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Abstract—Convolutional network-error correcting codes
(CNECCs) are known to provide error correcting capability
in acyclic instantaneous networks within the network coding
paradigm under small field size conditions. In this work, we
investigate the performance of CNECCs under the error model
of the network where the edges are assumed to be statistically
independent binary symmetric channels, each with the same
probability of error pe(0 ≤ pe < 0.5). We obtain bounds on the
performance of such CNECCs based on a modified generating
function (the transfer function) of the CNECCs. For a given
network, we derive a mathematical condition on how smallpe
should be so that only single edge network-errors need to be
accounted for, thus reducing the complexity of evaluating the
probability of error of any CNECC. Simulations indicate tha t
convolutional codes are required to possess different properties
to achieve good performance in lowpe and high pe regimes.
For the low pe regime, convolutional codes with good distance
properties show good performance. For the highpe regime,
convolutional codes that have a goodslope (the minimum
normalized cycle weight) are seen to be good. We derive a lower
bound on the slope of any rateb/c convolutional code with a
certain degree.

I. I NTRODUCTION

Network coding as a means of increasing throughput in
networks has been extensively studied in [1]–[3]. Block
network-error correction for coherent network codes has been
studied in [4]–[6]. In all of these, the sufficient field size
requirement for designing good block network-error correcting
codes (BNECCs) is quite high. To be precise, the sufficient
field size requirement for constructing a BNECC along with a
network code which corrects network-errors due to anyt edges
of the network being in error once in everyJ network uses is

such thatq > |T |

(

J |E|
2t

)

, whereT is the set of sinks. This

requires every network-coding node of the network to perform
multiplications of large degree polynomials over the base field
each time it has to transmit, and therefore is computationally
demanding. Moreover, the bound increases with the size of
the network. It is therefore necessary to study network-error
correcting codes which work under small field size conditions.

Convolutional network-error correcting codes (CNECCs)
were introduced in [7] in the context of coherent network
coding for acyclic instantaneous networks. The field size
requirement for the CNECCs of [7] is independent of the
number of edges in the network and in general much smaller
than what is demanded by BNECCs. Although the error
correcting capability might not be comparable to that offered
by BNECCs, the reduction in field size is a considerable
advantage in terms of the computation to be performed at each

coding node of the network. Also, the use of convolutional
codes permits decoding using the Viterbi decoder, which
is readily available. CNECCs with similar advantages for
memory-free unit-delay acyclic networks were discussed in[8]
and the benefit obtained in the performance of such CNECCs
by using memory at the nodes of unit-delay networks was
discussed in [9].

The CNECCs of [7] were designed to correct network-errors
which correspond to a setΦ of error patterns (subsets of the
edge set) once in a certain number of network uses (a network
use being the use of the edges of the network to transmit a
number of symbols equal to the network code dimension).
A similar error model (withΦ being all subsets of the edge
set with t edges) was considered in [4]–[6]. While this error
model allows code construction, it is less realistic because the
errors corresponding to any error pattern inΦ are assumed to
occur with equal probabilities.

A more realistic error model would be to assume every
edgee in the network as a BSC with a certain cross-over
probability (pe) and with errors across different edges to be
i.i.d. In this paper, we assume such an error model (with
pe being the same for all edges) and analyze CNECCs over
the binary field. Binary network codes together with this
error model were studied in [10]. The decoding of BNECCs
under a similar probabilistic setting was discussed in [11].
However, practical analysis and simulations of BNECCs under
a probabilistic error setting is difficult because of the large field
size demanded. On the other hand, the CNECCs developed in
[7] require small field sizes and thus facilitate analysis. The
contributions and organization of this paper are as follows.

