
ar
X

iv
:1

11
2.

33
07

v1
 [

cs
.IT

]
14

 D
ec

 2
01

1
1

Polytope Codes Against Adversaries in

Networks

Oliver Kosut, Lang Tong, and David Tse

Abstract

Network coding is studied when an adversary controls a subset of nodes in the network of limited

quantity but unknown location. This problem is shown to be more difficult than when the adversary

controls a given number of edges in the network, in that linear codes are insufficient. To solve the node

problem, the class of Polytope Codes is introduced. Polytope Codes are constant composition codes

operating over bounded polytopes in integer vector fields. The polytope structure creates additional

complexity, but it induces properties on marginal distributions of code vectors so that validities of

codewords can be checked by internal nodes of the network. Itis shown that Polytope Codes achieve

a cut-set bound for a class of planar networks. It is also shown that this cut-set bound is not always

tight, and a tighter bound is given for an example network.

I. INTRODUCTION

Network coding allows routers in a network to execute possibly complex codes in addition

to routing; it has been shown that allowing them to do so can increase communication rate

[1]. However, taking advantage of this coding at internal nodes means that the sources and

destinations must rely on other nodes—nodes they may not have complete control over—to

reliably perform certain functions. If these internal nodes do not behave correctly, or, worse,

maliciously attempt to subvert the goals of the users—constituting a so-called Byzantine attack

[2], [3]—standard network coding techniques fail.

O. Kosut is with the Massachusetts Institute of Technology,Cambridge, MAokosut@mit.edu

L. Tong is with Cornell University, Ithaca, NYltong@ece.cornell.edu

D. Tse is with the University of California, Berkeley, CAdtse@eecs.berkeley.edu

This work is supported in part by the National Science Foundation under Award CCF-0635070 and the Army Research Office

under Grant ARO-W911NF-06-1-0346.

http://arxiv.org/abs/1112.3307v1

2

Suppose an omniscient adversary controls an unknown portion of the network, and may

arbitrarily corrupt the transmissions on certain communication links. We wish to determine how

the size of the adversarial part of the network influences reliable communication rates. If the

adversary may control anyz unit-capacity edges in the network, then it has been shown that, for

the multicast problem (one source and many destinations), the capacity reduces by2z compared

to the non-Byzantine problem [4], [5]. To achieve this rate,only linear network coding is needed.

Furthermore, if there is just one source and one destination, coding is needed only at the source

node; internal nodes need only do routing.

The above model assumes that any set ofz edges may be adversarial, which may not accurately

reflect all types of attacks. This model is accurate if the attacker is able to cut transmission lines

and change messages that are sent along them. However, if instead the attacker is able to seize

a router in a network, it will control the values on all links connected to that router. Depending

on which router is attack, the number of the links controlledby the adversary may vary. In an

effort to more accurately model this situation, in this paper we assume that the adversary may

control any set ofs nodes.

Defeating node-based attacks is fundamentally different from defeating edge-based attacks.

First, the edge problem does not immediately solve the node problem. Consider, for example,

the Cockroach network, shown in Fig. 1. Suppose we wish to handle any single adversarial node

in the network (i.e.s = 1). One simple approach would be to apply to edge result from [4], [5]:

no node controls more than two unit-capacity edges, so we candefeat the node-based attack by

using a code that can handle an attack on any two edges. However, note that the achievable rate

for this network without an adversary is 4, so subtracting twice the number of bad edges leaves

us with an achievable rate of 0. As we will show, the actual capacity of the Cockroach network

with one traitor node is 2. In effect, relaxing the node attack problem to the edge attack problem

is too pessimistic, and we can do better if we treat the node problem differently.

Node-based attacks and edge-based attacks differ in an evenmore fundamental way. When

the adversary may sieze control of any set ofz unit-capacity edges, it is clear that it should

always take over edges on the minimum cut of the network. However, if the adversary may sieze

any s nodes, it is not so obvious: it may face a choice between a nodedirectly on the min-cut,

but with few output edges, and a node away from the min-cut, but with many output edges. For

example, in the Cockroach network, node 4 has only one outputedge, but it is on the min-cut

3

PSfrag replacements

S
D

1

2

3

4

5

Fig. 1. The Cockroach Network. All edges have capacity 1. Thecapacity is 2, but no linear code can achieve a rate higher

than 4/3. A proof of the linear capacity is given in Appendix B. A capacity-achieving linear code supplemented by nonlinear

comparisons is given in Sec. V, and a capacity-achieving Polytope Code is given in Sec. VII.

(which is between nodesS, 1, 2, 3, 4, 5 andD); node 1 has two output edges, so apparently more

power, but it is one step removed from the min-cut, and therefore its power may be diminished.

This uncertainty about where a network is most vulnerable seems to make the problem hard.

Indeed, we find that many standard network coding techniquesfail to achieve capacity, so we

resort to nonlinear codes, and in particular Polytope Codes, to be described.

A. Related Work

Byzantine attacks on network coding were first studied in [6], which looked at detecting

adversaries in a random linear coding environment. Thez unit-capacity edge adversary problem

was solved in [4], [5]. In [7], the same problem is studied, providing distributed and low

complexity coding algorithms to achieve the same asymptotically optimal rates. In addition,

[7] looks at two adversary models slightly different from the omniscient one considered in [4],

[5] and in this paper. They show that higher rates can be achieved under these alternate models.

In [8], a more general view of the adversary problem is given,whereby the network itself is

abstracted into an arbitrary linear transformation.

Network coding under Byzantine attacks that are more general than the simple edge-based

model was first studied in [9], a conference version of this work, and [10]. The latter looked at the

problem of edge-based attacks when the edges may have unequal capacities. This problem was

4

found to have similar complications to the node-based problem. In particular, both [9] and [10]

found that linear coding is suboptimal, and that simple nonlinear operations used to augment

a linear code can improve throughput. Indeed, [10] used a network almost identical to what

we call the Cockroach network to demonstrate that nonlinearoperations are necessary for the

unequal edge problem. We show in Sec. X that the unequal-capacity edge problem is subsumed

by the node problem.

These works seek to correct for the adversarial errors at thedestination. An alternative strategy

known as the watchdog, studied for wireless network coding in [11], is for nodes to police

downstream nodes by overhearing their messages to detect modifications. In [12], a similar

approach is taken, and they found that nonlinear operationssimilar to ours can be helpful, in

which comparisons are made to detect errors.

B. Main Results

Many achievability results in network coding have been proved using linear codes over a finite

field. In this paper we demonstrate that linear codes are insufficient for this problem. Moreover,

we develop a class of codes called Polytope Codes, originally introduced in [9] under the less

descriptive term “bounded-linear codes”. Polytope codes are used to prove that a cut-set bound,

stated and proved in Sec. III, is tight for a certain class of networks. Polytope Codes differ from

linear codes in three ways:

1) Comparisons:A significant tool we use to defeat the adversary is that internal nodes in the

network perform comparisons: they check whether their received data could have occurred

if all nodes had been honest. If not, then there must be an upstream traitor that altered one of

the received values, in which case this traitor can be localized. The result of the comparison,

a bit signifying whether or not it succeeded, can be transmitted downstream through the

network. The destination receives these comparison bits and uses them to determine who

may be the traitors, and how to decode. These comparison operations are nonlinear, and, as

we will demonstrate in Sec. V, incorporating them into a standard finite-field linear code

can increase achieved rate. However, even standard linear codes supplemented by these

nonlinear comparison operations appears to be insufficientto achieve capacity in general.

Polytope Codes also incorporate comparisons, but of a more sophisticated variety.

5

2) Constant Composition Codebooks:Unlike usual linear network codes, Polytope Codes are

essentially constant composition codes. In particular, each Polytope Code is governed by a

joint probability distribution on a set of random variables, one for each edge in the network.

The codebook is composed of the set of all sequences with joint type exactly equal to

this distribution. The advantage of this method of code construction is that an internal

node knows exactly what joint type to expect of its received sequences, because it knows

the original distribution. In a Polytope Code, comparisonsperformed inside the network

consist of checking whether the observed joint type matchesthe expected distribution. If

it does not, then the adversary must have influenced one of thereceived sequences, so it

can be localized.

3) Distributions over Polytopes:The final difference between linear codes and Polytope

Codes—and the one for which the latter are named—comes from the nature of the proba-

bility distributions that, as described above, form the basis of the code. They are uniform

distributions over the set of integer lattice points on polytopes in real vector fields. This

choice for distribution provides two useful properties. First, the entropy vector for these

distributions can be easily calculated merely from properties of the linear space in which

the polytope sits. For this reason, they share characteristics with finite-field linear codes. In

fact, a linear code can almost always be converted into a Polytope Code achieving the same

rate. (There would be no reason to do this in practice, since Polytope Codes require much

longer blocklengths.) The second useful property has to do with how the comparisons inside

the network are used. These distributions are such that if enough comparisons succeed, the

adversary is forced to act as an honest node and transmit correct information. We consider

this to be the fundamental property of Polytope Codes. It will be elaborated in examples in

Sec. VI and Sec. VII, and then stated in its most general form as Theorem 3 in Sec. VIII.

We state in Sec. IV our result that the cut-set bound can be achieved using Polytope Codes

for a class of planar networks. Planarity requires that the graph can be embedded in a plane such

that intersections between edges occur only at nodes. This ensures that enough opportunities for

comparisons are available, allowing the code to more well defeat the adversary. The theorem is

proved in Sec. IX, but first we develop the theory of Polytope Codes through several examples

in Sec. V–VII. In addition, we show in Sec. X that the cut-set bound is not always tight, by

6

giving an example with a tighter bound. We conclude in Section XI.

II. PROBLEM FORMULATION

Let (V,E) be an directed acyclic graph. We assume all edges are unit-capacity, and there may

be more than one edge connecting the same pair of nodes. One node in V is denotedS, the

source, and one is denotedD, the destination. We wish to determine the maximum achievable

communication rate fromS to D when any set ofs nodes inV \ {S,D} are traitors; i.e. they

are controlled by the adversary. Given a rateR and a block-lengthn, the messageW is chosen

at random from the set{1, . . . , 2nR}. Each edgee holds a valueXe ∈ {1, . . . , 2n}.

A code is be made up of three components:

1) an encoding function at the source, which takes the message as input and produces values

to place on all output edges,

2) a coding function at each internal nodei ∈ V \{S,D}, which takes the values on all input

edges toi, and produces values to place on all output edges fromi,

3) and a decoding function at the destination, which takes the values on all input edges and

produces an estimatêW of the message.

SupposeT ⊆ V \ {S,D} is the set of traitors, with|T | = s. They may subvert the coding

functions at nodesi ∈ T by placing arbitrary values on all the output edges from these nodes.

Let ZT be the set of values on these edges. For a particular code, specifying the messageW

as well asZT determines exactly the values on all edges in the network, inaddition to the

destination’s estimatêW . We say that a rateR is achievableif there exists a code operating

at that rate with some block-lengthn such that for all messages, all sets of traitorsT , and all

values ofZT , W = Ŵ . That is, the destination always decodes correctly no matter what the

adversary does. Let thecapacityC be the supremum over all achievable rates.

III. CUT-SET UPPERBOUND

It is shown in [4], [5] that, if an adversary controlsz unit-capacity edges, the network coding

capacity reduces by2z. This is a special case of a more general principle: an adversary-controlled

part of the network does twice as much damage in rate as it would if that part of the network

were merely removed. This doubling effect is for the same reason that, in a classical error

correction code, the Hamming distance between codewords must be at least twice the number

7

of errors to be corrected; this is the Singleton bound [13]. We now give a cut-set upper bound

for node-based adversaries in network coding that makes this explicit.

A cut in a network is a subset of nodesA ⊂ V containing the source but not the destination.

The cut-set upper bound on network coding without adversaries is the sum of the capacities of all

forward-facing edges; that is, edges(i, j) with i ∈ A andj /∈ A. All backward edges are ignored.

In the adversarial problem, backward edges are more of a concern. This is because the bound

relies on messages that are sent along edges not controlled by the adversary being unaffected by

those that are, which is not guaranteed in the presence of a backwards edge. We give an example

of this in Appendix A. To avoid the complication, we state here a simplified cut-set bound that

applies only to cuts without backward edges. This bound willbe enough to find the capacity

of the class of planar networks to be specified in Sec. IV, but for the general problem it can

be tightened. We state and prove a tighter version of the cut-set bound in Appendix A. Unlike

the problem without adversaries, we see that there is no canonical notion of a cut-set bound.

