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Abstract—This paper considers the problem of securing a
linear network coding system against an adversary that is both an
eavesdropper and a jammer. The network is assumed to transport
n packets from source to each receiver, and the adversary is
allowed to eavesdrop onµ arbitrarily chosen links and also to
inject up to t erroneous packets into the network. The goal of the
system is to achievezero-error communication that is information-
theoretically secure from the adversary. Moreover, this goal must
be attained in a universal fashion, i.e., regardless of the network
topology or the underlying network code. An upper bound on
the achievable rate under these requirements is shown to be
n− µ− 2t packets per transmission. A scheme is proposed that
can achieve this maximum rate, for anyn and any field sizeq,
provided the packet lengthm is at leastn symbols. The scheme is
based on rank-metric codes and admits low-complexity encoding
and decoding. In addition, the scheme is shown to be optimal in
the sense that the required packet length is the smallest possible
among all universal schemes that achieve the maximum rate.

I. I NTRODUCTION

Consider a network implementing linear network coding
for multicast [1]. The network may be subject to two types
of attacks: a malicious user injects corrupt packets into the
network in order to disrupt communication; an unauthorized
eavesdropper intercepts packet transmissions in order to ob-
tain as much information as possible about the transmitted
messages. The linear mixing performed by network coding
presents challenges to coding schemes in both scenarios, and
has motivated a significant amount of research.

This paper considers the problem of dealing with the
aforementioned attacks in a universal fashion, i.e., in a way
that is completely independent of the network topology and
the specific network code. This has the advantage of produc-
ing schemes that are compatible with noncoherent (random)
network coding [2]. Also, we focus on the most stringent
requirements ofzero error probability andzero information
leakage, i.e., perfectly reliable and perfectly secure (inthe
information-theoretic sense) communication.

Most of the previous work on this problem deals with the
special cases where only error control or only security is
required. A dividing assumption among these works refers
to the constraints on the packet lengthm. For a system that
is required to work under any packet length (in particular,
underm = 1), the error control problem has been extensively
discussed in [3]–[5] (see references therein) and the security
problem has also received significant attention [6]–[8]. Inall
of these works, the proposed solutions require knowledge of
the network code, and therefore are not universal. On the

other hand, universal schemes have been proposed for the
case wherem is required to be sufficiently large; this is the
approach taken in [9], [10] for error control and in [11] for
security.

When both requirements of error control and security are
combined, the problem becomes harder, and a simple con-
catenation of an error control scheme and a security scheme
may not necessarily work. The reason is that, if error control
coding is followed by security coding, the overall codeword
may not be robust to errors and, similarly, if security coding
is followed by error control coding, the overall codeword may
not be robust to eavesdropping. Previous work on this problem
has been limited1 to non-universal schemes [13], [14], which
require knowledge of the network code.

In this paper, we propose auniversal scheme that
achieves perfectly reliable and perfectly secure communica-
tion. Namely, in a network with a maxflow ofn packets, if at
most t error packets are injected in the network, and at most
µ packets are observed by an eavesdropper, then our scheme
can provide perfectly secure and reliable communication while
achieving a rate ofk = n− 2t− µ packets per transmission.
This rate is shown to be optimal. Note that a similar upper
bound on rate has been shown [14] in the context of non-
universal network coding withm = 1, but it does not apply to
the problem considered here (since it ignores the possibility
of exploitingm > 1 in the coding scheme).

A requirement of our scheme is that the packet lengthm

must be at leastn symbols. We show that this value is optimal,
in the sense that it is the smallest packet length of a universal
scheme achieving the maximum rate.

A main tool in the design and analysis of our scheme is the
theory of rank-metric codes [15]. We show that our scheme
can benefit from existing efficient algorithms for rank-metric
codes [10], [16], and therefore can be encoded and decoded
with low complexity.