Fig. 1. Butterfly network

• After briefly discussing CNECCs for the network coding
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setup (Section II), we present the error model for the net-
work. If the edge cross-over probabilitype << 0.5, then
it is sufficient to compute only single edge network-error
probabilities in the network thereby reducing the com-
putations required to study the performance of CNECCs.
For any network with a given number of edges, we derive
a bound on how small thispe should be so that this
assumption of ignoring multiple edge network-errors can
be made safely. (Section III)

• Expressions for the upper bound on the bit error probabil-
ity of CNECCs are obtained based on a modified version
of the augmented path generating function(T (D, I)) of
the CNECC being used. (Section IV)

• We analyze the performance of CNECCs on networks
with a probabilistic error model using simulations with
the butterfly network (Fig. 1) as an example. Simulations
on the butterfly network indicate that different criteria
apply for CNECCs to be good under low and high
pe conditions. We therefore suggest different types of
CNECCs under these two conditions. (Section V)

• For highpe conditions, it is seen that those codes perform
better which have a high value of slope, which is defined
as follows.
Definition 1 ( [12]): Given a minimal encoder of a rate
R = b/c convolutional codeC, the minimum normalized
cycle weight

α := min
o∈O\o1

{

w
H
(o)

l(o)

}

(1)

among all cycleso ∈ O(the set of all cycles) in the state
transition diagram of the encoder, except the zero cycleo1
in the zero state, is called the slopeα of the convolutional
code C. Here w

H
(o) indicates the Hamming weight

accumulated by the output sequence while traversing the
cycle o, and l(o) is the length of the cycle inc-tuples.

• We derive a lower bound on the slope of any rateb/c
convolutional code over any finite field (Section VI), and
conclude with a short discussion of the paper and several
directions for future research (Section VII).

While CNECCs only overF2 are considered for the analyses
and simulations of this paper, CNECCs over any field size can
be studied using similar methods.

II. CONVOLUTIONAL CODES FOR NETWORK-ERROR

CORRECTION

A. Network model and network code

An acyclic network can be represented as an acyclic directed
multi-graph (a graph that can have parallel edges between
nodes)G = (V , E) whereV is the set of all vertices andE is
the set of all edges in the network. Every edge in the directed
multi-graph representing the network has unitcapacity (can
carry utmost one symbol fromF2).

Let n be the mincut between the sources and the set
of sinks T and the dimension of the network code. An
n-dimensional binary network code can be described by
three matricesA (of sizen× |E|), F (of size |E| × |E|),and

BT (of size |E| × n for every sinkT ∈ T ), each having el-
ements fromF2. Further details on the structure of these
matrices can be found in [3]. The network transfer matrix
corresponding to a sinkT is an n × n binary matrix MT

such that for any inputx ∈ F
n
2 , the output at sinkT ∈ T is

xMT = xAFBT .

B. CNECCs

For a given set of error patternsΦ and for somek < n,
a method of constructing ratek/n convolutional codes was
given in [7] such that these CNECCs will correct network-
errors which correspond to the patterns inΦ. For a given
network with a network code, the definitions for the input
and output convolutional code are as follows.

Definition 2: An input convolutional code, Cs, correspond-
ing to an acyclic network is a convolutional code of rate
k/n(k < n) with a input generator matrixGI(z) implemented
at the source of the network.

Definition 3: The output convolutional codeCT corre-
sponding to a sink nodeT in the acyclic network is thek/n
convolutional code generated by theoutput generator matrix
GO,T (z) which is given byGO,T (z) = GI(z)MT , with MT

being the full rank network transfer matrix corresponding to
ann-dimensional network code.
It was shown in [7] that errors corresponding toΦ can be
corrected at all sinks as long as they are separated by a certain
number of network uses. Moreover, a sink can achieve this
error correcting capability by choosing to decode on either
the input or the output convolutional codes depending upon
their distance properties.

Example 1:Table I shows the network transfer matrices of
the butterfly network of Fig. 1 and an example of a CNECC
along with the output convolutional codes at the two sinks.

TABLE I
BUTTERFLY NETWORK OFFIG. 1 WITH THE INPUT CONVOLUTIONAL

CODEGI(z) = [1 + z + z2 1 + z2].

Sink Network transfer Output convolutional code
matrix

T1 MT1
=

(

1 1
0 1

)

GO,T1
(z) = [1 + z + z2 z]

T2 MT2
=

(

1 0
1 1

)

GO,T2
(z) = [z 1 + z2]

III. N ETWORK-ERRORS IN THEBSC EDGE ERROR MODEL

Any edgee ∈ E in the network is assumed to be a binary
symmetric channel with probability of error beingpe and
errors on different edges are assumed to be i.i.d. A network-
error is a vectorw ∈ F

|E|
2 with 1s at those positions where the

corresponding edge is in error. The probability of a network-
errorw ∈ F

|E|
2 is thenp

w
H
(w)

e (1 − pe)
|E|−w

H
(w).

