding of CNECCs

Example 3:Fig.[3 shows the performance of two CNECCs
and their respective output convolutional codes (shown in
Table[l) at sinkT» of the butterfly network. It can be noted
that for allp. values shown, codé€, 5, performs better than
codeC’. Thus if the cod€’ is used, sinkl; can always decode
on the trellis ofCy, ,,,. The opposite situation is observed for
the pairC andCo 1. It is therefore more beneficial for sink
T, to decode on the trellis of (after matrix inversion) for

Given ap, value at which the network operates, any sinRnY pe < 0.25. For p. > 0.25, sink T; can decode on the
can choose to decode a CNECC either on the trellis of tfiéllis of Co r,, as the performance improvement obtained by
input convolutional code or that of its output convolutibnalecoding orC is negligible.
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Fig. 5. BER and bounds on BER at Sifik for 2 codes

B. Coding for different values qof, volutional codes along with the bounds on the field size

Fig. [§ shows the performance of two different CNECCEQuirement was discussed inl [7] for a fixed set of error
(shown along with their properties in Tadellll) at Sik Patterns. If the value op. is low enough, one might follow
of the butterfly network. Similar performances are seen He design given in [7] assuming the set of errors to be all
Sink 7. The decoding for all these CNECCs are done on ttRossible single or double edge network-errors alone.

corresponding input convolutional code. It is seen thatehe 2) Coding for the highp. regime: From Fig.[3, it is
seen that codes with higher slopes are good for the high

TABLE 1l p. regime. The definition of the slope of a convolutional
CNECCs FOR THE BUTTERFLY NETWORK . . . .
code( is as in[(1). For a given memony. and free distance
CNECC generaior matrix Free distance | Slope dfree, @ convolutional code is said to beraaximum slope
Gi(z) =11 +2 1] (§1) 3 1 convolutional codd?] if there exists no other code with a
Gile)=[+z+2" 1+27 (C) 5 1/2 higher slope for the same memory and same free distance.

Families of convolutional maximum slope convolutional esd

are two regimes of operation (for each pair of convolution%ere reported in[12], discovered using computer search.
codes) where the performance of the codes get interchanged. :

This was already noticed in_[12] in the context of AWGN
channels. The value aif. for which these regimes becomes
separated is not only dependent on the CNECC-pair chosen,
but also on the network and the network code, and wouldAS seen in Subsecti¢n VB, codes with good slopes perform
probably decrease with the increase in the size of the ntwowell in high p. conditions. It is therefore important to inves-
1) Coding for the lowp. regime: Fig. [ shows the per- tigate the properties of the slope parameter and to come up
formance of convolutional codes with different free distam With constructions which yield codes with good slopes. Uppe
on the butterfly network for low values qf., along with bounds on the slope of convolutional codes were given ih, [12]
the bounds on the bit-error probability evaluated accardin [15]. A lower bound on the slope of any ratgc convolutional
Sectior{I¥. Codes with better distance spectra are goodein #ede was given in[[15]. In this section, we derive a lower
low p. regime. According to Fid]5, this behavior is seen upteound on the slope of any ratg'c convolutional code over
pe = 0.025, however the bounds on the bit-error probabilit@ny finite field.
states become very loose beyopd= 0.005 which is why A primer on the basics of convolutional codes can be found
the p. has been restricted to that value in Fig. 6. in Appendix[A. Towards obtaining a bound on the slape
Maximum Distance Separable (MDS) convolutional codete first give the following lemma. The proof of the following
thus seem to be a good choice. The design of such cddmma is on the lines of Lemma 1 inl[7].

VI. A LOWER BOUND ON THE SLOPE OF RAT®/c
CONVOLUTIONAL CODES
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Fig. 6. BER and bounds on BER at Sifik in the low p. regime

Lemma 2:Let C be a rateb/c convolutional code with G,ys(z), where
degreed. For somei > 0, if there exists & + 1 length partial

b
codeword sequence ai;(z) = Zti,k(Z)gk,j(Z)
k=1
Vjiits] = [Vis Vig1,s oy Vigs] _ S Cofactor(T(2)r.i)gk.;(2)
det (T'(z))

wherev; = 0 € Fg for j =i,i +1,..i + §, thenvy; ;5 has . -
at least one cycle around the zero state of the corresponding (2) being (k,j)™ element of G, (z). Therefore, the

minimal encoder ot. elementa; ;(z) can be expressed as
Proof: Let G,,,» (=) be a minimal basic generator matrix of pi;i(2)
C). Let the ordered Forney indices (row degree<f,(z)) a;,j(2) = det (T(2))

be vi,vo, ..., = Vinas, and therefored being the sum of )
these indices. Then a systematic generator matgiy((z)) Where the degree afi.j(2) € Fy[z] is UtMOSES + vmaq — 11
for C that is equivalent td7,,;(z) is of the form Now if we divide p; ;(z) by det (T'(z)), we have

ri(2)