It is worth mentioning that there is another line of work
that relaxes the assumption of zero error probability (requiring,
instead, vanishingly small error probability) [17], [18].In this
case, even higher rates can be achieved [18], however, the
packet length must be asymptotically large.

The remainder of the paper is organized as follows. Sec-
tion II establishes the notation used and reviews background
material on rank-metric codes and linear network coding. In

1except for an earlier, suboptimal version of this work. See [11], [12].
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Section III, we define the problem of combined error control
and security. In Section IV, we review existing techniques
for the special cases of either error control or security only.
We also provide new results and insights for these scenarios,
which will be useful for our proposed scheme. In Section V,
we present our scheme and show that it achieves the desired
goals. In Section VI, we prove that our scheme is optimal
both in the sense of maximal rate and smallest packet length.
In Section VII, we discuss how the scheme can be extended to
the case of noncoherent network coding. Finally, Section VIII
presents our conclusions.

Some proofs are omitted due to lack of space. The full
version of this work is being incorporated in the revised
version of [11].

II. BACKGROUND

A. Notation

Let Fq be a finite field. LetFn×m
q denote the set of alln×m

matrices overFq, and setFn
q = F

n×1
q . LetFqm be an extension

field of Fq. Recall thatFqm is anm-dimensional vector space
over Fq. Thus, by fixing a basis forFqm over Fq, elements
of Fqm may be viewed as (row) vectors inF1×m

q and vice-
versa. This identification will be used extensively throughout
the paper. In particular, we may view a column vector inF

n
qm

as a matrix inFn×m
q and vice-versa.

B. Rank-Metric Codes

Let X,Y ∈ F
n×m
q be matrices. Therank distance between

X andY is defined asdR(X,Y ) , rank(Y −X). As observed
in [15], the rank distance is indeed ametric.

A rank-metric code C ⊆ F
n×m
q is a matrix code (i.e., a

nonempty set of matrices) used in the context of the rank
metric. Theminimum rank distance of C, denoteddR(C), is the
minimum rank distance between all pairs of distinct codewords
of C.

There is a rich coding theory for rank-metric codes that
is analogous to the classical coding theory in the Hamming
metric. In particular, the Singleton bound for the rank metric
[10], [15] states that every rank-metric codeC ⊆ F

n×m
q with

minimum rank distanced must satisfy

|C| ≤ qmax{n,m}(min{n,m}−d+1). (1)

Codes that achieve this bound are calledmaximum-rank-
distance (MRD) codes and they are known to exist for all
choices of parametersq, n, m andd ≤ min{n,m} [15].

In the context of the bijection betweenF1×m
q andFqm , a

rank-metric code may described as a block codeC ⊆ F
n
qm

of length n over Fqm . (Note that, differently from classical
coding theory, here we treat each codeword as acolumn
vector. However, to avoid confusion, we will keep the standard
notation on generator and parity-check matrices of linear
codes.)

It is particularly useful to considerlinear block codes over
Fqm . For m ≥ n, an important family of such codes was

proposed by Gabidulin [15]. AGabidulin code is an [n, k]
linear code overFqm defined by the generator matrix

G =













g
q0

0 g
q0

1 · · · g
q0

n−1

g
q1

0 g
q1

1 · · · g
q1

n−1
...

...
. . .

...

g
qk−1

0 g
qk−1

1 · · · g
qk−1

n−1













(2)

where the elementsg0, . . . , gn−1 ∈ Fqm are linearly inde-
pendent overFq. It is shown in [15] that the minimum rank
distance of a Gabidulin code isd = n− k+1, so the code is
MRD.

