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Abstract—This paper considers the problem of securing a other hand, universal schemes have been proposed for the
linear network coding system against an adversary thatis bihan  case wheren is required to be sufficiently large; this is the

eavesdropper and a jammer. The network is assumed to ranspd  55r0a¢h taken i [9]/T10] for error control and in [11] for
n packets from source to each receiver, and the adversary is security =

allowed to eavesdrop onu arbitrarily chosen links and also to . .
inject up to ¢ erroneous packets into the network. The goal of the ~ When both requirements of error control and security are
system is to achieveero-error communication that is information-  combined, the problem becomes harder, and a simple con-

theoretically secure from the adversary. Moreover, this gal must  catenation of an error control scheme and a security scheme
be attained in a universal fashion, i.e., regardless of theatwork may not necessarily work. The reason is that, if error cdntro

topology or the underlying network code. An upper bound on . . .
the achievable rate under these requirements is shown to be coding is followed by security coding, the overall codeword

n — u — 2t packets per transmission. A scheme is proposed that may not be robust to errors and, similarly, if security cgdin
can achieve this maximum rate, for anyn and any field sizeq, is followed by error control coding, the overall codewordyma

provided the packet lengthm is at leastn symbols. The scheme is not be robust to eavesdropping. Previous work on this proble

based on rank-metric codes and admits low-complexity encatly ¢ heen [imitdlito non-universal schemes [13], [14], which
and decoding. In addition, the scheme is shown to be optimahi . ey
require knowledge of the network code.

the sense that the required packet length is the smallest psible
among all universal schemes that achieve the maximum rate. In this paper, we propose aniversal scheme that
achieves perfectly reliable and perfectly secure comnainic
tion. Namely, in a network with a maxflow of packets, if at

Consider a network implementing linear network codingnhostt error packets are injected in the network, and at most
for multicast [1]. The network may be subject to two typegs packets are observed by an eavesdropper, then our scheme
of attacks: a malicious user injects corrupt packets in® tlan provide perfectly secure and reliable communicatioitewh
network in order to disrupt communication; an unauthorizesthieving a rate ok = n — 2t — p packets per transmission.
eavesdropper intercepts packet transmissions in ordeb+to @his rate is shown to be optimal. Note that a similar upper
tain as much information as possible about the transmittedund on rate has been shownl[14] in the context of non-
messages. The linear mixing performed by network codingiversal network coding withm = 1, but it does not apply to
presents challenges to coding schemes in both scenarids, #wi@ problem considered here (since it ignores the podsibili
has motivated a significant amount of research. of exploitingm > 1 in the coding scheme).

This paper considers the problem of dealing with the A requirement of our scheme is that the packet length
aforementioned attacks in a universal fashion, i.e., in & wanust be at leasi symbols. We show that this value is optimal,
that is completely independent of the network topology and the sense that it is the smallest packet length of a uravers
the specific network code. This has the advantage of prodgeheme achieving the maximum rate.
ing schemes that are compatible with noncoherent (random main tool in the design and analysis of our scheme is the
network coding [[2]. Also, we focus on the most stringertheory of rank-metric code$ [115]. We show that our scheme
requirements ofzero error probability andzero information can benefit from existing efficient algorithms for rank-nietr
leakage, i.e., perfectly reliable and perfectly securet(ie codes[[10],[[15], and therefore can be encoded and decoded
information-theoretic sense) communication. with low complexity.

Most of the previous work on this problem deals with the |t is worth mentioning that there is another line of work
special cases where only error control or only security {fat relaxes the assumption of zero error probability (i,
required. A dividing assumption among these works refejigstead, vanishingly small error probability) [17], [18h this
to the constraints on the packet length For a system that case, even higher rates can be achieved [18], however, the
is required to work under any packet length (in particulapacket length must be asymptotically large.
underm = 1), the error control problem has been extensively The remainder of the paper is organized as follows. Sec-
discussed in[[3}-[5] (see references therein) and the Becution [T establishes the notation used and reviews backgtoun

problem has also received significant attention [6]-[8]alh material on rank-metric codes and linear network coding. In
of these works, the proposed solutions require knowledge of

the network code, and therefore are not universal. On théexcept for an earlier, suboptimal version of this work. SE8|,[[12].