Some even more elaborate bounds are found in [10], [14]. These papers study the unequal-edge

problm, but the bounds can be readily applied to the node problem.

It was originally conjectured in [10] that even the best cut-set bound is not tight in general.

In Sec. X, we demonstrate that there can be an active upper bound on capacity fundamentally

unlike a cut-set bound. The example used to demonstrate this, though it is a node adversary

problem, can be easily modified to confirm the conjecture stated in [10].

Theorem 1:Consider a cutA ⊂ V with S ∈ A andD /∈ A and with no backward edges;

that is, there is no edge(i, j) ∈ E with i /∈ A and j ∈ A. If there ares traitor nodes, then for

any setU ⊂ V \ {S,D} with |U | = 2s, the following upper bound holds on the capacity of the

network:

C ≤ |{(i, j) ∈ E : i ∈ A \ U, j /∈ A}|. (1)

Proof: Divide U into two setsT1 andT2 with |T1| = |T2| = s. Let E1 andE2 be the sets of

edges out of nodes inT1 andT2 respectively that cross the cut; that is, edges(i, j) with i ∈ A

andj /∈ A. Let Ē be the set of all edges crossing the cut not out of nodes inT1 or T2. Observe

that the upper bound in (1) is precisely the total capacity for all edges inĒ. Note also that,

since there are no backwards edges for the cutA, the values on edges in̄E are not influenced

by the values on edges inE1 or E2. This setup is diagrammed in Fig. 2.

8
PSfrag replacements

S
D

A Ac

E1

E2

T1

T2

Ē

XE1
(w2)

XE2
(w1)

XĒ(w1) = XĒ(w2)

Fig. 2. Diagram of the proof of Theorem 1. The values on the links crossing the cut are such that it is impossible to determine

whetherT1 or T2 is the true set of traitors, and which ofw1 or w2 is the true message.

Suppose (1) does not hold. Therefore there exists a code withblock-lengthn achieving a rate

R higher than the right hand side of (1). For any set of edgesF ⊆ E, for this code, we can

define a function

XF : 2nR →
∏

e∈F

2n (2)

such that for a messagew, assuming all nodes act honestly, the values on edges inF is given by

XF (w). SinceR is greater than the total capacity for all edges inĒ, there exists two messages

w1 andw2 such thatXĒ(w1) = XĒ(w2).

We demonstrate that it is possible for the adversary to confuse the messagew1 with w2.

Supposew1 were the true message, and the traitors areT1. The traitors replace the values sent

along edges inE1 with XE1(w2). If there are edges out of nodes inT1 that are not inE1—i.e.

they do not cross the cut—the traitors do not alter the valueson these edges. Thus, the values

sent along edges in̄E are given byXĒ(w1). Now supposew2 were the true message, and the

traitors areT2. They replace the messages going along edges inE2 with XE2(w1), again leaving

all other edges alone. Note that in both these cases, the values onE1 areXE1(w2), the values

onE2 areXE2(w1), and the values on̄E areXĒ(w1). This comprises all edges crossing the cut,

so the destination receives the same values under each case;therefore it cannot distinguishw1

from w2.

We illustrate the use of Theorem 1 on the Cockroach network, as shown in Fig. 1, with a

9

single adversary node. To apply the bound, we choose a cutA and a setU with |U | = 2s = 2.

TakeA = {S, 1, 2, 3, 4, 5}, andU = {1, 4}. Four edges cross the cut, but the only ones not

out of nodesU are (3, D) and (5, D), so we may apply Theorem 1 to give an upper bound on

capacity of 2. Alternatively, we could takeA = {S, 1, 2, 3} andU = {1, 2}, to give again an

upper bound of 2. Note that there are 6 edges crossing this second cut, even though the cut-set

bound is the same. It is not hard to see that 2 is the smallest upper bound given by Theorem 1

for the capacity of the Cockroach network. In fact, rate 2 is achievable, as will be shown in

Sec. V using a linear code supplemented by comparison operations, and again in Sec. VII using

a Polytope Code.

IV. CAPACITY OF A CLASS OF PLANAR NETWORKS

Theorem 2:Let (V,E) be a network with the following properties:

1) It is planar.

2) No node other than the source has mare than two unit-capacity output edges.

3) No node other than the source has more output edges than input edges.

4) There is at most one traitor (i.e.s = 1).

The cut-set bound given by Theorem 1 is tight for(V,E).

Polytope Codes are used to prove achievability for this theorem. The complete proof is given

in Sec. IX, but first we develop the theory of Polytope Codes bymeans of several examples in

Sec. V–VII and general properties in Sec. VIII.

Perhaps the most interesting condition in the statement of Theorem 2 is the planarity condition.

Recall that a graph is said to beembeddedin a surface (generally a two dimensional manifold)

when it is drawn in this surface so that edges intersect only at nodes. A graph isplanar if it

can be embedded in the plane.

V. A L INEAR CODE WITH COMPARISONS FOR THECOCKROACH NETWORK

The Cockroach network satisfies the conditions of Theorem 2.Fig 1 shows a plane embedding

with both S andD on the exterior, and the second and third conditions are easily seen to be

satisfied. Therefore, since the smallest cut-set bound given by Theorem 1 for a single traitor

node is 2, Theorem 2 claims that the capacity of the Cockroachnetwork is 2. In this section,

we present a capacity-achieving code for the Cockroach network that is composed of a linear

10

code over a finite-field supplemented by nonlinear comparisons. This illustrates the usefulness

of comparisons in defeating Byzantine attacks on network coding. Before doing so, we provide

an intuitive argument that linear codes are insufficient. A more technical proof that the linear

capacity is in fact 4/3 is given in Appendix B.

Is it possible to construct a linear code achieving rate 2 forthe Cockroach network? We know

from the Singleton bound-type argument—the argument at theheart of the proof of Theorem 1—

that, in order to defeat a single traitor node, if we take out everything controlled by two nodes,

the destination must be able to decode from whatever remains. Suppose we take out nodes 2 and

3. These nodes certainly control the values on(5, D) and (3, D), so if we hope to achieve rate

2, the values on(1, D) and(4, D) must be uncorruptable by nodes 2 and 3. Edge(1, D) is not a

problem, but consider(4, D). With a linear code, the value on this edge is a linear combination

of the values on(1, 4) and(2, 4). In order to keep the value on(4, D) uncorruptable by node 2,

the coefficient used to construct the value on(4, D) from (2, 4) must be zero. In other words,

node 4 must ignore the value on(2, 4) when constructing the value it sends on(4, D). If this

is the case, we lose nothing by removing(2, 4) from the network. However, without this edge,

we may apply Theorem 1 withA = {S, 1, 2, 3} andU = {1, 3} to conclude that the capacity is

no more than 1. Therefore no linear code can successfully achieve rate 2.

This argument does not rigorously show that the linear capacity is less than 2, because it

shows only that a linear code cannot achieve exactly rate 2, but it does not bound the achievable

rate with a linear code away from 2. However, it is meant to be an intuitive explanation for the

limitations of linear codes for this problem, as compared with the successful nonlinear codes

that we will subsequently present. The complete proof that the linear capacity is 4/3 is given in

Appendix B.

We now introduce a nonlinear code to achieve the capacity of 2. We work in the finite field

of p elements. Let the messagew be a2k-length vector split into twok-length vectorsx andy.

We will use a block length large enough to place one of2pk values on each link. In particular,

this is enough to place on a link some linear combination ofx andy, as well as one additional

bit. For large enoughk, this extra bit becomes insignificant, so we still achieve rate 2.

The scheme is shown in Figure 3. Node4 receives the vectory from both nodes1 and2. It

forwards one of these copies toD (it does not matter which). In addition, it performs a nonlinear

comparison between the two received copies ofy, resulting in a bit comprised of one of the

11

PSfrag replacements

S
D

1

2

3

4

5

x

y

y

x+ y

x+
y

x− y

y

x+
y

(=, 6=)

(=
, 6=

)

Fig. 3. A nonlinear code for the Cockroach Network achievingthe capacity of 2.

special symbols= or 6=. If the two received copies ofy agree, it sends=, otherwise it sends

6=. The link (4, D) can accommodate this, since it may have up to2pk messages placed on it.

Node5 does the same with its two copies of the vectorx+ y.

The destination’s decoding strategy depends on the two comparison bits sent from nodes4

and5, as follows:

• If node5 sends6= but node4 sends=, then the traitor must be one of nodes1, 2, or 4. In any

case, the vectorx−y received from node3 is certainly trustworthy. Moreover,x+y can be

trusted, because even if node2 is the traitor, its transmission must have matched whatever

was sent by node3; if not, node5 would have transmitted6=. Therefore the destination can

trust bothx+ y andx− y, from which it can decode the messagew = (x, y).

• If node 5 sends6= but node4 sends=, then we are in the symmetric situation and can

reliably decodew from x andy.

• If both nodes4 and5 send6=, then the traitor must be node2, in which case the destination

can reliable decode fromx andx− y.

• If both messages are=, then the destination cannot eliminate any node as a possible traitor.

However, we claim that at most one ofx, y, x + y, x − y can have been corrupted by the

traitor. If node1 is the traitor, it may choose whatever it wants forx, and the destination

would never know. However, node1 cannot impact the value ofy without inducing a6=,

because its transmission to node4 is verified against that from node2. Similarly, node

12

3 controlsx − y but not x + y. Nodes4 and 5 control only y and x + y respectively.

Node2 controls nothing, because bothy andx+y are checked against other transmissions.

Therefore, if the destination can find three ofx, y, x+y, x−y that all agree on the message

w, then this message must be the truth because only one of the four could be corrupted,

andw can be decoded from the other two. Conversely, there must be agroup of three of

x, y, x+y, x+2y that agree, because at most one has been corrupted. Hence, the destination

can always decodew.

Even though our general proof of Theorem 2 uses a Polytope Code, which differs significantly

from this one, the manner in which the comparisons comes intoplay is essentially the same. The

key insight is to consider the code from the perspective of the traitor. Suppose it is node 1, and

consider the choice of what value fory to send along edge(1, 4). If it sends a false value for

y, then the comparison at node 4 will fail, which will lead the destination to consider the upper

part of the network suspect, and thereby ignore all values influenced by node 1. The only other

choice for node 1 is to cause the comparison at node 4 to succeed; but this requires sending the

true value ofy, which means it has no hope to corrupt the decoding process. This is the general

principle that makes our codes work: force the to make a choice between acting like an honest

node, or acting otherwise and thereby giving away its position.

We make one further note on this code, having to do with why thespecific approach used

here for the Cockroach network fails on the more general problem. Observe that in order to

make an effective comparison, the values sent along edges(1, 4) and(2, 4) needed to be exactly

the same. If they had been independent vectors, no comparison could be useful. This highly

constrains the construction of the code, and even though it succeeds for this network, it fails

for others, such as the Caterpillar network, to be introduced in the next section. The advantage

of the Polytope Code is that it deconstrains the types of values that must be available in order

to form a useful comparison; in fact, it becomes possible to have useful comparisons between

nearly independent variables, which is not possible with a code built on a finite-field.

VI. A N EXAMPLE POLYTOPE CODE: THE CATERPILLAR NETWORK

The Caterpillar Network is shown in Figure 4. We consider a slightly different version of the

node-based attack on this network: at most one node may be a traitor, but only nodes 1–4. This

13

4

6

1

2

3

8

7

5

9

10

PSfrag replacements

S D

Fig. 4. The Caterpillar Network. All edges have unit capacity. One node may be a traitor, but only one of the black nodes:

nodes 1–4.

network is not in the class defined in the statement of Theorem2, but we introduce it in order

to motivate the Polytope Code.

Even though this problem differs from the one defined earlierin that not every node in the

network may be a traitor, it is easy to see that we may still apply the cut-set bound of Theorem 1

as long as we take the setU to be a subset of the allowable traitors. If we apply Theorem 1

with A = {S, 1, 2, 3, 4} andU = {1, 2}, we find that the capacity of this network is no more

than 2. As we will show, the capacity is 2.