C. Linear Network Coding

The basic model for a (multicast) communication system
using linear network coding is that of a finite-field matrix chan-
nel. At each channel use (generation) a source node transmits
a batch ofn packets, each consisting ofm symbols from a
finite field Fq, which can be regarded as the rows of a matrix
X ∈ F

n×m
q . Each link in the network transports a packet

free of errors, and each node creates outgoing packets asFq-
linear combinations of incoming packets. The specification
of all such linear combinations defines the network code.
The packets received by a (specific) destination node can
be regarded as the rows of anN × m matrix Y = AX ,
whereA ∈ F

N×n
q is the transfer matrix that describes the

linear transformations incurred by packets on route to the
destination. The system is said to becoherent if A is known
to each corresponding destination; otherwise, it is said tobe
noncoherent. The linear network code is said to befeasible if
every transfer matrix to a destination has rankn (so that, in a
coherent system, each destination is able to recoverX).

The system described above is referred to as an(n×m, k)q
linear coded network, where k denotes the minimum rank
among all transfer matrices. Thus, an(n×m,n)q linear coded
network contains a feasible network code.

III. PROBLEM STATEMENT

For simplicity, we restrict attention to a single destination,
since all the results in this paper can be immediately ex-
tended to multiple destinations. In addition, we focus on the
fundamental case of coherent network coding; extensions to
noncoherent network coding are described in Section VII.

The basic model for linear network coding described in
Section II-C can be extended to incorporate packet errors.
Suppose that at mostt errors can occur in any of the links,
causing the corresponding packets to become corrupted. In
this case, we will say that the networkis subject to t errors.
Assuming, without loss of generality, an additive error model,
the matrix received by the destination can be expressed as

Y = AX +DZ

whereZ ∈ F
t×m
q is a matrix consisting of the error packets

injected andD ∈ F
N×t
q is the transfer matrix from the affected

links to the destination. Note thatD depends on the set of links
in error.



This model can be further extended to include an eavesdrop-
per adversary, in the spirit of the wiretap channel II of Ozarow
and Wyner [19]. The eavesdropper is assumed to have access
to the packets transmitted on anyµ arbitrarily chosen links
in the network. In this case, we will say that the network
is subject to µ observations. Let W ∈ F

µ×m
q be a matrix

consisting of the packets observed by the eavesdropper. Then
W can be expressed as

W = BX

whereB ∈ F
µ×n
q is the transfer matrix from the source node to

the eavesdropper. Note thatB depends on the set of intercepted
links.

To ensure secure and reliable communication, the source
node chooses the matrixX as the (possibly stochastic) encod-
ing of some messageS ∈ S (which should be recovered by the
destination but not by the eavesdropper). The coding schemeis
said to bezero-error if S can be uniquely determined fromY ,
i.e.,H(S|Y ) = 0. Here we assume thatA is a constant known
to all, while D ∈ F

N×t
q andZ ∈ F

t×m
q are unknown random

variables with unknown distributions (which may depend on
X). A zero-error scheme, in this context, may also be called
t-error-correcting scheme. A scheme is said to beuniversally
t-error-correcting if it satisfies

H(S|Y ) = 0, ∀A : rank A = n (3)

for any arbitrary distributions onD and Z. In other words,
a universallyt-error-correcting scheme must provide reliable
communication for any of the choice of the (feasible) linear
network code.

The coding scheme is said to be(perfectly) secret if the
eavesdropper gets no information about the message, i.e., if
I(S;W ) = 0. Note that this requirement depends on the
choice ofB. A scheme is said to beuniversally (perfectly)
secret underµ observations if it satisfies

I(S;W ) = 0, ∀B ∈ F
µ×m
q . (4)

In other words, a universally secret scheme must guarantee
secrecy for any choice of the linear network code.

In this paper, we are interested in schemes that are both
universally t-error-correcting and universally secret underµ

observations, i.e., schemes that satisfy both (3) and (4).

IV. SPECIAL CASES

A. Error Control Only

Consider an(n×m,n)q linear network subject tot errors
but µ = 0 observations. In this case, condition (4) can be
ignored.

In the case of a deterministic encoding, the following
characterization is given in [20].

Theorem 1 ( [20]): Consider a deterministic encoder map-
ping S ∈ S to X ∈ F

n×m
q whose image is given by

C ⊆ F
n×m
q . There exists a universallyt-error-correcting

scheme with this encoder if and only ifdR(C) ≥ 2t+ 1.