I. INTRODUCTION
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Sectior[Tll, we define the problem of combined error contr@roposed by Gabidulin[15]. AGabidulin code is an [n, k|
and security. In Section 1V, we review existing techniqudiear code oveff,~ defined by the generator matrix
for the special cases of either error control or securityy.onl & 4
We also provide new results and insights for these scenarios 90, g 0 Ina
which will be useful for our proposed scheme. In Secfidn V, I g o gl
we present our scheme and show that it achieves the desired G= : : :
goals. In Sectio VI, we prove that our scheme is optimal ot q,;,l o1
both in the sense of maximal rate and smallest packet length. 90 91  Yna
In Sectior{ V1], we discuss how the scheme can be extendedyRere the elementso, ..., gn_1 € F,~ are linearly inde-
the case of noncoherent network coding. Finally, Se¢fidlil Vipendent oveff,. It is shown in [15] that the minimum rank
presents our conclusions. distance of a Gabidulin code is= n — k + 1, so the code is
Some proofs are omitted due to lack of space. The fWiRD.
version of this work is being incorporated in the revised i
version of [T1]. C. Linear Network Coding
The basic model for a (multicast) communication system
Il. BACKGROUND using linear network coding is that of a finite-field matrixach
nel. At each channel use (generation) a source node transmit
a batch ofn packets, each consisting ef symbols from a
LetF, be afinite field. Lef";*™ denote the set of alt xm finite field F,, which can be regarded as the rows of a matrix
matrices ove,, and seffy = Fy*'. LetF,» be an extension X e Fr*™. Each link in the network transports a packet
field of F,. Recall thatF,~ is anm-dimensional vector spacefree of errors, and each node creates outgoing packefs-as
over F,. Thus, by fixing a basis foF,~ overF,, elements linear combinations of incoming packets. The specification
of F,» may be viewed as (row) vectors IR,*™ and vice- of all such linear combinations defines the network code.
versa. This identification will be used extensively throogh The packets received by a (specific) destination node can
the paper. In particular, we may view a column vectoFj. be regarded as the rows of ai x m matrix Y = AX,

)

A. Notation

as a matrix inFy*™ and vice-versa. where A € FY>*" is the transfer matrix that describes the
_ linear transformations incurred by packets on route to the
B. Rank-Metric Codes destination. The system is said to teherent if A is known

Let X. Y € F"*™ pe matrices. Theank distance between t0 each corresponding destination; otherwise, it is saitieto
Y q N

X andY is defined agig (X, V) N rank (Y — X). As observed noncoherent. The linear network code is said to feasible if
in [15], the rank distance is indeednaetric. every transfer matrix to a destination has rankso that, in a

. ; nxm ; ; coherent system, each destination is able to recaer
noﬁemtyngil CofC anthﬁcegs)Fﬂsed Iisn ihr:aégﬁtggtd ((e)f(ltﬁ.e, ?ankThe system described above is referred to agar m, k),
metric. Theminimum rank distance of C, denotediy (C), is the '€ coded network, Wherek denotes the minimum rank
minimum rank distance between all pairs of distinct codelgor @Mm0ng all transfer matrices. Thus, @nxm, n), linear coded
of C. network contains a feasible network code.

There is a rich coding theory for rank-metric codes that 1. PROBLEM STATEMENT
is analogous to the classical coding theory in the Hamming
metric. In particular, the Singleton bound for the rank ricetr
[10], [15] states that every rank-metric codeC Fy <™ with
minimum rank distancd must satisfy

For simplicity, we restrict attention to a single destinati
since all the results in this paper can be immediately ex-
tended to multiple destinations. In addition, we focus oa th
fundamental case of coherent network coding; extensions to
c| < graxtnm(min{n,m}—d+1) 1) noncoherent network cod_ing are described i_n Se VII. _
The basic model for linear network coding described in
Codes that achieve this bound are calledximum-rank- Section[II-C can be extended to incorporate packet errors.
distance (MRD) codes and they are known to exist for alSuppose that at mosterrors can occur in any of the links,
choices of parameteig n, m andd < min{n, m} [15]. causing the corresponding packets to become corrupted. In
In the context of the bijection betweeﬂxm andF =, a this case, we will say that the netwoik subject to ¢ errors.
rank-metric code may described as a block céde F7.. Assuming, without loss of generality, an additive error relpd
of lengthn over F,~. (Note that, differently from classical the matrix received by the destination can be expressed as
coding theory, here we treat each codeword asolmn V — AX
: ; : = +DZ
vector. However, to avoid confusion, we will keep the stadda
notation on generator and parity-check matrices of lineahereZ ¢ Ffzxm is a matrix consisting of the error packets
codes.) injected andD € Fé\’“ is the transfer matrix from the affected
It is particularly useful to considdinear block codes over links to the destination. Note thal depends on the set of links
Fym. For m > n, an important family of such codes wasn error.