Let e
T

denote the random error vector at sinkT. The
probability thate

T
= y ∈ F

n
2 is as follows.

pe
T
(y) =

∑

w∈F
|E|
2

:wFBT=y

p
w

H
(w)

e (1− pe)
|E|−w

H
(w) (2)

=

|E|
∑

i=1

ai,yp
i
e(1− pe)

|E|−i
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whereai,y indicates the number of network-error vectors from
F
|E|
2 with weight i, such that they result in the error vectory

at sinkT.
For any given network, it is essential to calculate the error

probability of e
T

being anyy ∈ F
n
2 for each sinkT ∈ T

in order to analyze the performance of any CNECC over
the network. Equation (2) indicates that this involves a large
number of computations even if the given network is small.
However, if pe << 0.5, then it is sufficient to compute
only single edge network-error probabilities for any particular
error vector at any sink, thereby reducing the number of
computations. In particular, suppose

a1,ype(1− pe)
|E|−1 ≥ λ





|E|
∑

i=2

ai,yp
i
e(1− pe)

|E|−i



 (3)

for any errory at any sinkT with a1,y 6= 0, for someλ ≥ 0.
We then have the following upper bound.

pe
T
(y) ≤ a1,y(1 + λ−1)pe(1− pe)

|E|−1 ∀ y ∈ F
n
2\{0}

(4)

The probability of the error vectoreT being0 ∈ F
n
2 is upper

bounded independent ofλ as follows.

pe
T
(0) ≤ 1−

∑

y∈F
n
2
\{0}:a1,y 6=0

a1,ype(1 − pe)
|E|−1 (5)

If pe is small enough so that (3) holds for some largeλ, then
the upper bounds of (4) and (5) become tight, and hence single
edge network-errors alone can be considered in the network
without any significant loss of generality.

A. An upper bound onpe

In this subsection, we obtain a sufficient upper bound on
pe for a given network for (3) to hold so that only single
edge network-error probabilities need to be calculated. This
bound obtained holds for any network with a given number
of edges and is independent of the network code chosen. It
is seen that this bound onpe is inversely proportional to the
number of edges in the network. This is a reasonable result
because among the network-errors which result in some error
vector at a sink, the difference between the number of multiple
edge network-errors and the number of single edge network-
errors would in general increase with the increase in network
size, thus lowering the value ofpe upto which (3) would hold.
Towards calculating this bound, we first prove the following
lemma.

Lemma 1:For any integerm ≥ 1 and∀ 0 ≤ p ≤ 1,

(1− p)m ≥ 1−mp.

Proof: For anyp > 1
m
, 1 − mp < 0, and the proof is

obvious. Therefore we prove the lemma only forp ≤ 1
m
.

We have

(1− p)m − 1−mp =

m
∑

i=2

(

m
i

)

(−1)ipi (6)

Let S be defined as

S :=

⌊m−1

2
⌋

∑

j=1

(

m
2j

)

p2j −

(

m
2j + 1

)

p2j+1

Therefore the R.H.S of (6) becomes

m
∑

i=2

(

m
i

)

(−1)ipi =

{

S if m is odd
S + pm if m is even

If S ≥ 0, the lemma is proved. Now every element inside the
summation ofS is of the form
(

m
i

)

pi −

(

m
i+ 1

)

pi+1 =

(

m
i

)

pi
(

1−
m− i

i+ 1
p

)

(7)

If
(

1− m−i
i+1 p

)

≥ 0, then

(

m
i

)

pi
(

1− m−i
i+1 p

)

≥ 0,

Sincep ≤ 1
m
, we have

(

1−
m− i

i+ 1
p

)

≥

(

1−
m− i

i+ 1
.
1

m

)

≥ 0.

This means that every element in the summation ofS is non-
negative, which means thatS ≥ 0, hence proving the lemma.

We now state and prove Proposition 1 which gives the upper
bound onpe for (3) to hold.

Proposition 1: For any errory at any sinkT with a1,y 6= 0,
the following holds

a1,ype(1− pe)
|E|−1 ≥ λ





|E|
∑

i=2

ai,yp
i
e(1− pe)

|E|−i





if

pe ≤
1

(|E| − 1) (λ|E| − λ+ 1)
.