Consider what is required to achievae rate 2. Of the four values on the edges(1, 5), (2, 6),

(3, 7), and(4, 8), one may be corrupted by the adversary. This means that thesefour values must

form a (4, 2) MDS code. That is, given any uncorrupted pair of these four values, it must be

possible to decode the message exactly. Since each edge has capacity 1, in order to achieve rate

2, the values on each pair of edges must be independent, or nearly independent. For example,

we could take the message to be composed of two elementsx, y from a finite field, and transmit

on these four edgesx, y, x+ y, x− y. However, as we will show, this choice does not succeed.

Now consider the two edges(9, D) and (10, D). As these are the only edges incident to the

destination, to achieve rate 2, both must hold values guaranteed to be uncorrupted by the traitor.

We may assume that nodes 5–8 forward whatever they receive ontheir incoming edges to all

their outgoing edges, so node 10 receives all four values sent from nodes 1–4. From these, it

can decode the entire message, so it is not a problem for it to construct a trustworthy value to

14

send along(10, D). However, node 9 has access to only three of the four values sent from nodes

1–4, from which it is not clearly possible to construct a trustworthy value. The key problem,

then, is to design the values on edges(1, 5), (2, 6), (3, 7) to be pairwise independent, but such

that if one value is corrupted, it is always possible to construct a trustworthy value to transmit

on (9, D). This is impossible to do using a finite field code. For example, suppose node 9 is

given values forx, y, x+y, one of which may be corrupted by the traitor. If the linear constraint

among these three values does not hold—that is, if the received value forx+ y does not match

the sum of the value forx and the value fory—then any of the three values may be the incorrect

one. Therefore, from node 9’s perspective, any of nodes 1, 2,or 3 could be the traitor. In order

to produce a trustworthy symbol, it must be able to correctlyconclude that one of these three

nodes is not the traitor. If, for example, it could determinethat the traitor was node 1 or node 2

but not node 3, then the value sent along(3, 7) could be forwarded to(9, D) with a guarantee

of correctness. A linear code over a finite field does not allowthis, but a Polytope Code does.

A. Coding Strategy

We now begin to describe a capacity-achieving Polytope Codefor the Caterpillar network. We

do so first by describing how the code is built out of a probability distribution, and the properties

we need this probability distribution to satisfy. Subsequently, we give an explicit construction

for a probability distribution derived from a polytope in a real vector field, and show that it has

the desired properties.

Let X, Y, Z,W be jointly distributed random variables, each defined over the finite alphabet

X. Assume all probabilities on these random variables are rational. Let T n(XY ZW) ∈ X
4n

be the set of joint sequences(xnynznwn) with joint type exactly equal to the distribution on

X, Y, Z,W . For n such thatT n(XY ZW) is not empty, we know from the theory of types that

|T n(XY ZW)| ≥
1

(n+ 1)|X|4
2nH(XY ZW). (3)

Our coding strategy will be to associate each element ofT n(XY ZW) with a distinct message.

Given the message, we find the associated four sequencesxn, yn, zn, wn, and transmit them on

the four edges out of nodes 1,2,3,4 respectively. Doing thisrequires placing a sequence inXn

on each edge. The rate of this code is

log |T n(XY ZW)|

n log |X|
≥
H(XY ZW)

log |X|
−

|X|4 log(n+ 1)

n log |X|
. (4)

15

Note that for sufficiently largen, we may operate at a rate arbitrarily close toH(XY ZW)
log |X|

.

Therefore, to achieve rate 2, we would like the following property to hold.

Property 1: H(XY ZW)
log |X|

= 2.

The adversary may alter the value of one of the sequences sentout of nodes 1–4. By the

Singleton bound argument, it must be possible to reconstruct the message from any two of these

four sequences. We therefore need the following property.

Property 2: Any two of X, Y, Z,W determine the other two.

For reasons that will become clear, we also need the following property. It is an example of

the fundamental property of Polytope Codes.

Property 3: Any random variables̃X, Ỹ , Z̃ satisfying the three conditions

(X̃, Ỹ) ∼ (X, Y) (5)

(X̃, Z̃) ∼ (X,Z) (6)

(Ỹ , Z̃) ∼ (Y, Z) (7)

also satisfy

(X̃, Ỹ , Z̃) ∼ (X, Y, Z). (8)

Suppose we are given random variablesX, Y, Z,W satisfying Properties 1–3. We now describe

what nodes 9 and 10 transmit to the destination. Letx̃n, ỹn, z̃n, w̃n be the four sequences that are

sent on the edges out of nodes 1–4; because of the traitor at most one of these may differ from

xn, yn, zn, wn. Let random variables̃X, Ỹ , Z̃, W̃ have joint distribution equal to the joint type

of (x̃n, ỹn, z̃n, w̃n). This is a formal definition; these variables do not exist perse in the network,

but defining them make it convenient to describe the behaviorof the code. Since node 9 recevies

x̃n, ỹn, z̃n, it knows exactly the joint distribution of̃X, Ỹ , Z̃. In particular, it can check which

of (5)–(8) are satisfied for these variables.

Suppose (8) holds. Then all three sequencesx̃n, ỹn, z̃n are trustworthy, because if a traitor is

among nodes 1–3, it must have transmitted the true value of its output sequence, or else the

empirical type would not match, due to Property 2. In this case, node 9 forwards̃xn to the

destination, confident that it is correct. Meanwhile, node 10 can also observẽX, Ỹ , Z̃, and so it

forwards ỹn to the destination.

Now suppose (8) does not hold. Then by Property 3, one of (5)–(7) must not hold. Suppose,

for example, that(X̃, Ỹ) 6∼ (X, Y). Because of our constant composition code construction,

16

this can only occur if either node 1 or 2 is the traitor. Hence,node 3 is honest, so Node 9 may

forward z̃n to the destination without error. Similarly, no matter which pairwise distribution does

not match, node 9 can always forward the sequence not involved in the mismatch. Meanwhile,

node 10 may forward̃wn to the destination, since in any case the traitor has been localized to

nodes 1–3. The destination always receives two of the four sequences, both guaranteed correct;

therefore it may decode.

B. The Polytope Distribution

All that remains to prove that rate 2 can be achieved for the Caterpillar network is to show that

there exists variablesX, Y, Z,W such that Properties 1–3 hold. In fact, this is not quite possible.

In particular, Property 1 implies thatX, Y, Z,W are pairwise independent. If so, Property 3

cannot hold, because we can takeX̃, Ỹ , Z̃ to be jointly independent with̃X ∼ X, Ỹ ∼ Y , and

Z̃ ∼ Z. This satisfies (5)–(7) but not (8). We therefore replace Property 1 with the following

slight relaxation.

Property 4: H(XY ZW)
log |X|

≥ 2− ǫ.

If for every ǫ > 0, there exists a set of random variables satisfying Properties 2–4, then by (4)

we achieve rate 2.

The most unusual aspect of the Polytope Code is Property 3 andits generalization, to be

stated as Theorem 3 in Sec. VIII. Therefore, before constructing a distribution satisfying all

three properties, we illustrate in Table I a very simple distribution on three binary variables

variables that satisfy just Property 3. This distribution is only onX, Y, Z; for simplicity leave

outW , as it is not involved in Property 3. We encourage the reader to manually verify Property 3

for this distribution. Observe thatX, Y, Z as given in Table I may be alternatively expressed as

being uniformly distributed on the following polytope:

{

x, y, z ∈ {0, 1} : x+ y + z = 1
}

. (9)

This is a special case of the construction of the distributions in the sequel.

We now construct a distribution satisfying Properties 2–4 for arbitrarily smallǫ. Takek to be

a positive integer, and letX, Y, Z,W be uniform over the set

{

(x, y, z, w) ∈ {−k, . . . , k}4 : x+ y + z = 0 and3x− y + 2w = 0
}

. (10)

17

TABLE I

A SIMPLE DISTRIBUTION SATISFYINGPROPERTY3.

x y z p(xyz)

0 0 0 0

0 0 1 1/3

0 1 0 1/3

0 1 1 0

1 0 0 1/3

1 0 1 0

1 1 0 0

1 1 1 0

PSfrag replacements X

Y

k

k−k

−k

Fig. 5. An example polytope projected into the(x, y) plane.

Note that this is the set of integer lattice points in a polytope.

By the linear constraints in (10), this distribution satisfies Property 2. Now consider Property 4.

The region of(X, Y) pairs with positive probability is shown in Figure 5. Note that X andY

are not independent, because the boundedness ofZ andW requires thatX andY satisfy certain

linear inequalities. Nevertheless, the area of the polygonshown in Figure 5 grows asO(k2).

Hence
logH(XY ZW)

log |X|
=

logO(k2)

log(2k + 1)
≥ 2− ǫ (11)

where the last inequality holds for sufficiently largek. Thus these variables satisfy Property 4.

18

We now consider Property 3. Assuming̃X, Ỹ , Z̃ satisfy (5)–(7), we may write

E
[

(X̃ + Ỹ + Z̃)2
]

= E
[

X̃2 + Ỹ 2 + Z̃2 + 2X̃Ỹ + 2X̃Z̃ + 2Ỹ Z̃
]

(12)

= E
[

X2 + Y 2 + Z2 + 2XY + 2XZ + 2Y Z
]

(13)

= E
[

(X + Y + Z)2] (14)

= 0 (15)

where (13) holds from (5)–(7), and because each term in the sum involves at most two of the

three variables; and (15) holds becauseX +Y +Z = 0 by construction. HencẽX + Ỹ + Z̃ = 0,

so we may write

(X̃, Ỹ , Z̃) = (X̃, Ỹ ,−X̃ − Ỹ) (16)

∼ (X, Y,−X − Y) (17)

= (X, Y, Z) (18)

where (17) holds by (5). This verifies Property 3, and we may now conclude that the distribution

on X, Y, Z,W satisfies all desired properties, so the induced Polytope Code achieves rate 2 for

the Caterpillar network.

The above argument took advantage of the linear constraintX+Y +Z = 0, but this constraint

was in no way special. Property 3 would hold as long asX, Y, Z are subject to any linear

constraint with nonzero coefficients for all three variables.

Observe that whenk is large, any pair of the four variables are nearly independent, in that their

joint entropy is close to the sum of their individual entropies. We have therefore constructed

something like a(4, 2) MDS code. In fact, if we reinterpret the linear constraints in (10) as

constraints on elementsx, y, z, w from a finite field, the resulting finite subspace would be

exactly a(4, 2) MDS code. This illustrates a general principle of Polytope Codes: any code

construction on a finite field can be immediately used to construct a Polytope Code, and many

of the properties of the original code will hold over. The resulting code will be substantially

harder to implement, in that it involves much longer blocklengths, and more complicated coding

functions, but additional properties, such as Property 3, may hold.

19

VII. A POLYTOPE CODE FOR THECOCKROACH NETWORK

We return now to the Cockroach network, and demonstrate a capacity-achieving Polytope Code

for it. We do this not to find the capacity for the network, because we have already done so with

the simpler code in Sec. V, but rather to illustrate a Polytope Code on a network satisfying the

conditions of Theorem 2, which are of a somewhat different flavor than the Caterpillar network.

In Sec. V, we illustrated how performing comparisons and transmitting comparison bits

through the network can help defeat traitors. In Sec. VI, we illustrated how a code can be

built out a distribution on a polytope, and how a special property of that distribution comes into

play in the operation of the code. To build a Polytope Code forthe Cockroach network, we

combine these two ideas: the primary data sent through the network comes from the distribution

on a polytope, but then comparisons are performed in the network in order to localize the traitor.

The first step in constructing a Polytope Code is to describe adistribution over a polytope.