This model can be further extended to include an eavesdropFrom the Singleton bound](1), it can be seen that the
per adversary, in the spirit of the wiretap channel Il of @@ar maximum rate achievable by a universathgrror-correcting
and Wyner[[19]. The eavesdropper is assumed to have accadseme is given bynax{n, m}(min{n, m} — 2t) symbols per
to the packets transmitted on apyarbitrarily chosen links transmission, and it is achieved by an MRD code. In particula
in the network. In this case, we will say that the networthe rate ofn — 2t packets per transmission is achievable only
is subject to ;. observations. Let W € F,*™ be a matrix if m > n.
consisting of the packets observed by the eavesdroppen Theln the case of a stochastic encoding, the result above does

W can be expressed as not necessarily hold, since it is conceivable that recones
from Y does not necessarily enable the receiver to recéver
W =DBX Still, it is possible to obtain the following equivalencesuét,

whereB € F#*" is the transfer matrix from the source node tgvhich will be very useful in the sequel.

the eavesdropper. Note thatdepends on the set of intercepted Theorem 2: Consider a stochastic encoding frofh e S

links. to X € F,;*™. The encoding admits a universallyerror-
To ensure secure and reliable communication, the sou@recting scheme if and only if it admits a zero-error sceem

node chooses the matriX as the (possibly stochastic) encodfor the coherent channéd” = AX, for all full-rank A €

ing of some message € S (which should be recovered by the]FfI"_Qt)X".
destination but not by the eavesdropper). The coding scieme  Proof: Omitted due to lack of space. n
said to bezero-error if S can be uniquely determined frokn, Essentially, Theorerl 2 shows that any coding scheme that

i.e., H(S|Y)) = 0. Here we assume that is a constant KNown ¢ rectst packet errors can be modified at the decoder to

i N xt t . . ..
to all, while D < F,”*" and Z € F;*"™ are unknown random jnstead correctt “packet erasures” (i.e., rank deficiency), and
variables with unknown distributions (which may depend ofyce-versa.

X). A zero-error scheme, in this context, may also be called

t-error-correcting scheme. A scheme is said to beiversally ~B- Security Only
t-error-correcting if it satisfies Consider an(n x m,n), linear coded network subject to
1 observations but = 0 errors. In this caseH (X|Y) = 0;
H(S|Y)=0, VA:rankA=n (3)  thus, condition[{B) can be replaced B§(S|X) = 0.

It is shown in [11] that the maximum number of symbols

for any arbitrary distributions orD and Z. In other words, ¢ ission that b liabl icated with
a universallyt-error-correcting scheme must provide reliapl8°" fransmission fhat can be refiably communicated with a
niversally secret scheme is upper boundednb — p).

communication for any of the choice of the (feasible) "nea]l\tloreover this rate is achievable onlysif >
’ ~ n.

network code. . ) ; . .
: . . . A scheme is proposed in_[11] that is able to achieve this
The coding scheme is said to IKjperfectly) secret if the maximum rate. The scheme uses Ozarow-Wyner coset coding

eavesdropper gets no information about the message,ﬂ.el,}lgl based on linear MRD codes. In order to describe the

I(S;W) = 0. Note that this requirement depends on th oo . L . )
! . : . scheme, it is convenient to use the bijection described in
choice of B. A scheme is said to baniversally (perfectly) ; . o
secret undery observations if it satisfies Schor_{E and think of vecto_rs_lﬂFq as elements of the
extension field¥ ;. Note that this is used solely to perform the
I(S;W) =0, VBeF/™™ (4) encoding and decoding operations at the source and déstinat
nodes, and has no impact in tfig-linear network coding
In other words, a universally secret scheme must guaranigferations performed at the internal nodes.
secrecy for any choice of the linear network code. Let C be an[n, u] linear code oveif,» with parity-check
In this paper, we are interested in schemes that are batlatrix 7 < F’;i” wherek = n— u. Let the message be given
universally t-error-correcting and universally secret under py § ¢ F’;m. Encoding is performed by choosing € F~.,
observations, i.e., schemes that satisfy bbth (3) &hd (4).  uniformly at random such thaf = HX. In other words S is
viewed as a syndrome specifying a cosef pdnd X is chosen
as a random word from that coset. Decoding is performed
A. Error Control Only simply by computingS = HX. It is shown in [11] that this