Proof: Since ai,y ≤

(

|E|
i

)

∀i and a1,y ≥ 1 corre-

sponding to such an errory as considered in the proposition,
it is sufficient to consider the following case

pe(1− pe)
|E|−1 ≥ λ





|E|
∑

i=2

(

|E|
i

)

pie(1− pe)
|E|−i





to get the bound onpe. Hence, we have

pe(1− pe)
|E|−1 ≥ λ





|E|
∑

i=2

(

|E|
i

)

pie(1 − pe)
|E|−i





pe(1− pe)
|E|−1 ≥ λ

(

1− |E|pe(1− pe)
|E|−1 − (1 − pe)

|E|
)

(8)

⇒ (1− pe)
|E|−1 ((λ|E| + 1)pe + λ(1 − pe)) ≥ λ (9)

By Lemma 1, the inequality of (9) holds if the following holds

(1− (|E| − 1) pe) ((λ|E| + 1)pe + λ(1 − pe)) ≥ λ

⇒ (1− (|E| − 1) pe) (λ|E|pe − (λ− 1)pe + λ) ≥ λ (10)
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Fig. 2. Thresholdpe for the butterfly network at SinkT1

Simplifying (10), we get

pe ≤
1

(|E| − 1) (λ|E| − λ+ 1)

The bound of Proposition 1 holds for any network with
|E| edges for a chosenλ and in general is loose as indicated
by Fig. 2. Having chosenλ = 10, Fig. 2 shows the single
edge network-error probabilities and10 times the multiple
edge network-error probabilities obtained using simulations
with respect to varyingpe, corresponding to the error vector
[1 0] at SinkT1 of the butterfly network. The thresholdpe is
approximately0.0135, which is the lowest computed for any
error vector at SinkT1. A similar value can be computed for
Sink T2. This is approximately an order of magnitude greater
than what the bound of Proposition 1 indicates (pe ≤ 0.00154
for the butterfly network which has9 edges).

IV. B OUND ON THE BIT ERROR PROBABILITY OF A

CNECC

We can bound the bit error probability of a CNECC follow-
ing [13] upon a slight modification of its augmented generating
function T (D, I), which is a polynomial inD and I where
any element ofT (D, I), say bDdIi, indicatesb number of
paths which are unmerged with the all-zero codeword with
a Hamming distance ofd and i number of input 1s being
encoded into the unmerged codeword segment. We compare
the bound thus obtained with simulations on the butterfly
network in Subsection V-B.

However, because the network coding channel hasF
n
q inputs

andF
n
q outputs, the generating function of the convolutional

code needs to be modified to capture everyn bits transmitted
at once.

Therefore, we use the place-holdersDv for the branches
of the state transition diagram with the output vector being
v ∈ F

n
q \{0}. The modified augmented generating function,

T (D000..01, ..., D111..11, I), is thus the transfer function of the
convolutional encoder with the state transition diagram with
the branches weighted with appropriateDvI

i.
The bit error probability for a given ratek/n CNECC for

a sinkT is then bounded as

Pb,T ≤
1

k

∂T (D000..01, ..., D111..11, I)

∂I

∣

∣

∣

∣

I=1,Dv=Zv,T

(11)

where
Zv,T ≡

∑

y∈Fn
q

√

pe
T
(y)pe

T
(y + v)

is the Bhattacharyya bound on the pairwise error probability
between0 andv, with pe

T
(y) being the probability that the

error vector obtained at sinkT after applying the inverse of the
network transfer matrix (MT ) is y. The partial derivative of
(11) can be upper bounded according to the numerical upper
bound (12) shown at the top of the next page.

Example 2:Fig. 4 shows the state transition diagram cor-
responding to a minimal encoder (controller canonical form)
of the convolutional code generated by the matrix[1 + z +
z2 1+z2]. The modified augmented generating function can
be obtained as

T (D01, D10, D11, I) =
I2D2

11

(

D2
01 −D2

10

)

+ ID2
11D10

1 + I2 (D2
10 −D2

01)− 2ID10
.