That is, we define a linear subspace in a real vector field, and take a uniform distribution over

the polytope defined by the set of vectors with entries in{−k, . . . , k} for some integerk. The

nature of this distribution depends on the characteristicsof the linear subspace. For our code

for the Cockroach network, we need one that is equivalent to a(6, 2) MDS code. That is, the

linear subspace sits inR6, has dimension 2, and is defined by four constraints such thatany two

variables determine the others. One choice for the subspace, for example, would be the set of

(a, b, c, d, e, f) satisfying

a+ b+ c = 0 (19)

a− b+ d = 0 (20)

a+ 2b+ e = 0 (21)

2a+ b+ f = 0. (22)

Let the random variablesA,B,C,D,E, F have joint distribution uniformly distributed over the

polytope defined by (19)–(22) anda, b, c, d, e, f ∈ {−k, . . . , k}. By a similar argument to that

in Sec. VI, for largek,
H(ABCDEF)

log(2k + 1)
≈ 2. (23)

We choose a block lengthn and associate each message with a joint sequence(anbncndnenfn)

with joint type exactly equal to the distribution of the six variables. For largen andk, we may

20

PSfrag replacements

S
D

1

2

3

4

5

a

b

c

d

e

f

c

d

(=, 6=)

(=
, 6=

)

Fig. 6. A capacity-achieving Polytope Code for the Cockroach Network.

place one sequencean–fn on each unit capacity edge in the network and operate near rate 2.

These six sequences are generated at the source and then routed through the network as shown

in Fig. 6. For convenience, the figure omits then superscript, but we always mean them to be

sequences.

As in Sec. VI, we defineÃ, B̃, C̃, D̃, Ẽ, F̃ to have joint distribution equal to the type of the

six sequences an they actually appear in the network, which may differ from the sequences sent

by the source because of the adversary. In addition to forwarding one sequence, nodes 4 and

5 perform more elaborate operations. Like in the code for theCockroach network described in

Sec. V, they each perform a comparison and transmit either= or 6= depending on whether the

comparison succeeds. In particular, they compare the typesof their received sequences with the

original distribution. For example, node 4 receives the twosequencesbn and cn, from which it

can construct̃B and C̃. If the joint distribution of(B̃, C̃) matches that of(B,C), it sends= to

the destination; if not, it sends6=. This single bit costs asymptotically negligible rate, so it has

no effect on the achieved rate of the code for largen andk. Node 5 performs a similar action,

comparing the distribution of(D̃, Ẽ) with that of (D,E), and transmitting a comparison bit to

the destination.

We now describe the decoding operation at the destination. The first step is to compile a list of

possible traitors. We denote this listL ⊆ {1, . . . , 5}. The destination does this in the following

way. Since the code is entirely known, with no randomness, the destination determines whether

21

all its received data could be induced if each node were the traitor. That is, it considers each

possible message, each possible traitor, and each possibleset of values on the output edges of

that traitor. Any combination of these determines the values received at the destination, which

may be compared to what that the destination has in fact received. If a nodei is such that it

could have been the traitor and induced the set of values received at the destination, for any

message and any action by nodei, theni is put ontoL. This process ensures that the true traitor,

even though it may not be known by the destination, is surely in L. Note that this procedure

could in principle be done for any code, not necessarily a Polytope Code.

Because we defineL in this non-constructive manner, our arguments for code correctness

may sometimes seem backwards. We will make assumptions about L, and from there reason

about the resulting constraints on what the traitor could have done, even though this is opposite

to the causal relationship. We do this because it is most convenient to partition possible traitor

actions based on theL that results. As long as our analysis considers every possible L, we can

be assured that the code can handle any possible traitor action.

OnceL is determined, the next step in the decoding process is to useL to decide from which

of the four symbols available at the destination to decode. Since any pair of the six original

symbols contain all the information in the message, if at least two of the four symbolsa, c, d, f

can be determined to be trustworthy by the destination, thenit can decode. The destination

discards any symbol that was touched by every node inL, and decodes from the rest. For

example, ifL = {2}, then the destination discardsc, d and decodes froma, f . If L = {2, 4}, the

destination discards justc—because it is the only symbol touched by both nodes 2 and 4—and

decodes froma, d, f . If L = {1, . . . , 5}, then it discards no symbols and decodes from all four.

The prove the correctness of this code, we must show that the destination never decodes from

a symbol that was altered by the traitor. This is easy to see if|L| = 1, because in this case

the destination knows exactly which node is the traitor, andit simply discards all symbols that

may have been influenced by this node. Since no node touches more than two of the symbols

available at the destination, there are always at least two remaining from which to decode.

More complicated is when|L| ≥ 2. In this case, the decoding process, as described above,

sometimes requires the destination to decode from symbols touched by the traitor. For example,

suppose node 2 were the traitor, andL = {1, 2}. No symbols are touched by both nodes 1 and

2, so by the decoding rule the destination decodes using all four of its received symbols. In

22

particular, the destination usesc andd to decode, even though both are touched by node 2. To

prove correctness we must show that node 2 could not have transmitted anything but the true

values ofc andd. What we use to prove this is the fact thatL contains node 1, meaning that

node 2 must have acted in a way such that it appears to the destination that node 1 could be the

traitor. This induces constraints on the behavior of node 2.The first is that the comparison that

occurs at node 5 betweend ande must succeed. If it did not, then the destination would learnit,

and conclude that node 1 could not be the traitor, in which case 1 would not be inL. Hence the

distribution of (D̃, Ẽ) must match that of(D,E). This constitutes a constraint on node 2 in its

transmission ofd. Moreover,(D̃, F̃) ∼ (D,F), because the destination may observed andf , so

it could detect a difference between these two distributions if it existed. Because both symbols

are untouched by node 1 and1 ∈ L, the distributions must match. Furthermore, because neither

e nor f are touched by the traitor node 2,(Ẽ, F̃) ∼ (E, F). To summarize:

(D̃, Ẽ) ∼ (D,E), (24)

(D̃, F̃) ∼ (D,F), (25)

(Ẽ, F̃) ∼ (E, F). (26)

Using these three conditions, we apply Property 3 to conclude that(D̃, Ẽ, F̃) ∼ (D,E, F). We

may do this because, as we argued in Sec. VI, Property 3 holds for for any three variables in

a polytope subject to a single linear constraint with nonzero coefficients on each one. Since we

have constructed the 6 variables to be a(6, 2) MDS code, this is true here. (In the space defined

by (19)–(22), the three variablesD,E, F are subject toD+E−F = 0.) Sincee andf together

specify the entire message, in order for this three-way distribution to match, the only choice for

d is the true value ofd. Now we have to show thatc can also not be corrupted by the traitor.

Since the only symbol seen by the destination that could be touched by node 1 isa, we must

have(C̃, D̃, F̃) ∼ (C,D, F), or else 1 would not be inL. Again since any two symbols specify

the entire message, and bothd andf are uncorrupted by the traitor, the value forc sent by node

2 must also be its true value. Therefore the destination willnot make an error by usingc andd

to decode.

The above analysis holds for anyL containing{1, 2}. That is, if node 2 is the traitor, and

1 ∈ L, then node 2 cannot corruptc or d (even if L contains additional nodes). To prove

correctness of the code, it is enough to demonstrate a similar fact for every pair of nodes: we

23

must show that for every pair of nodes(i, j), if i is the traitor andj ∈ L, nodei is forced to

transmit the true value of any symbol that is not also touchedby nodej. If this can be shown

for each pair, the destination always decodes correctly by discarding only the symbols touched

by every node inL.

Moreover, it is enough to consider each unordered pair only once. For example, as we have

already performed the analysis fori = 2 andj = 1, we do not need to perform the same analysis

for i = 1 andj = 2. This is justified as follows. We have shown that when node 2 isthe traitor

and1 ∈ L, symbolsc andd are uncorrupted. Therefore(Ã, C̃, D̃, F̃) ∼ (A,C,D, F). Hence if

1 ∈ L and (Ã, C̃, D̃, F̃) 6∼ (A,C,D, F), node 2 cannot be the traitor, so2 /∈ L. Now, if node

1 is the traitor and2 ∈ L, then it must be the case that(Ã, C̃, D̃, F̃) ∼ (A,C,D, F). Since of

these four symbols onlya is touched by node 1, it cannot be corrupted. This same argument

can apply to any pair of nodes.

We now complete the proof of correctness of the proposed Polytope Code for the Cockroach

network by considering all pairs of potential traitors in the network:

(1, 2): Proof above.

(1, 3): Suppose node 1 is the traitor and3 ∈ L. We must show that node 1 cannot corrupta.

We have that(Ã, C̃, D̃) ∼ (A,C,D), because these three symbols are not touched by

node 3, and are available at the destination. Sincec andd determine the message, this

single constraint is enough to conclude that node 1 cannot corrupt a. This illustrates

a more general principle: when considering the pair of nodes(i, j), if the number of

symbols available at the destination untouched by bothi or j is at least as large as the

rate of the code, we may immediately conclude that no symbolscan be corrupted. In

fact, this principle works even for finite-field linear codes.

(1, 4): Follows exactly as(1, 3).

(1, 5): Follows exactly as(1, 3).

(2, 3): Follows exactly as(1, 2).

(2, 4): Suppose node 4 is the traitor and2 ∈ L. The only symbol touched by both nodes 1

and 4 isc, so the destination will decode froma, d, f . But node 4 does not touch any

of these symbols, so it cannot corrupt them.

(2, 5): Follows exactly as(2, 4).

(3, 4): Follows exactly as(1, 3).

24

(3, 5): Follows exactly as(1, 3).

(4, 5): Follows exactly as(1, 3).

VIII. T HE POLYTOPE CODE

We now describe the general structure of Polytope Codes and state their important properties.

Given a matrixF ∈ Z
u×m, consider the polytope

Pk =
{

x ∈ Z
m : Fx = 0, |xi| ≤ k for i = 1, . . . , m

}

. (27)

We may also describe this polytope in terms of a matrixK whose columns form a basis for the

null-space ofF . Let X be anm-dimensional random vector uniformly distributed overPk. Take

n to be a multiple of the least common denominator of the distribution ofX and letT n(X) be

the set of sequencesxn with joint type exactly equal to this distribution. In a Polytope Code,

each message is associated with an element ofT n(X). By the theory of types, the number of

elements in this set is at least2n(H(X)−ǫ) for any ǫ > 0 and sufficiently largen. Given a message

and the corresponding sequencex
n, each edge in the network holds a sequencexni for some

i = 1, . . . , m. As we have seen in the example Polytope Codes in Sec. VI and VII, the joint

entropies for largek can be calculated just from the properties of the linear subspace defined

by F . The following proposition states this property in general.

Proposition 1: For anyS ⊆ {1, . . . , m}

lim
k→∞

H(XS)

log k
= rank(KS) (28)

whereKS is the matrix made up of the rows ofK corresponding to the elements ofS.

Proof: For anyS ⊆ {1, . . . , m}, let Pk(XS) be the projection ofPk onto the subspace

made up of dimensionsS. The number of elements inPk is Θ(krank(KS)). That is, there exist

constantsc1 and c2 such that for sufficiently largek

c1k
rank(KS) ≤ |Pk(XS)| ≤ c2k

rank(KS). (29)

For S = {1, . . . , m}, becauseX is defined to be uniform onPk, (29) gives

lim
k→∞

H(X)

log k
= lim

k→∞

log |Pk|

log k
= rank(K). (30)

Moreover, by the uniform bound

lim
k→∞

H(XS)

log k
≤ rank(KS). (31)

25

For anyS ⊂ {1, . . . , m}, letT ⊂ {1, . . . , m} be a minimal set of elements such that rank(KS,T) =

rank(K); i.e. such thatXS,T completely specifyX under the constraintFX = 0. Note that

rank(KT) = rank(K)− rank(KS). Hence

lim
k→∞

H(XS)

log k
= lim

k→∞

H(XS,T)

log k
−
H(XT |XS)

log k
(32)

≥ lim
k→∞

H(X)

log k
−
H(XT)

log k
(33)

≥ rank(K)− rank(KT) (34)

= rank(KS). (35)

Combining (31) with (35) completes the proof

Recall that in a linear code operating over the finite fieldF, we may express the elements

on the edges in a networkx ∈ F
m as a linear combination of the messagex = Kw, whereK

is a linear transformation over the finite field, andw is the message vector. Taking a uniform

distribution onw imposes a distribution onX satisfying

H(XS) = rank(KS) log |F|. (36)

This differs from (28) only by a constant factor, and also that (28) holds only in the limit

of large k. Hence, Polytope Codes achieve a similar set of entropy profiles as standard linear

codes. They may not be identical, because interpreting a matrix KS as having integer values

as opposed to values from a finite field may cause its rank to change. However, the rank when

interpreted as having integer values can never be less than when interpreted as having finite

field values, because any linear equality on the integers will hold on a finite field, but not

necessarily vice versa. The matrixKS could represent, for example, the source-to-destination

linear transformation in a code, so its rank is exactly the achieved rate. Therefore, a Polytope

Code always achieves at least as high a rate as the equivalentlinear code. Often, when designing

linear codes, the field size must be made sufficiently large before the code works; here, sending

k to infinity serves much the same purpose, albiet only asymptotically.