Consider an(n x m, n), linear network subject to errors scheme is universally secret if and onlyCifis an MRD code

but = 0 observations. In this case, conditidd (4) can b&ndm = n. _ _ _
ignored. We now describe a convenient way to perform the encoding

nXn 1 1 H
In the case of a deterministic encoding, the followin§0cess. Let’ € Fy." be an |nvert|bI? matrix such thaf
characterization is given ifi [20]. corresponds to the first rows of T~'. Given a message
i S € Ff., the encoder choosel € F" " uniformly at

. e . q
Theorem 1 ([20]): Consider a deterministic encoder maprandom and independently froi, and produces\ € F.,

ping S € S to X € F;*™ whose image is given by py computing
C C Fy*™. There exists a universally-error-correcting YT S
scheme with this encoder if and onlyd (C) > 2t + 1. v

IV. SPECIAL CASES



Note thatS = HX. It is easy to show thal{ (X|S) = n —k, In particular, decoding can be performed in two steps: first,
i.e., X is chosen uniformly at random givefi. Thus, this applying a decoder fof, in order to findU € IF’;I“; then,

encoder indeed implements a coset coding approach. extracting the message as the firstk rows of U.
We now give a security condition based directly on the In order to prove the secrecy of the scheme, consider first
matrix 1" rather than its inverse. an alternative interpretation. L&t € =" be an invertible

matrix such that the last + ;. rows of 77" correspond to the

Proposition 3: The encoder described above is universall%atrix Gr. Then. we have
0- )

secure undep < n — k observations if the last — k& rows
of T7 form a generator matrix of afn, n — k] linear MRD T 0 S’
code overf,» with m > n. X:GOU:TU =T v
Proof: Let G € IFE}Z’“X" and G, € Fix" be such that
a where
7T — { 1} Then , [o]
G S = )
S
I 0 _ H HGT HGT
{0 I] =T7'T = [Hl] [G{ GT} = |:H1G1T HIGT]- In other words, the encoder is identical to the encoder
! described in Sectiof TVIB ifS’ is taken as the message.

Thus, HGT = 0. Since bothG and H are full-rank, it Furthermore, we have that the lastrows of 77 correspond
follows thatG and H are generator and parity-check matricesp G, which is the generator matrix of gn, x| linear MRD

respectively, for exactly the same code. B code ovelf,~. Thus, by Propositionl3 (which holds regardless
of the message distribution), we have that the scheme is
V. PROPOSEDSCHEME universally secret under observations.

In this section, we propose a scheme that is univergally The above analysis proves the following result.
error-correcting and universally secret ungdeiobservations.
The scheme achieves a rate of— pu — 2t packets per
transmission and requires the packet lengtho be at least

n symbols. The scheme can be seen as a combination ofr proposed scheme relies on the assumption that a
the strategies for error control and security described Yenerator matrixGy for an [n, k + 4] linear MRD codeCy
Section [V, designed in such a way that they can be couplggisis such that its last rows form a generator matrix for

without violating conditions [{3) and{4). In what fOHOWSanother[n,u] linear MRD code. It is easy to see that,Gf,
=) om . : o 0
we make use of the identification betweBy*™ and Fon g taken as a generator matrix of a Gabidulin code given in

Theorem 4: The scheme described above is universally
error-correcting and universally secret ungeobservations.

described in Section IA. the form [2), then any. consecutive rows oy, (in particular
(sz,?)lirr?e thatn > n and0 < k <n —p—2t. Let Go €  the last ones) indeed form a generator matrix of an MRD sub-
Fom be a generator matrix of am, k 4 u] linear MRD  ¢code. In this case, decoding Gf can be efficiently performed

code overlf,~. Suppose that the lagt rows of Gy form a ysing the methods i [10]; [12], [16].
generator matrixG' € F:*™ of an [n, u] linear MRD code S

over Fgm. VI. CONVERSERESULTS
Encoding proceeds as follows. Given a messége F’;m, . _ .
the encoder first produces an auxiliary variable In this section, we prove that our proposed scheme is
optimal, both in the sense of achieving the maximum possible
U = {S] rate and in the sense of requiring the minimum possible gacke
4 length among all schemes that achieve this maximum rate.

by choosingV’ € F/.. is uniformly at random and indepen-

Theorem 5: Consider an linear coded network.
dently fromS. Then, the encoder computes (n X m)q

Assume that the source message has entropy packets.
X =Gru. There exists a scheme that is universalbrror-correcting and

universally secure under observations only it < n—2t—p.