- (%) = Qi j — 14
Goys(2) = T7H(2)Gmp(2) @i (%) = 4ig(2) + det (T'(z)) (14)

. ] ] where the degree af; ;(z) € Fy[z] is utmostv,q, — 11, and
whereT'(z) is a full rankb x b submatrix ofGy(2) With @ the degree of, ;(z) is utmosts — 1. Because every element
delay-free determinant. We have the following observation ¢ Glays(2) can be reduced to the form iR (14), we can have

Observation 1:The degree oflet (T(z)) is utmosts. Also,  a realization ofG,,(z) with utmostd memory elements for

we have the(i, j)™ elementt; ;(z) of T7'(z) as each of the inputs. Let this encoder realization be known as
fi(z) = Cofactor (T(2);.) Now we shall prove the lemma by contradiction. Left:)
LIS det (T'(2)) be a codeword which contains the partial codeword sequence

Vi,i+s) as follows:
where Cofactor(T(z);:) € TFq4[z] is the cofactor of the
(j,4)"" element ofT'(z). The degree olCofactor(T(z);.)
is utmosts — v; <6 — 4. Letu4(z) be the information sequence which when encoded

Let a;;(2) € F,(z) represent the(i,;)!" element of into v(z) by the systematic encodef,,s. Because of the

’U(Z) = [’Uo, V1,y...,V; = O, 0, veey O,’UiJr(; = O,’l}i+5+1, ]



Timet=0

Numberof .
segments = 6+1

If the Hamming weight of the path
in all the consecutive 6+1 segments

is zero, then o _= o =0.
i+ i+5+1

Fig. 7. The trellis corresponding to a systematic encodef of

systematic property of,, we must have that wherew,,;,;(2) € F,[z] represents the information sequence

corresponding to thé&" input, anddeg indicates the degree

of the polynomial. Therefore, by the PDP property, we have
By ObservatiorilL F,,; is an encoder which has utmast thatdeg (u/,,(2)) < i, sincedeg (v'(2)) < i.

memory elements (for each input), and hence the state vectoplso, it is known that in the trellis of corresponding to a

oiys € F) at time instanti + § becomes zero as a result®f minimal realization of a minimal-basic generator matrhere

zero input vectors. Fid.]7 shows the scenario we consider. exists no non-trivial transition from the all-zero stateataon-
With another zero at time instait- 6, there is a zero cycle. zero state that produces a zero output. Therefore we have

But we need to prove it for a minimal encoder, not a systematjg,, (u”,(2)) > i+ 6+ 1, with equality being satisfied if
one. So, we consider the codewardz), which can now be 4, ., -~ 0. Therefore u,.,(z) is of the form

written as a unique sum of two code wordé:) = v'(z) +

b
Us i = Ugit] = ... = Ugits = 0¢e ]Fq'

v"(2), where Winp(2) = ul,, (2) +ull (2)
i+o i-1 . 0 .
/ "
’U/(Z) = kazk = ['UQ,...,’Ui :0,...,'1)i+5 :0,0,] = Zumb,kz + Z umb,kz
=0 k=1 k=i+o+1
and umb(z) = [u;nb.,()a -ty u;nb,iflv 0,0, }
" "
v"(z) = Z v2" = (0,0, ...,0,0,vi1541, ... 10,0, w541 Winbig 520 -]
hEiro i.e, if

where0 € F and the uniqueness of the decomposition holds
with respect to the positions of the zeros indicated in th@ tWu,,,;(2) = [Wmp.0, Wb 15 -, Winb.iy -+ Winb.it6s Wb its 115 -]
code wordsv’(z) andv”(2).
Let u,,,(2) be the information sequence which is encodelen w,my,; = Ump,it1 = ... = Ump,iys = 0 € FL.
into v(z) by a minimal realizationZ,,, of a minimal basic ~ With the minimal encodef,,, which hasv,,,, memory
generator matrdG,,;(z) (a minimal encoder). Then we haveelements, thesé+ 1 consecutive zeros af,,,;(z) would result
o I in the state vectow,,,;, ; becoming zero for all time instants
Umb(2) = Uy (2) + iy (2) from i + Vpas 107 +0 + 1, i€,
wherew! ,(z) and !, (z) are encoded by,,, into v'(z)
andv”(z) respectively. O mb,itvmas = Tmbitvmap+l = - = Ombits+1 = 0 € Fymer.
By the predictable degree propert§PDP) [14] of minimal
basic generator matrices, we have that for any polynomig coWith vmae. < 6, the path traced byy; ;4 traces at least one
sequence(z), zero cycle on the trellis corresponding to the minimal ereod

This concludes the proof. [ ]
deg (v(2)) = 155 {deg (wmp(2)) + 1} We shall now prove the bound an



Theorem 1:The slope« of a rateb/c convolutional code  [4]
C with degrees is lower bounded as 5
< 1
o> —.
o+1 (6]