In Sec. VI and VII, we saw that Property 3 played an important role in the functionality of

the Polytope Codes. The following theorem states the more general version of this property. It

compromises the major property that Polytope Codes possessand linear codes do not.

26

Theorem 3 (Fundamental Property of Polytope Codes):Let X ∈ R
m be a random vector

satisfying FX = 0. Suppose a second random vectorX̃ ∈ R
m satisfies the followingL

constraints:

AlX̃ ∼ AlX for l = 1, . . . , L (37)

whereAl ∈ R
ul×m. The two vectors are equal in distribution if the following hold:

1) There exists a positive definiteC ∈ R
u×u and matricesΣl ∈ R

ul×ul such that

F TCF =

L
∑

l=1

AT
l ΣlAl. (38)

2) There existsl∗ ∈ {1, . . . , L} such that

[

F

Al∗

]

has full column rank.

Proof: The following proof follows almost exactly the same argument as the proof of

Property 3 in Sec. VI. We may write

E
[

(F X̃)TC(F X̃)
]

=
m
∑

l=1

E
[

(AlX̃)TΣl(AlX̃)
]

(39)

=
m
∑

l=1

E
[

(AlX)TΣl(AlX)
]

(40)

= E
[

(FX)TC(FX)
]

(41)

= 0 (42)

where (39) and (41) follow from (38); (40) follows from (37),and because each term in the sum

involvesAlX for somel; and (42) follows becauseFX = 0. BecauseC is positive definite,

(42) impliesF X̃ = 0.

By the second property in the statement of the theorem, thereexistsG1 ∈ R
m×u andG2 ∈

R
m×ul∗ such that

G1F +G2Al∗ = I. (43)

HenceG2Al∗X̃ = X̃, so we may write

X̃ = G2Al∗X̃ (44)

∼ G2Al∗X (45)

= X. (46)

27

As an example of an application of Theorem 3, we use it to proveagain Property 3 in Sec. VI.

Recall that variablesX, Y, Z ∈ {−k, . . . , k} satisfyingX + Y + Z = 0, and the three pairwise

distributions ofX̃, Ỹ , Z̃ match as stated in (5)–(7). In terms of the notation of Theorem 3, we

havem = 3, L = 3, and

F =
[

1 1 1
]

, (47)

A1 =





1 0 0

0 1 0



 , (48)

A2 =





1 0 0

0 0 1



 , (49)

A3 =





0 1 0

0 0 1



 . (50)

To satisfy the second condition of Theorem 3, we may setl∗ = 1, since

[

F

A1

]

has rank 3. In

fact, we could just as well have setl∗ to 2 or 3. To verify the first condition, we need to check

that there existΣl for l = 1, 2, 3 and a positive definiteC (in this case, a positive scalar, because

F has only one row) satisfying (38). If we let

Σl =





σl,11 σl,12

σl,21 σl,22



 (51)

then, for instance,

AT
1Σ1A1 =











σ1,11 σ1,12 0

σ1,21 σ1,22 0

0 0 0











. (52)

The right hand side of (38) expands to

3
∑

l=1

AT
l ΣlAl =











σ1,11 + σ2,11 σ1,12 σ2,12

σ1,21 σ1,22 + σ3,11 σ3,12

σ2,21 σ3,21 σ2,22 + σ3,22











. (53)

Therefore, for suitable choices of{Σl}
3
l=1, we can produce any matrix for the right hand side of

(38). We may simply setC = 1 and calculate the resulting matrix for the left hand side, then set

{Σl}
3
l=1 appropriately. This allows us to apply Theorem 3 to concludethat(X̃, Ỹ , Z̃) ∼ (X, Y, Z).

28PSfrag replacements

X̃1 X̃2

X̃3

X̃4

Z̃

PSfrag replacements

X̃1 X̃2

X̃3

X̃4

Z̃

Fig. 7. The constraints on the random vectorX̃ in Corollaries 2 (left) and 3 (right). Rectangles representa constraint on the

marginal distribution of all enclosed variables; lines represent pairwise constraints on the two connected variables.

In our proof of Theorem 2, we will not use Theorem 3 in its most general form. Instead, we

state three corollaries that will be more convenient. The first is a generalization of the above

argument for more than three variables.

Corollary 1: Let X satisfyFX = 0 for someF ∈ Z
1×m with all nonzero values. If̃X satisfies

(X̃i, X̃j) ∼ (Xi, Xj) for all i, j = 1, . . . , m (54)

(X̃2, · · · , X̃m) ∼ (X2, · · · , Xm) (55)

thenX̃ ∼ X.

Proof: We omit the explicit construction of theAl matrices corresponding to the conditions

(54), (55). The second condition for Theorem 3 is satisfied by(55), since the linear constraint

FX = 0 determinesX1 given X2 · · ·Xm. To verify the first condition, note that from the

conditions in (54), we may construct an arbitrary matrix on the right hand side of (38) for

suitable{Σl}
L
l=1. Therefore we may simply setC = 1.

Corollary 1 considers the case withm variables andm− 1 degrees of freedom; i.e. a single

linear constraint. The following corollary considers a case withm variables andm− 2 degrees

of freedom.

Corollary 2: LetF ∈ Z
2×m be such that any2×2 submatrix ofF is non-singular. LetX satisfy

FX = 0. The non-singular condition onF implies that anym − 2 variables specify the other

two. Assume thatm ≥ 4, and for convenience letZ = (X5, . . . , Xm) andZ̃ = (X̃5, . . . , X̃m). If

29

X̃ satisfies

(X̃1, X̃2, Z̃) ∼ (X1, X2,Z), (56)

(X̃3, X̃4, Z̃) ∼ (X3, X4,Z), (57)

(X̃1, X̃3) ∼ (X1, X3), (58)

(X̃2, X̃4) ∼ (X2, X4), (59)

(X̃1, X̃4) ∼ (X1, X4) (60)

thenX̃ ∼ X. Fig. 7 diagrams the constraints oñX.

Proof: We prove Corollary 2 with two applications of Corollary 1. First, consider the group

of variables(X1X2X4Z). Thesem− 1 variables are subject to a single linear constraint, as in

Corollary 1. From (56), (59), and (60) we have all pairwise marginal constraints, satisfying (54).

Furthermore, (56) satisfies (55). We may therefore apply Corollary 1 to conclude

(X̃1, X̃2, X̃4, Z̃) ∼ (X1, X2, X4,Z). (61)

A similar application of Corollary 1 using (57), (58), and (60) allows us to conclude

(X̃1, X̃3, X̃4, Z̃) ∼ (X1, X3, X4,Z). (62)

Observe that (61) and (62) share them variables(X̃1, X̃4, Z̃), which together determinẽX2 and

X̃3 in exactly the same way that(X1, X4,Z) determineX2 andX3. Therefore we may combine

(61) and (62) to concludẽX ∼ X.

All five constraints (56)–(60) are not always necessary, andwe may sometimes apply The-

orem 3 without (60). However, this depends on an interestingadditional property of the linear

constraint matrixF , as stated in the third and final corollary to Theorem 3.

Corollary 3: Let F ∈ Z
2×m be such that any2 × 2 submatrix ofF is non-singular, and let

X satisfyFX = 0. In addition, assume

|KX1X2Z| |KX3X4Z| |KX1X3Z| |KX2X4Z| < 0 (63)

where againK is a basis for the null space ofF , andKXS
for S ⊂ {1, . . . , m} is the matrix

made up of the rows ofK corresponding to the variables(Xi)i∈S. If X̃ satisfies (56)–(59) (Fig. 7

diagrams these constraints), thenX̃ ∼ X.

30

Proof: Either (56) or (57) satisfies the second condition in Theorem3. To verify the first

condition, first letG =
∑

l A
T
l ΣlAl. In the four constraints (56)–(59), each pair of variables

appears together except for(X1, X4) and (X2, X3). Therefore, for suitable choices ofΣl, we

can construct anyG satisfyingG1,4 = G2,3 = G3,2 = G4,1 = 0. We must show that such aG

exists satisfying

F TCF = G (64)

for some positive definiteC.

We buildG row-by-row. By (64), each row ofG is a linear combination of rows ofF ; i.e.

it forms the coefficients of a linear equality constraint imposed on the random vectorX. Since

G1,4, the first row ofG represents a linear constraint on the variablesX1, X2, X3,Z. Since any

m − 2 variables specify the other two, there is exactly one linearequality constraint on these

m− 1 variables, up to a constant. This constraint can be written as
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

X1 KX1

X2 KX2

X3 KX3

Z KZ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (65)

since the vectorX1, X2, X3,Z forms a linear combination of the columns ofKX1,X2,X3,Z. Hence,

the first row ofG is a constant multiple of the coefficients in (65). In particular,

G1,1 = α|KX2X3Z|, (66)

G1,2 = −α|KX1X3Z| (67)

for some constantα. SinceG2,3 = 0, the second row ofG represents the linear constraint on

X1, X2, X4,Z. Using similar reasoning as above gives

G2,1 = β|KX2X4Z|, (68)

G2,2 = −β|KX1X4Z| (69)

for some constantβ. Moreover, by (64)G is symmetric, soG1,2 = G2,1, and by (67) and (68)

β = −
|KX1X3Z|

|KX2X4Z|
α. (70)

31

Positive definiteness ofC is equivalent to positive definiteness of the upper left2 × 2 block of

G, so the conditions we need are

0 < G1,1 = α|KX2X3Z|, (71)

0 < G1,1G2,2 −G1,2G2,1 (72)

= α2

[

|KX2X3Z| |KX1X4Z| |KX1X3Z|

|KX2X4Z|
− |KX1X3Z|

2

]

. (73)

We may chooseα to trivially satisfy (71), and (73) is equivalent to

|KX1X3Z| |KX2X4Z|
(

|KX2X3Z| |KX1X4Z| − |KX2X4Z| |KX1X3Z|
)

> 0 (74)

which may also be written as (63).

The necessity of satisfying (63) in order to apply Theorem 3 substantially complicates code

design. When building a linear code, one need only worry about the rank of certain matrices;

i.e. certain determinants need be nonzero. Here, we see thatthe signs of these determinants may

be constrained as well.

IX. PROOF OFTHEOREM 2

To prove Theorem 2, we need to specify a Polytope Code for eachnetwork satisfying

conditions 1–3 in the statement of the theorem. This involves specifying the linear relationships

between various symbols in the network, the comparisons that are done among them at internal

nodes, and then how the destination uses the comparison information it receives to decode.

We then proceed to prove that the destination always decodescorrectly. The key observation

in the proof is that the important comparisons that go on inside the network are those that

involve a variable that does not reach the destination. Thisis because those symbols that do

reach the destination can be examined there, so further comparisons inside the network do not

add anything. Therefore we will carefully route these non-destination symbols to maximize the

utility of their comparisons. In particular, we design these paths so that for every node having

one direct edge to the destination and one other output edge,the output edge not going to the

destination holds a non-destination variable. The advantage of this is that any variable, before

exiting the network, is guaranteed to cross a non-destination variable at a node where the two

variables may be compared. The existence of non-destination paths with this property depends

on the planarity of the network. This is described in much more detail in the sequel.

32

Notation: For an edgee ∈ E, with e = (i, j), wherei, j ∈ V , let head(e) = i and tail(e) = j.

For a nodei ∈ V , let Ein(i) be the set of edgese with tail(e) = i, and letEout(i) be the set of

edgese with head(e) = i. Let Nin(i) be the set of input neighbors ofi; that is, the set of head(e)

for eache ∈ Ein(i). Similarly, let Nout(i) be the set of output neighbors ofi. For integersa, b,

let Va,b be the set of nodes witha inputs andb outputs. We will sometimes refer to such nodes

asa-to-b. For l ∈ {1, 2}, let l̄ = 2 − l. A path is defined as an ordered list of edgese1, . . . , ek

satisfying tail(el) = head(el+1) for l = 1, . . . , k − 1. The head and tail of a path are defined as

head(e1) and tail(ek) respectively. A nodei is said toreacha nodej if there exists a path with

headi and tailj. By convention, a node can reach itself.