From the Singleton bound (1), it can be seen that the
maximum rate achievable by a universallyt-error-correcting
scheme is given bymax{n,m}(min{n,m}−2t) symbols per
transmission, and it is achieved by an MRD code. In particular,
the rate ofn− 2t packets per transmission is achievable only
if m ≥ n.

In the case of a stochastic encoding, the result above does
not necessarily hold, since it is conceivable that recoveringS

from Y does not necessarily enable the receiver to recoverX .
Still, it is possible to obtain the following equivalence result,
which will be very useful in the sequel.

Theorem 2: Consider a stochastic encoding fromS ∈ S
to X ∈ F

n×m
q . The encoding admits a universallyt-error-

correcting scheme if and only if it admits a zero-error scheme
for the coherent channelY = AX , for all full-rank A ∈
F
(n−2t)×n
q .

Proof: Omitted due to lack of space.

Essentially, Theorem 2 shows that any coding scheme that
correctst packet errors can be modified at the decoder to
instead correct2t “packet erasures” (i.e., rank deficiency), and
vice-versa.

B. Security Only

Consider an(n × m,n)q linear coded network subject to
µ observations butt = 0 errors. In this case,H(X |Y ) = 0;
thus, condition (3) can be replaced byH(S|X) = 0.

It is shown in [11] that the maximum number of symbols
per transmission that can be reliably communicated with a
universally secret scheme is upper bounded bym(n − µ).
Moreover, this rate is achievable only ifm ≥ n.

A scheme is proposed in [11] that is able to achieve this
maximum rate. The scheme uses Ozarow-Wyner coset coding
[19] based on linear MRD codes. In order to describe the
scheme, it is convenient to use the bijection described in
Section II-A and think of vectors inF1×m

q as elements of the
extension fieldFqm . Note that this is used solely to perform the
encoding and decoding operations at the source and destination
nodes, and has no impact in theFq-linear network coding
operations performed at the internal nodes.

Let C be an[n, µ] linear code overFqm with parity-check
matrixH ∈ F

k×n
qm , wherek = n−µ. Let the message be given

by S ∈ F
k
qm . Encoding is performed by choosingX ∈ F

n
qm

uniformly at random such thatS = HX . In other words,S is
viewed as a syndrome specifying a coset ofC, andX is chosen
as a random word from that coset. Decoding is performed
simply by computingS = HX . It is shown in [11] that this
scheme is universally secret if and only ifC is an MRD code
andm ≥ n.

We now describe a convenient way to perform the encoding
process. LetT ∈ F

n×n
qm be an invertible matrix such thatH

corresponds to the firstk rows of T−1. Given a message
S ∈ F

k
qm , the encoder choosesV ∈ F

(n−k)
qm uniformly at

random and independently fromS, and producesX ∈ F
n
qm

by computing

X = T

[

S

V

]

.



Note thatS = HX . It is easy to show thatH(X |S) = n− k,
i.e., X is chosen uniformly at random givenS. Thus, this
encoder indeed implements a coset coding approach.

We now give a security condition based directly on the
matrix T rather than its inverse.

Proposition 3: The encoder described above is universally
secure underµ ≤ n − k observations if the lastn − k rows
of T T form a generator matrix of an[n, n − k] linear MRD
code overFqm with m ≥ n.

Proof: Let G ∈ F
(n−k)×n
qm andG1 ∈ F

k×n
qm be such that

T T =

[

G1

G

]

. Then

[

I 0
0 I

]

= T−1T =

[

H

H1

]

[

GT
1 GT

]

=

[

HGT
1 HGT

H1G
T
1 H1G

T

]

.

Thus, HGT = 0. Since bothG and H are full-rank, it
follows thatG andH are generator and parity-check matrices,
respectively, for exactly the same code.