(13)
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Fig. 3. BER at SinkT2 for two CNECCs (Table II)

∂T (Dv1
, ..., Dv2n−1

, I)

∂I

∣

∣

∣

∣

I=1,Dvi
=Zvi,T

<
T (Zv1

, ..., Zv2n−1
, 1 + ǫ)− T (Zv1

, ..., Zv2n−1
, 1)

ǫ
where ǫ << 1. (12)

Fig. 4. State diagram of the code generated by[1 + z + z2 1 + z2].

It can be noted that withDv = Dw
H
(v) in (13), the usual

augmented generating functionT (D, I) of the code can be
obtained.

V. I NFERENCE VIA SIMULATION RESULTS

A. Decoding of CNECCs

Given ape value at which the network operates, any sink
can choose to decode a CNECC either on the trellis of the
input convolutional code or that of its output convolutional

code, depending on their performance at the givenpe value.
Decoding on the output convolutional code is advantageous
to any sink because it does not have to perform the network
transfer matrix inversion before having to decode every time
it receives the incoming symbols.

TABLE II
2 CNECCS FOR THE BUTTERFLY NETWORK(FIG. 1) WITH THE OUTPUT

CONV. CODES AT THESINK T2.

Input convolutional code Output convolutional code
generator matrix generator matrix at Sink T2
[1 + z 1] (C) [z 1] (CO,T2

)
[1 z] (C′) [1 + z z] (C′

O,T2
)

Example 3:Fig. 3 shows the performance of two CNECCs
and their respective output convolutional codes (shown in
Table II) at sinkT2 of the butterfly network. It can be noted
that for all pe values shown, codeC′

O,T2
performs better than

codeC′. Thus if the codeC′ is used, sinkT2 can always decode
on the trellis ofC′

O,T2
. The opposite situation is observed for

the pairC andCO,T2
. It is therefore more beneficial for sink

T2 to decode on the trellis ofC (after matrix inversion) for
any pe ≤ 0.25. For pe ≥ 0.25, sink T2 can decode on the
trellis of CO,T2

, as the performance improvement obtained by
decoding onC is negligible.
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B. Coding for different values ofpe
Fig. 5 shows the performance of two different CNECCs

(shown along with their properties in Table III) at SinkT1

of the butterfly network. Similar performances are seen at
Sink T2. The decoding for all these CNECCs are done on the
corresponding input convolutional code. It is seen that there

TABLE III
CNECCS FOR THE BUTTERFLY NETWORK

CNECC generator matrix Free distance Slope
G1(z) = [1 + z 1] (C1) 3 1

G1(z) = [1 + z + z2 1 + z2] (C2) 5 1/2

are two regimes of operation (for each pair of convolutional
codes) where the performance of the codes get interchanged.
This was already noticed in [12] in the context of AWGN
channels. The value ofpe for which these regimes becomes
separated is not only dependent on the CNECC-pair chosen,
but also on the network and the network code, and would
probably decrease with the increase in the size of the network.

1) Coding for the lowpe regime: Fig. 6 shows the per-
formance of convolutional codes with different free distances
on the butterfly network for low values ofpe, along with
the bounds on the bit-error probability evaluated according to
Section IV. Codes with better distance spectra are good in the
low pe regime. According to Fig. 5, this behavior is seen upto
pe = 0.025, however the bounds on the bit-error probability
states become very loose beyondpe = 0.005 which is why
the pe has been restricted to that value in Fig. 6.

Maximum Distance Separable (MDS) convolutional codes
thus seem to be a good choice. The design of such con-

volutional codes along with the bounds on the field size
requirement was discussed in [7] for a fixed set of error
patterns. If the value ofpe is low enough, one might follow
the design given in [7] assuming the set of errors to be all
possible single or double edge network-errors alone.

2) Coding for the highpe regime: From Fig. 5, it is
seen that codes with higher slopes are good for the high
pe regime. The definition of the slopeα of a convolutional
codeC is as in (1). For a given memorym and free distance
dfree, a convolutional code is said to be amaximum slope
convolutional code[12] if there exists no other code with a
higher slope for the same memory and same free distance.
Families of convolutional maximum slope convolutional codes
were reported in [12], discovered using computer search.