Proof: First we note the fact that every path in the state
transition diagram is either a cycle or a part of a cycle. By ]
Lemmal2, the path traced by any partial codeword sequencE
with ¢ + 1 consecutive zero components in the state transition
diagram of the minimal encoder would have a cycled around in
the zero state at least once. The definitioa@ixcludes acycle g
around the zero state, and therefore paths (partial codewor
sequences) which hawe+ 1 consecutive zero components
cannot be considered to measursince they would ultimately
result in a zero cycle. However, Lemina 2 also implies that any
path in the state transition diagram which does not includd®
the zero cycle must therefore accumulate at least 1 Hamming
weight in everyd + 1 transitions. Thus we have proved that
the slope is lower bounded as:

[10]
S 1
o> —.
6+1 [11]
[ |
[12]
VIl. DISCUSSION

The performance of CNECCs under the BSC edge err(ﬁS]
model has been analyzed using theoretical bounds and sim-
ulations. A sufficient upper bound on the edge cross-ovdt4]
probability p. has been obtained, so thatyf is below this 15]
bound, the complexity of analysis can be reduced greatlg/
by considering only single edge network-errors. Codes with
better distance spectra and those with good slopes are sd&f
to perform well under different conditions on the cross+ove
probability. A lower bound on the slope of any convolutional
code is also obtained. Several interesting problems reimain
this context including the following.

« Studying the soft-decision decoding performance of
CNECCs.
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APPENDIXA
CONVOLUTIONAL CODES-BASIC RESULTS

« Constructions of convolutional codes with good slopes

« Inlarge networks, error probabilities at the sinks could b

large even for negligiblg, values. It would be interesting

to look at the existing network error correction schemg;o
for such networks, and compare them with schemgg

which involve coding over smaller subnetworks.
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We review the basic concepts related to convolutional codes
used extensively throughout the rest of the papergk-power
5t a prime, letF, denote the finite field witly elementsfF, [z]
denotethe ring of univariate polynomials z with coefficients
m F,, F,(z) denotethe field of rational functionsvith
riable z and coefficients fronfF, and F,[[z]] denotethe
ring of formal power seriesvith coefficients fromF,. Every
element ofF,[[z]] of the formx(z) = >°7° z;2,z; € F,.
Thus, F,[z] C Fy[[z]]. We denote the set of-tuples over
F,[[2] asF7[[2]]. Also, a rational function:(z) = Z((j)) with
H®) +# 0 is said to berealizable A matrix populated entirely
with realizable functions is called a realizable matrix.

For a convolutional code, thimformation sequence: =
[wo, w1, ..., ut] (u; € IFZ) and thecodeword sequend@utput
sequenced = [vg, V1, ..., U¢] (fui € IF;) can be represented in
terms of the delay parameteras

and
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Definition 4 ( [14]): A convolutional code C of rate
b/c (b < c¢)is defined as

C={v(z) e F[l2]] | v(2) = u(2)G(2)}

whereG(z) is abx c generator matrixwith entries fromF,(z)
and rankb overF,(z), andv(z) being the codeword sequence
arising from the information sequence(z) € F[[]].

Two generator matrices are said to beguivalentif they
encode the same convolutional codepdlynomial generator
matrix [14] for a convolutional cod€ is a generator matrix for
C with all its entries froniF,[z]. It is known that every convo-
lutional code has a polynomial generator matrix| [14]. Alao,
generator matrix for a convolutional codedatastrophic[14]
if there exists an information sequence with infinitely many
non-zero components, that results in a codeword with only
finitely many non-zero components.

For a polynomial generator matri%(z), let g;;(z) be the
element ofG(z) in the i*" row and the;‘* column, and

v; == maxdeg(gi;(2))
J

be thei’" row degreeof G(z). Let

b
0:= Z v;
i=1

be thedegreeof G(z).

Definition 5 ( [14] ): A polynomial generator matrix is
called basicif it has a polynomial right inverse. It is called
minimal if its degreed is minimum among all generator
matrices ofC.

Forney in [16] showed that the ordered $et,vs, ..., vp }
of row degrees (indices) is the same for all minimal basic
generator matrices of (which are all equivalent to one

another). Therefore the ordered row degrees and the degree

0 can be defined for a convolutional code Also, any
minimal basic generator matrix for a convolutional code is
non-catastrophic.

Definition 6 ( [14] ): A convolutional encodes a physical
realization of a generator matrix by a linear sequentialusir
Two encoders are said to bguivalent encodeii§they encode
the same code. Aninimal encoderis an encoder with the
minimal number of memory elements among all equivalent
encoders.

Given an encoder witlh’ memory elements for the code
C, we can associate a vectet, € IFg whose components
indicate the states of th& memory elements at time instant
t.

The weight of a vectow(z) € Fg[[z]] is the sum of the
Hamming weights (oveff,) of all its F-coefficients. Then
we have the following definitions.

Definition 7 ( [14]): The free distanceof a convolutional
codeC is given as

dfrec(C) = min{wt(v(z))|v(z) € C,v(z) # 0}
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