V. PROPOSEDSCHEME

In this section, we propose a scheme that is universallyt-
error-correcting and universally secret underµ observations.
The scheme achieves a rate ofn − µ − 2t packets per
transmission and requires the packet lengthm to be at least
n symbols. The scheme can be seen as a combination of
the strategies for error control and security described in
Section IV, designed in such a way that they can be coupled
without violating conditions (3) and (4). In what follows
we make use of the identification betweenF1×m

q and Fqm

described in Section II-A.
Assume thatm ≥ n and 0 < k ≤ n − µ − 2t. Let G0 ∈

F
(k+µ)×n
qm be a generator matrix of an[n, k + µ] linear MRD

code overFqm . Suppose that the lastµ rows of G0 form a
generator matrixG ∈ F

µ×n
q of an [n, µ] linear MRD code

overFqm .
Encoding proceeds as follows. Given a messageS ∈ F

k
qm ,

the encoder first produces an auxiliary variable

U =

[

S

V

]

by choosingV ∈ F
µ
qm is uniformly at random and indepen-

dently fromS. Then, the encoder computes

X = GT
0 U.

Note that the mapping fromU to X is a deterministic
mapping whose image is (a subset of)

C0 = {GT
0 u, u ∈ F

(k+µ)
qm }.

It follows from Theorem 1 that, whenX is transmitted over
an (n × m, n)q linear coded network subject tot errors,
the receiver can uniquely determineU (and thereforeS) if
dR(C0) > 2t. SinceC0 is an [n, k+ µ] linear MRD code over
Fqm , with m ≥ n, we have thatdR(C0) = n − k − µ + 1 ≥
2t+ 1. Thus, the scheme is universallyt-error-correcting.

In particular, decoding can be performed in two steps: first,
applying a decoder forC0 in order to findU ∈ F

k+µ
qm ; then,

extracting the messageS as the firstk rows ofU .
In order to prove the secrecy of the scheme, consider first

an alternative interpretation. LetT ∈ F
n×n
qm be an invertible

matrix such that the lastk + µ rows ofT T correspond to the
matrix G0. Then, we have

X = GT
0 U = T

[

0
U

]

= T

[

S′

V

]

where

S′ =

[

0
S

]

.

In other words, the encoder is identical to the encoder
described in Section IV-B ifS′ is taken as the message.
Furthermore, we have that the lastµ rows of T T correspond
to G, which is the generator matrix of an[n, µ] linear MRD
code overFqm . Thus, by Proposition 3 (which holds regardless
of the message distribution), we have that the scheme is
universally secret underµ observations.

The above analysis proves the following result.

Theorem 4: The scheme described above is universallyt-
error-correcting and universally secret underµ observations.

Our proposed scheme relies on the assumption that a
generator matrixG0 for an [n, k + µ] linear MRD codeC0
exists such that its lastµ rows form a generator matrix for
another[n, µ] linear MRD code. It is easy to see that, ifG0

is taken as a generator matrix of a Gabidulin code given in
the form (2), then anyµ consecutive rows ofG0 (in particular
the last ones) indeed form a generator matrix of an MRD sub-
code. In this case, decoding ofC0 can be efficiently performed
using the methods in [10], [12], [16].

VI. CONVERSERESULTS

In this section, we prove that our proposed scheme is
optimal, both in the sense of achieving the maximum possible
rate and in the sense of requiring the minimum possible packet
length among all schemes that achieve this maximum rate.

Theorem 5: Consider an(n × m)q linear coded network.
Assume that the source message has entropy ofk packets.
There exists a scheme that is universallyt-error-correcting and
universally secure underµ observations only ifk ≤ n−2t−µ.
Moreover, this maximum rate can be attained only ifm ≥ n.