Consider an arbitrary network satisfying the conditions ofTheorem 2. By condition (3),

no node has more output edges than input edges. Therefore themin-cut is that between the

destination and the rest of the network. LetM be the value of this cut; i.e., the number of edges

connected to the destination. We now state a lemma giving instances of the cut-set upper bound

on capacity in terms of quantities that make the bound easierto handle than Theorem 1 itself.

We will subsequently show that the minimum upper bound givenby Lemma 1 is achievable

using a Polytope Code; therefore, the cut-set bound gives the capacity.

Lemma 1:For i, j ∈ V , let di,j be the sum of|Ein(k)| − |Eout(k)| for all nodesk reachable

from eitheri or j, not includingi or j. That is, if k is a-to-b, it contributesa − b to the sum.

Recall that this difference is always positive. Letci be the total number of output edges from

nodei, and letei be the number of output edges from nodei that go directly to the destination.

For any distinct pair of nodesi1, i2,

C ≤M − ei1 − ei2 . (75)

Moreover, if there is no path betweeni1 and i2,

C ≤ M + di1,i2 − ci1 − ci2 . (76)

Proof: Applying Theorem 1 withA = V \ {D}, T = {i1, i2} immediately gives (75). To

prove (76), we apply Theorem 1 withT = {i1, i2}, and

A = {k ∈ V : k is not reachable fromi1 or i2} ∪ {i1, i2}. (77)

Observe that there are no backwards edges for the cutA, because any node inAc is reachable

from eitheri1 or i2, so for any edge(j, k) with j ∈ Ac, k is also reachable by fromi1 or i2, so

33

k is also not inA. Therefore we may apply Theorem 1. Since all output neighbors of i1 and i2

are not inA, each output edge ofi1 and i2 crosses the cut. Hence (1) becomes

C ≤ |{e ∈ E : head(e) ∈ A, tail(e) /∈ A}| − c1 − c2. (78)

Since no node in the network has more output edges than input edges, the difference between

the first term in (78)—the number of edges crossing the cut—and M is exactly the sum of

|Ein(k)| − |Eout(k)| for all k ∈ Ac. Hence

|{e ∈ E : head(e) ∈ A, tail(e) /∈ A}| −M = di1,i2. (79)

Combining (78) with (79) gives (76).

Next, we show that we may transform any network satisfying the conditions of Theorem 2

into an equivalent one that is planar, and made up of just 2-to-2 nodes and 2-to-1 nodes. We will

go on to show that the upper bound provided by Lemma 1 is achievable for any such network, so

it will be enough to prove that a transformation exists that preserves planarity, does not reduce

capacity, and does not change the bound given by Lemma 1.

We first replace anya-to-b nodei with a cascade ofa− b 2-to-1 nodes followed by ab-to-b

node. This transformation is illustrated in Fig. 8. Denote the b-to-b node in the transformation

i∗. Since no node in the original network has more than two output edges, the resulting network

contains only 1-to-1 nodes, 2-to-2 nodes, and 2-to-1 nodes.We will shortly argue that the 1-

to-1 nodes may be removed as well. Certainly these transformations maintain the planarity of

the network. Moreover, any rate achievable on the transformed network is also achievable on

the original network. This is because if nodei is transformed via this operation into several

nodes, any coding operation performed by these nodes can certainly be performed by nodei.

Additionally, the traitor taking control of nodei in the original network does exactly as much

damage as the traitor taking control ofi∗ in the transformed network, since it controls all edges

sent to other nodes. Now consider the minimum upper bound given by Lemma 1 after this

transformation. The only nodes with positiveej values will bei∗ nodes, andei∗ = ei. Hence

(75) cannot change. In (76), if we takei∗1 andi∗2, then the bound is the same in the transformed

network. Taking one of the 2-to-1 nodes instead of ai∗ node cannot result in a lower bound,

because they have no more output edges, so no higherc values, and no fewer reachable nodes

with fewer outputs than inputs, so no smallerd values. Therefore, the minimal bound given by

34

PSfrag replacements
i i∗

Fig. 8. An illustration of the transformation from a 4-to-2 node to an equivalent set of 2-to-1 and 2-to-2 nodes.

(76) for the transformed network is the same as that of the original network. Moreover, in the

transformed networkdi1,i2 is equal simply to the number of 2-to-1 nodes reachable fromi1 or

i2 not includingi1, i2.

We may additionally transform the network to remove 1-to-1 nodes, simply be replacing the

node and the two edges connected to it by a single edge. The traitor can always take over the

preceding or subsequent node and have at least as much power.The only exception is when the

1-to-1 node is connected only to the source and destination.In this case, instead of removing

the node, we may add a additional edge to it from the source, turning it into a 2-to-1 node. Such

a transformation does not change the capacity, nor the planarity or the Lemma 1 bounds.

We also assume without loss of generality that all nodes in the network are reachable from

the source. Certainly edges out of these nodes cannot carry any information about the message,

so we may simply discard this portion of the network, if it exists, without changing the capacity.

We will show that the smallest bound given by Lemma 1 is achievable using a Polytope Code.

If we take i1 and i2 to be two nodes with at least one direct link to the destination, (75) gives

that the capacity is no more thanM − 2. Moreover, sinceei ≤ ci ≤ 2 for any nodei, neither

(75) nor (76) can produce a bound less thanM − 4. Therefore the minimum bound given by

Lemma 1 can take on only three possible values:M −4,M −3,M −2. It is not hard to see that

M −4 is trivial achievable; indeed, even with a linear code. Therefore the only interesting cases

are when the cut-set bound isM − 3 or M − 2. We begin with the latter, because the proof is

more involved, and contains all the necessary parts to provetheM − 3 case. TheM − 3 proof

is subsequently given in Section IX-E.

Assume that the right hand sides of (75) and (76) are never smaller thanM − 2. We describe

the construction of the Polytope Code to achieve rateM − 2 in several steps. The correctness

35

of the code will be proved in Lemmas 2–5, which are stated during the description of the

construction process. These Lemmas are then proved in Sections IX-A–IX-D.

1) Edge Labeling:We first label all the edges in the network except those inEin(D). These

labels are denoted by the following functions

φ : E \ Ein(D) → V2,1 (80)

ψ : E \ Ein(D) → {0, 1}. (81)

For a 2-to-1 nodev, let Λ(v) be the set of edgese with φ(e) = v. The setΛ(v) represents the

edges carrying symbols that interact with the non-destination symbol that terminates at nodev.

The set of edges withφ(e) = v andψ(e) = 1 represent the path taken by the non-destination

symbol that terminates at nodev. The following Lemma states the existence of labelsφ, ψ with

the necessary properties.

Lemma 2:There exist functionsφ andψ with the following properties:

A The set of edgese with φ(e) = v andψ(e) = 1 form a path.

B If φ(e) = v, then either tail(e) = v or there is an edgee′ with head(e′) = tail(e) and

φ(e′) = v.

C For every 2-to-2 nodei with output edgese1, e2, either ψ(e1) = 1, ψ(e2) = 1, or

φ(e1) 6= φ(e2).

Note that if property (B) holds,Λ(v) is a union of paths ending atv. From property (A), the

edges on one of these paths satisfyψ(e) = 1.

2) Internal Node Operation:Assume thatφ andψ are defined to satisfy properties (A)–(C) in

Lemma 2. Given these labels, we will specify how internal nodes in the network operate. Every

edge in the network will hold a symbol representing a linear combination of the message, as

well as possibly some comparison bits. We also define a function

ρ : E → {1, . . . , |Eout(S)|} (82)

that will serve as an accounting tool to track symbols as theypass through the network. We

begin by assigning distinct and arbitrary values toρ(e) for all e ∈ Eout(S) (ρ therefore constitutes

an ordering onEout(S)). Further assignments ofρ will be made recursively. This will be made

explicit below, but if a symbol is merely forwarded, it travels along edges with a constantρ.

36

When linear combinations occur at internal nodes,ρ values are manipulated, andρ determine

exactly how this is done.

For every nodei with 2 input edges, letf1, f2 be these edges. Ifi is 2-to-2, lete1, e2 be its

two output edges; if it is 2-to-1, lete be its output edge. Ifφ(f1) = φ(f2), then nodei compares

the symbols onf1 and f2. If node i is 2-to-2, thenφ(el) = φ(f1) for either l = 1 or 2. Node

i transmits its comparison bit onel. If node i is 2-to-1, then it transmits its comparison bit on

e. All 2-to-2 nodes forward all received comparison bits on the output edge with the sameφ

value as the input edge on which the bit was received. All 2-to-1 nodes forward all received

comparison bits on its output edge.

We divide nodes inV2,2 into the following sets. The linear transformation performed at node

i will depend on which of these sets it is in.

W1 = {i ∈ V2,2 : ψ(f1) = ψ(f2) = 0, φ(f1) 6= φ(f2)} (83)

W2 = {i ∈ V2,2 : ψ(f1) = ψ(f2) = 0, φ(f2) = φ(f2)} (84)

W3 = {i ∈ V2,2 : ψ(f1) = 1 or ψ(f2) = 1} (85)

We will sometimes refer to nodes inW2 as branch nodes, since they represent branches in

Λ(φ(f1)). Moreover, branch nodes are significant because a failed comparison at a branch node

will cause the forwarding pattern withinΛ(φ(f1)) to change. For an edgee, Xe denotes the

symbol transmitted one. The following gives the relationships between these symbols, which

are determined by internal nodes, depending partially on the comparison bits they receive. For

each nodei, the action of nodei depends on which set it falls in as follows:

• W1: Let l be such thatφ(el) = φ(f1). The symbol onf1 is forwarded toel, and the symbol

on f2 is forwarded ontoel̄. Setρ(el) = ρ(f1), andρ(el̄) = ρ(f2).

• W2: Let l be such thatφ(el) = φ(f1) = φ(f2). Let l′ be such thatρ(fl′) < ρ(fl̄′). We will

show in Lemma 3 that our construction is such thatρ(f1) 6= ρ(f2) at all nodes, sol′ is well

defined. If neitherf1 nor f2 hold a failed comparison bit, the output symbols are

Xel = γi,1Xf1 + γi,2Xf2 (86)

Xel̄
= Xfl′

(87)

37

where coefficientsγi,1, γi,2 are nonzero integers to be chosen later. Set outputρ values to

ρ(el) = ρ(fl̄′) (88)

ρ(el̄) = ρ(fl′). (89)

Note that the symbol on the input edge with smallerρ value is forwarded without linear

combination. If the input edgefl′ reports a failed comparison anywhere previously in

Λ(φ(f1)), then (87) changes to

Xel̄
= Xf

l̄′
. (90)

• W3: Let l be such thatψ(fl) = 1, and l′ be such thatψ(el′) = 1 and φ(el′) = φ(fl).

The symbol onfl is forwarded toel′ , and the symbol onfl̄ is forwarded toel̄′, with the

following exception. Ifφ(f1) = φ(f2) and there is a failed comparison bit sent fromfl̄,

then the forwarding swaps: the symbol onfl is forwarded toel̄′, and the symbol onfl̄

is forwarded toel′. Set ρ(el′) = ρ(fl) and ρ(el̄′) = ρ(fl̄). Again, ρ is consistent along

forwarded symbols, but only when all comparisons succeed.

• V2,1: Let l be such thatψ(fl) = 1. The symbol fromfl̄ is forwarded one, unless there is

a failed comparison bit sent fromfl̄, in which case the symbol fromfl is forwarded one.

Setρ(e) = ρ(fl̄).

See Fig. 9 for an illustration of the linear transformationsperformed at internal nodes and how

they change when a comparison fails. The following Lemma gives some properties of the internal

network behavior as prescribed above.

Lemma 3:The following hold:

1) For any integera ∈ {1, . . . , |Eout(S)|}, the set of edges withe with ρ(e) = a form a path

(we refer to this in the sequel as theρ = a path). Consequently, there is no nodei with

input edgesf1, f2 such thatρ(f1) = ρ(f2).