VI. A LOWER BOUND ON THE SLOPE OF RATEb/c
CONVOLUTIONAL CODES

As seen in Subsection V-B, codes with good slopes perform
well in high pe conditions. It is therefore important to inves-
tigate the properties of the slope parameter and to come up
with constructions which yield codes with good slopes. Upper
bounds on the slope of convolutional codes were given in [12],
[15]. A lower bound on the slope of any rate1/c convolutional
code was given in [15]. In this section, we derive a lower
bound on the slope of any rateb/c convolutional code over
any finite field.

A primer on the basics of convolutional codes can be found
in Appendix A. Towards obtaining a bound on the slopeα,
we first give the following lemma. The proof of the following
lemma is on the lines of Lemma 1 in [7].
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Fig. 6. BER and bounds on BER at SinkT1 in the low pe regime

Lemma 2:Let C be a rateb/c convolutional code with
degreeδ. For somei ≥ 0, if there exists aδ+1 length partial
codeword sequence

v[i,i+δ] := [vi,vi+1, ...,vi+δ]

wherevj = 0 ∈ F
c
q for j = i, i + 1, ..i + δ, thenv[i,i+δ] has

at least one cycle around the zero state of the corresponding
minimal encoder ofC.

Proof: LetGmb(z) be a minimal basic generator matrix of
C) . Let the ordered Forney indices (row degrees ofGmb(z))
be ν1, ν2, ..., νb = νmax, and thereforeδ being the sum of
these indices. Then a systematic generator matrix(Gsys(z))
for C that is equivalent toGmb(z) is of the form

Gsys(z) = T−1(z)Gmb(z)

whereT (z) is a full rank b × b submatrix ofGmb(z) with a
delay-free determinant. We have the following observation.

Observation 1:The degree ofdet (T (z)) is utmostδ. Also,
we have the(i, j)th elementti,j(z) of T−1(z) as

ti,j(z) =
Cofactor (T (z)j,i)

det (T (z))

where Cofactor(T (z)j,i) ∈ Fq[z] is the cofactor of the
(j, i)th element ofT (z). The degree ofCofactor(T (z)j,i)
is utmostδ − νj ≤ δ − ν1.

Let ai,j(z) ∈ Fq(z) represent the(i, j)th element of

Gsys(z), where

ai,j(z) =

b
∑

k=1

ti,k(z)gk,j(z)

=

∑b

k=1 Cofactor(T (z)k,i)gk,j(z)

det (T (z))

gk,j(z) being (k, j)th element of Gmb(z). Therefore, the
elementai,j(z) can be expressed as

ai,j(z) =
pi,j(z)

det (T (z))

where the degree ofpi,j(z) ∈ Fq[z] is utmostδ + νmax − ν1.
Now if we divide pi,j(z) by det (T (z)), we have

ai,j(z) = qi,j(z) +
ri,j(z)

det (T (z))
(14)

where the degree ofqi,j(z) ∈ Fq[z] is utmostνmax − ν1, and
the degree ofri,j(z) is utmostδ − 1. Because every element
of Gsys(z) can be reduced to the form in (14), we can have
a realization ofGsys(z) with utmostδ memory elements for
each of theb inputs. Let this encoder realization be known as
Esys.
Now we shall prove the lemma by contradiction. Letv(z)
be a codeword which contains the partial codeword sequence
v[i,i+δ] as follows:

v(z) = [v0,v1, ...,vi = 0,0, ...,0,vi+δ = 0,vi+δ+1, ...]

Letus(z) be the information sequence which when encoded
into v(z) by the systematic encoderEsys. Because of the
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Fig. 7. The trellis corresponding to a systematic encoder ofC

systematic property ofEsys, we must have that

us,i = us,i+1 = ... = us,i+δ = 0 ∈ F
b
q.

By Observation 1,Esys is an encoder which has utmostδ
memory elements (for each input), and hence the state vector
σi+δ ∈ F

δ
q at time instanti+ δ becomes zero as a result ofδ

zero input vectors. Fig. 7 shows the scenario we consider.
With another zero at time instanti+δ, there is a zero cycle.