Proof: Let n′ = n − 2t. Let B ∈ F
µ×n
q be a full-

rank matrix and letA ∈ F
n′×n
q be a full-rank matrix such

that B = PA for some (necessarily full-rank)P ∈ F
µ×n′

q .
Let YA = AX and WB = BX = PYA. If the encoder
admits a scheme that is universallyt-error-correcting then,
by Theorem 2, it also admits a scheme that is zero-error for
the coherent channelYA = AX . Thus, there is a function
fA : Fn′×m

q → S such thatS = fA(YA). In particular, there
is also a functionf : Fn×m

q → S such thatS = f(X). Thus,



we may writeXs = {x ∈ F
n×m
q : f(x) = s}. Now,

k = H(S)

= H(S|YA,WB) + I(S;YA,WB)

= I(S;YA,WB) (5)

= I(S;WB) + I(S;YA|WB)

= I(S;YA|WB) (6)

= H(YA|WB)−H(YA|S,WB)

≤ H(YA|WB) (7)

≤ n′ − rank P = n′ − µ (8)

where (5) follows sinceS is a function ofYA and (6) follows
since I(S;WB) = 0. This proves the first statement. Now
consider the second statement. Since (8) holds with equality,
we must haveH(YA|S,WB) = 0 andH(YA|WB) = n′ − µ.
Note that these conditions hold for all full-rankB and all
A ∈ AB, where

AB = {A ∈ F
n′×n
q : rank A = n′, 〈B〉 ⊆ 〈A〉}

and 〈·〉 denotes the row space of a matrix. This implies that
H(YA, A ∈ AB|S,WB) = 0 and thereforeH(ȲB |S,WB) =
0, whereȲB = ĀBX and ĀB is the matrix consisting of the
vertical stacking of all matrices inAB. It is not hard to see
that, as long asn′ > µ, rank ĀB = n. (In fact, ĀB contains
every nonzero vector ofF1×n

q as one of its rows.) It follows
thatH(X |S,WB) = 0, for all full-rank B. Thus,X must be
uniquely determined givenWB = BX and the indication that
X ∈ XS . From Theorem 1, this implies that eachXs must be
a rank-metric code withdR(Xs) ≥ n− µ+ 1.

On the other hand, we have seen thatH(YA|WB) = n′−µ

for all full-rank P ∈ F
µ×n′

q whereWB = PYA andB = PA.
By the chain rule of entropy, it is not hard to see that this
implies thatYA is uniform (for instance, by choosing some
P ’s that are submatrices of an identity matrix, as in the wiretap
channel II). Thus,H(YA) = n′, which implies thatH(X) ≥
n′. SinceH(X) = H(X,S) = H(S) + H(X |S), we have
thatH(X |S) ≥ n′ − k = µ. Thus, there must be somes ∈ S
such thatH(X |S = s) ≥ µ, which implies that|Xs| ≥ qmµ.
Together with the fact thatdR(Xs) ≥ n− µ+ 1, we can see,
from the Singleton bound (1), that this can only happen if
m ≥ n.

VII. E XTENSION TO NONCOHERENTNETWORK CODING

The scheme described in the paper is suitable for coherent
network coding and is indeed optimal. In the case of noncoher-
ent network coding, the scheme can be adapted by including
appropriate packet headers. More precisely, the transmission
matrix should be

[

I X
]

, whereX is the transmission matrix
of the original scheme. Clearly, including packet headers does
not affect security, but it allows the scheme to be decoded
when the transfer matrixA is unknown. It is shown in [10]
that such adaptation preserves the error-correcting capability
of the code, so the universallyt-error-correcting property is
maintained. Although the rate achieved in this case is no longer
optimal, it is very close to optimal for all practical packet
lengths [10].

VIII. C ONCLUSION

In this paper, we have proposed auniversal end-to-end cod-
ing scheme that can guaranteeperfectly secure and perfectly
reliable communication over a linear coded network subject
to malicious interference and eavesdropping. The scheme is
optimal both in the sense of achieving the maximum possible
rate as well as requiring the smallest possible packet length.
The scheme is based on rank-metric codes and admit efficient
encoding and decoding algorithms.
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