Note that the mapping front/ to X is a deterministic Moreover, this maximum rate can be attained onlynif> n.
mapping whose image is (a subset of) Proof: Let n' = n — 2t. Let B € F/*" be a full-
Co = {GOTu, ue Fé’fi‘”}. rank matrix and letA € IF;}/X" be_a full-rank matrix SLfch

that B = PA for some (necessarily full-ranklp € F/*™ .

It follows from Theorenill that, wheiX is transmitted over Let Y4 = AX and Wz = BX = PYj4. If the encoder
an (n x m, n), linear coded network subject to errors, admits a scheme that is universaliyerror-correcting then,

the receiver can uniquely determiiié (and thereforeS) if by TheoreniP, it also admits a scheme that is zero-error for

dr(Co) > 2t. SinceCy is an|n, k + p linear MRD code over the coherent channély = AX. Thus, there is a function
Fym, with m > n, we have thatir(Co) =n—k—p+1>  fa: IF;}/X’” — & such thatS = f4(Ya). In particular, there
2t + 1. Thus, the scheme is universatherror-correcting. is also a functionf: IF;*™ — S such thatS = f(X). Thus,



we may write Xy = {z € Fy*™ : f(z) = s}. Now,

VIIl. CONCLUSION

In this paper, we have proposediaiversal end-to-end cod-
ing scheme that can guaranteefectly secure and perfectly
reliable communication over a linear coded network subject
to malicious interference and eavesdropping. The scheme is
optimal both in the sense of achieving the maximum possible
rate as well as requiring the smallest possible packet lengt
The scheme is based on rank-metric codes and admit efficient

k= H(S)
— H(S|Ya, W5) + 1(S;Ya, Wg)
=1(S;Ya, Wg) (5)
=1(S;Wg) + I(S; Ya|Wp)
= 1(S;Ya|W) (6)
= H(Ya|Wg) — H(YalS, Wg)
< H(Ya|lWB) (7)
<n' —rankP=n'—p (8)

where [[5) follows sinces is a function ofY,4 and [6) follows g
since I(S;Wpg) = 0. This proves the first statement. Now [2]
consider the second statement. Siride (8) holds with egualit
we must havell (Ya|S, Wp) =0 and H(Ya|Wg) =n' — p. 3]
Note that these conditions hold for all full-rank and all

A € Ag, where ]

Ap = {A€F"*" ;rank A =0, (B) C (A)} 5

and (-) denotes the row space of a matrix. This implies that

H(Ya, A € Ap|S,Wg) = 0 and thereforetl (Yp|S, Wp) = 6]
0, whereYp = Ag X and A is the matrix consisting of the
vertical stacking of all matrices ipdg. It is not hard to see
that, as long a®’ > p, rank Ag = n. (In fact, Az contains

every nonzero vector d]‘;x” as one of its rows.) It follows
that H(X|S, Wg) = 0, for all full-rank B. Thus, X must be

uniquely determined givel/z = BX and the indication that
X € Xg. From Theoreni]1, this implies that eagdh must be

a rank-metric code withlg (Xs) >n — p+ 1.

On the other hand, we have seen thefV4|Wg5) =n’ — i
for all full-rank P € F&<"" whereWp = PY, andB = PA.
By the chain rule of entropy, it is not hard to see that this
implies thatY, is uniform (for instance, by choosing somd!]
P’s that are submatrices of an identity matrix, as in the \ajpet
channel Il). ThusH(Y4) = n/, which implies thatH (X) >
n'/. Since H(X) = H(X,S) = H(S) + H(X|S), we have
that H(X|S) > n’ — k = p. Thus, there must be somec S
such thatH (X|S = s) > u, which implies that x| > ¢™*.
Together with the fact thaig (Xs) > n — u+ 1, we can see, (14]
from the Singleton bound1), that this can only happen if
m > n. m [19]

(7]
(8]
El

[10]

[12]

[13]

VIlI. EXTENSION TONONCOHERENTNETWORK CODING [16]

The scheme described in the paper is suitable for coherent
network coding and is indeed optimal. In the case of noncohery)
ent network coding, the scheme can be adapted by including
appropriate packet headers. More precisely, the trangmiss
matrix should bel/  X], whereX is the transmission matrix [1g]
of the original scheme. Clearly, including packet headeesd
not affect security, but it allows the scheme to be decod g]
when the transfer matri¥l is unknown. It is shown in[[10]
that such adaptation preserves the error-correcting dipab
of the code, so the universallyerror-correcting property is [20]
maintained. Although the rate achieved in this case is hgdon
optimal, it is very close to optimal for all practical packet
lengths [[10].

encoding and decoding algorithms.
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