2) If there are no failed comparisons that occur in the network, then the linear transformations

are such that the decoder can decode any symbol in the networkexcept those on non-

destination paths.

3) Suppose a comparison fails at a branch nodek with input edgesf1, f2 with v = φ(f1) =

φ(f2). Assume without lack of generality thatρ(f1) < ρ(f2). The forwarding pattern within

Λ(v) changes such that symbols sent along theρ = ρ(f2) path are not decodable at the

destination, but what was the non-destination symbol associated withv is decodable.

38

6 2

2 6

3

3 6

6

5 8

4

87

87

7
1

9 5

9
5

1

84

PSfrag replacements

a b

b

c

c

d

e

e

f

g

g

h

h
i

i

i [d, e, f]

a, b

a, b, c

a, b, c

d, e

d, e [f]

d, e, f

d, e, f

d, e, f [i]

d, e, f, g

v

Fig. 9. An example of the linear transformations performed in Λ(v) for somev (labeled as such). Solid edges denoteφ(e) = v,

dashed edges denoteφ(e) 6= v. Thick edges denoteψ(e) = 1. Near the head of each edge is the correspondingρ value. Also

shown is the symbol transmitted along that edge, given initial symbolsa–i at the furthest upstream edges in the network. When

several symbols are written on an edge, this indicates that the edge carries a linear combination of those symbols. The symbols

indicated in brackets are those carried by the edges when thecomparison at the indicated black node fails. Symbols on edges

labeled without brackets do not change when the comparison fails.

3) MDS Code Construction:The rules above explain how the symbols are combined and

transformed inside the network. In addition, when the initial set of symbols are sent into the

network from the source, they are subject to linear constraints. We now describe exactly how

this is done. Assume that no comparisons fail in the network,so the linear relationships between

symbols are unmodified. For a 2-to-1 nodev, let e∗v be the edge withφ(e∗v) = v, ψ(e∗v) = 1, and

tail(e∗v) = v; i.e. it is the last edge to hold the non-destination symbol terminating atv. Observe

that it will be enough to specify the linear relationships among the symbols on{e∗v : v ∈ V2,1}

as well as theM edges inEin(D). These collectively form the Polytope Code equivalent of a

(M + |V2,1|,M −2) MDS code. We must construct this code so as to satisfy certaininstances of

(63), so that we may apply Theorem 3 as necessary. The following Lemma states the existence

39

of a set of linear relationships among theM + |V2,1| variables with the required properties.

Lemma 4:For each 2-to-1 nodev, let Ξ(v) be the set of edgese with tail(e) = D such that

there is an edgee′ with tail(e′) = head(e), φ(e′) = v, andψ(e′) = 1. That is, the symbol on

e, just before being sent to the destination, was compared against the non-destination symbol

associated withv. Note that any edgee ∈ Ein(D) is contained inΞ(v) for some 2-to-1 nodev.

There exists a generator matrixK ∈ Z
M+|V2,1|×M−2 where each row is associated with an edge

in {e∗v : v ∈ V2,1} ∪ Ein(D) such that for allv1, v2 ∈ V2,1 and all f1 ∈ Ξ(v1), f2 ∈ Ξ(v2), the

constraints

(X̃f1, X̃f2, Z̃) ∼ (Xf1 , Xf2,Z) (91)

(X̃e∗v1
, X̃e∗v2

, Z̃) ∼ (Xe∗v1
, Xe∗v2

,Z) (92)

(X̃f1, X̃e∗v1
) ∼ (Xf1 , Xe∗v1

) (93)

(X̃f2, X̃e∗v2
) ∼ (Xf2 , Xe∗v2

) (94)

imply

(X̃f1 , X̃f2, X̃e∗v1
, X̃e∗v2

Z̃) ∼ (Xf1 , Xf2, Xe∗v1
, Xe∗v2

Z̃) (95)

where

Z = (Xe : e ∈ Ein(D) \ {f1, f2}). (96)

4) Decoding Procedure:To decode, the destination first compiles a listL ⊂ V of which nodes

may be the traitor. It does this by taking all its available data: received comparison bits from

interior nodes as well as the symbols it has direct access to,and determines whether it is possible

for each node, if it were the traitor, to have acted in a way to cause these data to occur. If so,

it adds this node toL. For each nodei, let Ki be the linear transformation from the message

vectorW to the symbols on the output edges of nodei. With a slight abuse of notation, regard

KD represent the symbols on the input edges toD instead. For a set of nodesS ⊂ V , letKD⊥S

be a basis for the subspace spanned byKD orthogonal to

⋂

j∈S

span(Kj→D). (97)

40

The destination decodes fromKD⊥LW. If i is the traitor, it must be thati ∈ L, so

rank(KD⊥L) ≥ M − dim

(

⋂

j∈S

span(Kj)

)

(98)

≥ M − rank(Ki) (99)

≥ M − 2 (100)

where we used the fact that nodei has at most two output edges. SinceKD⊥L has rank at

leastM − 2, this is a large enough space for the destination to decode the entire message. The

follow Lemma allows us to conclude that all variables in the subspace spanned byKD⊥L are

trustworthy.

Lemma 5:Consider any pair of nodesi, j. Supposei is the traitor, and acts in a way such

that j ∈ L. Nodei cannot have corrupted any value inKD⊥{i,j}W.

A. Proof of Lemma 2

We begin withφ(e) = ψ(e) = ∅ for all edgese, and setφ and ψ progressively. First we

describe some properties of the graph(V,E) imposed by the fact that the right hand sides of

(75) and (76) are never less thanM − 2.

Given a 2-to-1 nodev, let Γv be the set of nodes for whichv is the only reachable 2-to-1

node. Note that other thanv, the only nodes inΓv are 2-to-2. Moreover, ifv can reach another

2-to-1 node,Γv is empty. We claim thatΓv forms a path. If it did not, then there would be

two 2-to-2 nodesi1, i2 ∈ Γv for which there is no path between them. That is,di1,i2 = 1 and

ci1 = ci2 = 2, so (76) becomesC ≤ M − 3, which contradicts our assumption that the cut-set

bound isM − 2.

Furthermore, every 2-to-2 node must be able to reach at leastone 2-to-1 node. If not, then

we could follow a path from such a 2-to-2 node until reaching anode i1 all of whose output

edges lead directly to the destination. Nodei1 cannot be 2-to-1, so it must be 2-to-2, meaning

ei1 = 2. Taking any other nodei2 with a direct link to the destination gives no more thanM −3

for the right hand side of (75), again contradicting our assumption.

The first step in the edge labeling procedure is to specify theedges holding non-destination

symbols; that is, for each 2-to-1 nodev, to specify the edgese for whichφ(e) = v andψ(e) = 1.

To satisfy property (A), these must form a path. For any nodei ∈ Nin(D), the output edge of

41

i that goes to the destination has noφ value, so to satisfy property (C), the other output edge

e must satisfyψ(e) = 1. Moreover, by property (B), ifφ(e) = v, then there is a path from

head(e) to v. Hence, ifi ∈ V2,2 ∩ Γv for some 2-to-1 nodev, then it is impossible for the two

output edges ofi to have differentφ values; hence, by property (C), one of its output edgese

must satisfyψ(e) = 1. Therefore, we need to design the non-destination paths so that they pass

throughΓv for eachv, as well as each node inNin(D).

For each 2-to-1 nodev, we first set the end of the non-destination path associated with v to

be the edges inΓv. That is, for an edgee, if head(e), tail(e) ∈ Γv, setψ(e) = 1 andφ(e) = v.

Now our only task is to extend the paths backwards such that one is guaranteed to pass through

each node inNin(D).

Construct an embedding of the graph(V,E) in the plane such thatS is on the exterior face.

Such an embedding always exists [15]. If we select a set of edges making up anundirected

cycle—that is, edges constituting a cycle on the underlying undirected graph—then all nodes in

the network not on the cycle are divided into those on the interior and those on the exterior,

according to the planar embedding. Takei, j ∈ Nin(D) such thati can reachj, and letCi,j be

the undirected cycle composed of a path fromi to j, in addition to the edges(i, D) and(j,D).

We claim that if a nodek ∈ Nin(D) is on the interior ofCi,j, then it is reachable fromi. Since

S is on the exterior face of the graph, it must be exterior to thecycle Ci,j. There exists some

path fromS to k, so it must cross theCi,j at a nodej′. Observe thatj′ must be on the path

from i to j, so it is reachable fromi. Thereforei can reachj′ andj′ can reachk, so i can reach

k. This construction is diagrammed in Fig. 10.

We may travel around nodeD in the planar embedding, noting the order in which the nodes

Nin(D) connect toD. Call this orderu1, . . . , uM . Take anyi ∈ Nin(D), and supposei = ul. We

claim that the set of nodes inNin(D) reachable fromul forms a contiguous block aroundul

in the {u} ordering, where we regardu1 anduM as being adjacent, so two contiguous blocks

containingu1 anduM is considered one contiguous block.

Suppose this were not true. That is, for somei ∈ Nin(D) there exists aj ∈ Nin(D) reachable

from i that is flanked on either side in the{u} ordering by nodesk1, k2 ∈ Nin(D) not reachable

from i. The order in which these four nodes appear in{u} in some cyclic permutation or

reflection of

(i, k1, j, k2). (101)

42

PSfrag replacements i

j

S

Dk

j′

Fig. 10. A diagram of the planar embedding being used to provethat a nodek ∈ Nin(D) on the interior ofCi,j is reachable

from i. Solid lines are single edges; dashed lines represent pathsmade up of possibly many edges. Thick lines correspond to

edges inCi,j .

Neither k1 nor k2 can be on the interior ofCi,j, because, as shown above, any such node is

reachable fromi. However, if they are both on the exterior, then the order in (101) cannot occur,

becauseD is on the boundary ofCi,j.

By contiguity, if a nodei ∈ Nin(D) can reach any other node inNin(D), it can reach a node

immediately adjacent to it in the{u} ordering. Supposei can reach both the nodej1 ∈ Nin(D)

immediately to its left and the nodej2 ∈ Nin(D) immediately to its right. We show that in fact

i can reach every node inNin(D). In particular, there can be only one such node, or else there

would be a cycle. Nodei has only two output edges, one of which goes directly toD. Let i′ be

the tail of the other. Bothj1 andj2 must be reachable fromi′.

We claim it is impossible for bothj1 to be exterior toCi,j2 and j2 to be exterior toCi,j1.

Suppose both were true. We show the graph must contain a cycle. Let C̄ be the undirected cycle

composed of the path fromi′ to j1, the path fromi′ to j2, and the edges(j1, D), (j2, D). Every

node onC̄ is reachable fromi. Since bothj1 is exterior toCi,j2 and j2 is exterior toCi,j1, it is

easy to see thati must be on the interior of̄C. Therefore any path fromS to i must cross the

cycle at a nodek′, reachable fromi. Sincek′ is on a path fromS to k′, i is also reachable from

k′, so there is a cycle. See Fig. 11 for a diagram of this.

Therefore, we may assume without loss of generality thatj2 is in the interior ofCi,j1. Suppose

there were a nodej3 ∈ Nin(D) not reachable fromi. Nodej3 must be on the exterior ofCi,j1,

because we have shown that nodes inNin(D) on the interior are reachable fromi. Therefore,

43
PSfrag replacements

ii′

j1

S D

j2

k′

Ci,j1

Ci,j2

Fig. 11. A diagram of the planar embedding being used to provethat a node reaching its two neighbors inNin(D) can reach

every node inNin(D). Solid lines are single edges; dashed lines represent pathsmade up of possibly many edges. Thick lines

correspond to the undirected cycleC̄. Undirected cyclesCi,j1 andCi,j2 are indicated.

in the {u} order, these four nodes must appear in some cyclic permutation or reflection of

(i, j3, j1, j2). However, this is impossible, because bothj1 and j2 were assumed to be adjacent

to i. Therefore,i can reach every node inNin(D).

Take a nodei that can reach 2-to-1 nodesv1, v2 ∈ Nin(D). Suppose thati cannot reach every

node inNin(D). Therefore, the nodes it can reach in inNin(D) are either entirely to its right or

entirely to its left in the{u} ordering, or else, by contiguity, nodei would be able to reach the

adjacent nodes on both sides. Suppose without loss of generality that they are all to its right,

and thatv2 is further to the right thanv1. We claim thatv1 is on the interior ofCi,v2. Suppose

it were on the exterior. By contiguity, every node inNin(D) on the exterior ofCi,v2 must be

reachable fromi. Since we have already argued that every node inNin(D) on the interior of

Ci,v2 is reachable fromi, this meansi can reach every node inNin(D), which we have assumed

is not the case.