But we need to prove it for a minimal encoder, not a systematic
one. So, we consider the codewordv(z), which can now be
written as a unique sum of two code wordsv(z) = v

′(z) +
v
′′(z), where

v
′(z) =

i+δ
∑

k=0

vkz
k = [v0, ...,vi = 0, ...,vi+δ = 0,0, ...]

and

v
′′(z) =

∑

k=i+δ+1

vkz
k = [0,0, ...,0,0,vi+δ+1, ...]

where0 ∈ F
c
q and the uniqueness of the decomposition holds

with respect to the positions of the zeros indicated in the two
code wordsv′(z) andv′′(z).

Let umb(z) be the information sequence which is encoded
into v(z) by a minimal realizationEmb of a minimal basic
generator matrixGmb(z) (a minimal encoder). Then we have

umb(z) = u
′
mb(z) + u

′′
mb(z)

whereu
′
mb(z) and u

′′
mb(z) are encoded byEmb into v

′(z)
andv′′(z) respectively.

By the predictable degree property(PDP) [14] of minimal
basic generator matrices, we have that for any polynomial code
sequencev(z),

deg (v(z)) = max
1≤l≤b

{deg (umb,l(z)) + νl} .

whereumb,l(z) ∈ Fq[z] represents the information sequence
corresponding to thelth input, anddeg indicates the degree
of the polynomial. Therefore, by the PDP property, we have
that deg (u′

mb(z)) < i, sincedeg (v′(z)) < i.
Also, it is known that in the trellis of corresponding to a

minimal realization of a minimal-basic generator matrix, there
exists no non-trivial transition from the all-zero state toa non-
zero state that produces a zero output. Therefore we have
deg (u′′

mb(z)) ≥ i + δ + 1, with equality being satisfied if
vi+δ+1 6= 0. Therefore,umb(z) is of the form

umb(z) = u
′
mb(z) + u

′′
mb(z)

=

i−1
∑

k=1

u
′
mb,kz

k +

∞
∑

k=i+δ+1

u
′′
mb,kz

k

umb(z) =
[

u
′
mb,0, ..,u

′
mb,i−1,0,0, ..

]

+
[

0, ..,0,u′′
mb,i+δ+1,u

′′
mb,i+δ+2, ..

]

i.e, if

umb(z) = [umb,0,umb,1, ...,umb,i, ...,umb,i+δ,umb,i+δ+1, ..]

thenumb,i = umb,i+1 = ... = umb,i+δ = 0 ∈ F
b
q.

With the minimal encoderEmb which hasνmax memory
elements, theseδ+1 consecutive zeros ofumb(z) would result
in the state vectorσmb,t becoming zero for all time instants
from i+ νmax to i+ δ + 1, i.e.,

σmb,i+νmax
= σmb,i+νmax+1 = ... = σmb,i+δ+1 = 0 ∈ F

νmax

q .

With νmax ≤ δ, the path traced byv[i,i+δ] traces at least one
zero cycle on the trellis corresponding to the minimal encoder.
This concludes the proof.
We shall now prove the bound onα.



9

Theorem 1:The slopeα of a rateb/c convolutional code
C with degreeδ is lower bounded as

α ≥
1

δ + 1
.

Proof: First we note the fact that every path in the state
transition diagram is either a cycle or a part of a cycle. By
Lemma 2, the path traced by any partial codeword sequence
with δ+1 consecutive zero components in the state transition
diagram of the minimal encoder would have a cycled around in
the zero state at least once. The definition ofα excludes a cycle
around the zero state, and therefore paths (partial codeword
sequences) which haveδ + 1 consecutive zero components
cannot be considered to measureα since they would ultimately
result in a zero cycle. However, Lemma 2 also implies that any
path in the state transition diagram which does not include
the zero cycle must therefore accumulate at least 1 Hamming
weight in everyδ + 1 transitions. Thus we have proved that
the slope is lower bounded as:

α ≥
1

δ + 1
.

VII. D ISCUSSION

The performance of CNECCs under the BSC edge error
model has been analyzed using theoretical bounds and sim-
ulations. A sufficient upper bound on the edge cross-over
probability pe has been obtained, so that ifpe is below this
bound, the complexity of analysis can be reduced greatly
by considering only single edge network-errors. Codes with
better distance spectra and those with good slopes are seen
to perform well under different conditions on the cross-over
probability. A lower bound on the slope of any convolutional
code is also obtained. Several interesting problems remainin
this context including the following.

• Studying the soft-decision decoding performance of
CNECCs.

• Constructions of convolutional codes with good slopes.
• In large networks, error probabilities at the sinks could be

large even for negligiblepe values. It would be interesting
to look at the existing network error correction schemes
for such networks, and compare them with schemes
which involve coding over smaller subnetworks.
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APPENDIX A
CONVOLUTIONAL CODES-BASIC RESULTS

We review the basic concepts related to convolutional codes,
used extensively throughout the rest of the paper. Forq, power
of a prime, letFq denote the finite field withq elements,Fq[z]
denotethe ring of univariate polynomialsin z with coefficients
from Fq, Fq(z) denote the field of rational functionswith
variable z and coefficients fromFq and Fq[[z]] denotethe
ring of formal power serieswith coefficients fromFq. Every
element ofFq[[z]] of the form x(z) =

∑∞
i=0 xiz

i, xi ∈ Fq.
Thus, Fq[z] ⊂ Fq[[z]]. We denote the set ofn-tuples over
Fq[[z]] asFn

q [[z]]. Also, a rational functionx(z) = a(z)
b(z) with

b(0) 6= 0 is said to berealizable. A matrix populated entirely
with realizable functions is called a realizable matrix.

For a convolutional code, theinformation sequenceu =
[u0,u1, ...,ut] (ui ∈ F

b
q) and thecodeword sequence(output

sequence)v = [v0,v1, ...,vt]
(

vi ∈ F
c
q

)

can be represented in
terms of the delay parameterz as

u(z) =

t
∑

i=0

uiz
i and v(z) =

t
∑

i=0

viz
i

http://arxiv.org/abs/0902.4177
http://arxiv.org/abs/0902.4177
http://arxiv.org/abs/0903.1967
http://arxiv.org/abs/0903.1967
http://arxiv.org/abs/0909.1638
http://arxiv.org/abs/0909.1638
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Definition 4 ( [14]): A convolutional code, C of rate
b/c (b < c) is defined as

C = {v(z) ∈ F
c
q[[z]] | v(z) = u(z)G(z)}

whereG(z) is ab×c generator matrixwith entries fromFq(z)
and rankb overFq(z), andv(z) being the codeword sequence
arising from the information sequence,u(z) ∈ F

b
q[[z]].

Two generator matrices are said to beequivalent if they
encode the same convolutional code. Apolynomial generator
matrix [14] for a convolutional codeC is a generator matrix for
C with all its entries fromFq[z]. It is known that every convo-
lutional code has a polynomial generator matrix [14]. Also,a
generator matrix for a convolutional code iscatastrophic[14]
if there exists an information sequence with infinitely many
non-zero components, that results in a codeword with only
finitely many non-zero components.

For a polynomial generator matrixG(z), let gij(z) be the
element ofG(z) in the ith row and thejth column, and

νi := max
j

deg(gij(z))

be theith row degreeof G(z). Let

δ :=

b
∑

i=1

νi

be thedegreeof G(z).
Definition 5 ( [14] ): A polynomial generator matrix is

called basic if it has a polynomial right inverse. It is called
minimal if its degree δ is minimum among all generator
matrices ofC.

Forney in [16] showed that the ordered set{ν1, ν2, ..., νb}
of row degrees (indices) is the same for all minimal basic
generator matrices ofC (which are all equivalent to one
another). Therefore the ordered row degrees and the degree
δ can be defined for a convolutional codeC. Also, any
minimal basic generator matrix for a convolutional code is
non-catastrophic.

Definition 6 ( [14] ): A convolutional encoderis a physical
realization of a generator matrix by a linear sequential circuit.
Two encoders are said to beequivalent encodersif they encode
the same code. Aminimal encoderis an encoder with the
minimal number of memory elements among all equivalent
encoders.

Given an encoder withδ′ memory elements for the code
C, we can associate a vectorσt ∈ F

δ′

q whose components
indicate the states of theδ′ memory elements at time instant
t.

The weight of a vectorv(z) ∈ F
c
q[[z]] is the sum of the

Hamming weights (overFq) of all its F
c
q-coefficients. Then

we have the following definitions.
Definition 7 ( [14]): The free distanceof a convolutional

codeC is given as

dfree(C) = min {wt(v(z))|v(z) ∈ C,v(z) 6= 0}
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