Therefore,v1 is on the interior ofCi,v2. We may construct a path fromS to v1, passing through

all nodes inΓv1 . This path must crossCi,v2 at a nodek, reachable fromi. Node j can reach

both v1 and v2, so it cannot be inΓv1 . However,j is on a path passing throughΓv1 , so it can

reach all nodes inΓv1 . Therefore there exists a path fromi to v1, passing throughΓv1 .

If i can reach every node inNin(D), then as shown above, eitherv1 is in the interior ofCi,v1 ,

44

or v2 is in the interior ofCi,v2. Therefore, by the same argument to that just used for the case

that i cannot reach every node inNin(D), there is either a path fromi to v1 throughΓv1 or a

path fromi to v2 throughΓv2 .

Fix a 2-to-1 nodev1 ∈ Nin(D). Consider the set of nodes that are:

• contained inV2,2 ∩Nin(D),

• not in Γv for any 2-to-1 nodev,

• can reachv1,

• cannot reach any other node also satisfying the above three conditions.

We claim there are at most two such nodes. Suppose there were two such nodesi1, i2 both to

the left of v1 in the {u} ordering. If i1 were further to the left, theni1 could reachi2, sincei1

can reachv1 and the nodes reachable fromi1 must form a contiguous block. Hencei1 would

not qualify. Therefore there can be at most one such node to the left of v1 and at most one to

the right. Denote these two nodesi and j respectively, if they exist. By contiguity, every node

satisfying the first three conditions must be able to reach either i or j. Moreover, all such nodes

to the left ofv1 form a single path ending ini, and those on the right form a single path ending

in j. We will proceed to extend two non-destination paths backwards to i andj. Then, we may

further extend these two paths backwards through all nodes in V2,2 ∩Nin(D) that can reachv1,

and then backwards to the source on arbitrary paths. Hence, we need only find paths fromi to

the head ofΓv for somev, and a distinct one of the same forj.

Both i and j can reach at least one 2-to-1 node other thanv1. Supposei can reach another

2-to-1 nodev2 ∈ Nin(D). By the argument above, there is a path fromi to the leftmost of

v1, v2 throughΓv1 or Γv2 respectively. Similarly, ifj can reach a 2-to-1 nodev3 ∈ Nin(D) with

v3 6= v1, there is a path fromj to the rightmost ofv1, v3, through the associatedΓ. This is true

even if v2 = v3.

Suppose there is no 2-to-1 node inNin(D) reachable from nodei other thanv1. There still

must be a 2-to-1 nodev2 reachable fromi, thoughv2 /∈ Nin(D). Sincev2 is not adjacent to

the destination, it must be able to reach a 2-to-1 node that is. ThereforeΓv2 = ∅, so any path

from i to v2 trivially includes Γv2 . If j can also reach no 2-to-1 nodes inNin(D) other than

v1, there must be some 2-to-1 nodev3 /∈ Nin(D) reachable fromj. We may therefore select

non-destination paths fromi to v2 and j to v3, unlessv2 = v3. This only occurs if this single

node is the only 2-to-1 node other thanv1 reachable by eitheri or j. We claim that in this case,

45

either i or j can reach the tail ofΓv1 . Therefore we may extend the non-destination path forv1

back to one ofi or j, and the non-destination path forv2 = v3 to the other. Every node can

reach some 2-to-1 node inNin(D), so v2 can reachv1, or elsei and j would be able to reach

a different 2-to-1 node inNin(D). By a similar argument to that used above,v1 must be on the

interior of the undirected cycle composed of the path fromi to v2, the path fromj to v2, and

the edges(i, D), (j,D). If not, v1 would not be betweeni andj in the {u} ordering. Note this

is true even ifi can reachj or vice versa. SinceS must be exterior to this cycle, any path from

S to v1 including Γv1 must cross either the path fromi to v2 or j to v2 at a nodek. Nodek

must be able to reach the head ofΓv1 , so eitheri or j can reachΓv1 .

Once the non-destination paths are defined, we perform the following algorithm to label other

edges so as to satisfy property (C). We refer to an edgee aslabeledif φ(e) 6= ∅. We refer to a node

as labeled if any of its output edges are labeled. Any node unlabeled after the specifications of

the non-destination paths must not be inNin(D), and must be able to reach at least two different

2-to-1 nodes.

1) For any edgee such that there exists ane′ ∈ Eout(tail(e)) with ψ(e′) = 1, setφ(e) = φ(e′).

Observe now that any path eventually reaches a labeled edge.Furthermore, the tail of any

unlabeled edge cannot be a node contained inΓv for any v, so it can lead to at least two

2-to-1 nodes.

2) Repeat the following until every edge other than those connected directly to the destination

is labeled. Consider two cases:

• There is no 2-to-2 node with exactly one labeled output edge: Pick an unlabeled node

i. Select any path of unlabeled edges out ofi until reaching a labeled node. Letv be

the label of a labeled output edge from this node. For all edges e on the selected path,

setφ(e) = v. Observe that every node on this path was previously an unlabeled 2-to-2

node. Hence every node on this path, except the last one, has exactly one labeled

output edge.

• There is a 2-to-2 nodei with exactly one labeled output edge: Let v1 be the label

on the labeled output edge. Select any path of unlabeled edges beginning with the

unlabeled output edge fromi until reaching a node with an output edge labeledv2

with v2 6= v1. This is always possible because any unlabeled edge must be able to

46

lead to at least two 2-to-1 nodes, including one other thanv1. For all edgese on the

selected path, setφ(e) = v2. Observe that before we labeled the path, no node in the

path other than the last one had an output edge labeledv2, because if it did, we would

have stopped there. Hence, after we label the path, if a node now has 2 labeled output

edges, they have different labels.

Note that in the above algorithm, whenever an edgee becomes labeled, if there was another

edgee′ with head(e) = head(e′), eithere′ was unlabeled, orφ(e) 6= φ(e′). Therefore, the final

φ values satisfy property (B).

B. Proof of Lemma 3

Observe that for any 2-to-2 node, the twoρ values on the input edges are identical to the two

ρ values on the output edges. For a 2-to-1 node, theρ value on the output edge is equal to theρ

value on one of the input edges. Therefore beginning with anyedge inEout(S), we may follow

a path along only edges with the sameρ value, and clearly we will hit all such edges. Property

(1) immediately follows.

Property (2) follows from the fact that 2-to-2 nodes always operate such that from the symbols

on the two output edges, it is possible to decode the symbols on the input edges. Therefore the

destination can always reverse these transformations to recover any earlier symbols sent in the

network. The only exception is 2-to-1 nodes, which drop one of their two input symbols. The

dropped symbol is a non-destination symbol, so it is clear that the destination can always decode

the rest.

We now prove property (3). We claim that when the comparison fails at nodek, it is impossible

for the destination to decodeXf2. We may assume that the destination has direct access to all

symbols on edges immediately subsequent to edges inΛ(v). This can only makeXf2 easier to

decode. Recall thatρ(f1) < ρ(f2), soXf1 is forwarded directly on the output edge ofk not in

Λ(v). Therefore the destination can only decodeXf2 if it can decode the symbol on the output

edge ofk in Λ(v). Continuing to follow the path throughΛ(v), suppose we reach an edgee1

with tail(e1) = k′, wherek′ is a branch node. Lete2 be the other input edge ofk′. Even if

ρ(e1) < ρ(e2), meaningk′ would normally forwardXe1 outside ofΛ(v), becausee1 carries a

failed comparison bit,k′ will instead forwardXe2 outside ofΛ(v). Again, the destination can

only decodeXf2 (or equivalentlyXe1) if it can decode the symbol on the output edge ofk′ in

47

Λ(v). If we reach a node interacting with the non-destination symbol associated withv, then

because of the failed comparison bit, the formerly non-destination symbol is forwarded outside

of Λ(v) and the symbol to decode continues traveling throughΛ(v). It will finally reach v, at

which point it is dropped. Therefore it is never forwarded out of Λ(v), so the destination cannot

recover it.

C. Proof of Lemma 4

From Corollary 3, it is enough to prove the existence of aK matrix satisfying

|Ke∗v1
,e∗v2

,Z| |Kf1,f2,Z| |Ke∗v1
,f1,Z| |Ke∗v2

,f2,Z| < 0. (102)

We construct a Vandermonde matrixK to satisfy (102) for allv1, v2 and allf1, f2 in the following

way. We will construct a bijective function (an ordering)α given by

α : {e∗v : v ∈ V2,1} ∪Nin(D) → {1, . . . ,M + |V2,1|}. (103)

For eachv ∈ V2,1, setα(e∗v) to an arbitrary but unique number in1, . . . , |V2,1|. We may now

refer to a 2-to-1 node asα−1(a) for an integera ∈ {1, . . . , |V2,1|}. Now setα(e) for e ∈ Ein(D)

such that, inα order, the edge set{e∗v : v ∈ V2,1} ∪Nin(D) is written

e∗α−1(1), e
∗
α−1(2), . . . , e

∗
α−1(|V2,1|)

,

Ξ(α−1(|V2,1|)),Ξ(α
−1(|V2,1| − 1)), . . . ,Ξ(α−1(1)). (104)

That is, eachΞ(v) set is consecutive in the ordering, but in the opposite orderas the associated

non-destination edgese∗v. Now letK be the Vandermone matrix with constants given byα. That

is, the row associated with edgee is given by
[

1 α(e) α(e)2 · · · α(e)M−3

]

. (105)

We claim the matrixK given by (105) satisfies (102). Fixv1, v2, andf1 ∈ Ξ(v1), f2 ∈ Ξ(v2).

Due to the Vandermonde structure ofK, we can write the determinant of a square submatrix in

terms of the constantsα(e). For instance,

|Ke∗v1
,e∗v2

,Z| = [α(e∗v2)− α(e∗v1)]
∏

e∈Z

[α(e)− α(e∗v1)][α(e)− α(e∗v2)]

·
∏

e,e′∈Z,α(e)<α(e′)

[α(e′)− α(e)] (106)

48

where we have assumed without loss of generality that the rows of KZ are ordered according

to α. Expanding the determinants in (102) as such gives

|Ke∗v1
,e∗v2

,Z| |Kf1,f2,Z| |Ke∗v1
,f1,Z| |Ke∗v2

,f2,Z| (107)

= [α(e∗v2)− α(e∗v1)][α(f2)− α(f1)][α(f1)− α(e∗v1)][α(f2)− α(e∗v2)]

·
∏

e∈Z

[α(e)− α(e∗v1)]
2[α(e)− α(e∗v2)]

2[α(e)− α(f1)]
2[α(e)− α(f1)]

2

·
∏

e,e′∈Z,α(e)<α(e′)

[α(e′)− α(e)]4. (108)

Recall f1 ∈ Ξ(v1), f2 ∈ Ξ(v2). Since we choseα such that theΞ sets are in opposite order to

the edgese∗v, we have

[α(e∗v2)− α(e∗v1)][α(f2)− α(f1)] < 0. (109)

Moreover, since all theΞ sets have largerα values than the edgese∗v,

α(f1)− α(e∗v1) > 0, (110)

α(f2)− α(e∗v2) > 0. (111)

Hence, there is exactly one negative term in (108), from which we may conclude (102).

D. Proof of Lemma 5

The random vectorW is distributed according to the type of the message vector asit is

produced as the source. We formally introduce the random vector W̃ representing the message

as it is transformed in the network. As in our examples, this vector is distributed according to the

joint type of the sequences as they appear in the network, after being corrupted by the adversary.

For each edgee, we defineXe andX̃e similarly as random variables jointly distributed withW

andW̃ respectively with distributions given by the expected and corrupted joint types.

For every pair of nodes(i, j), we need to prove both of the following:

If i is the traitor, andj ∈ L, i cannot corrupt values inKD⊥{i,j}W. (112)

If j is the traitor, andi ∈ L, j cannot corrupt values inKD⊥{i,j}W. (113)

In fact, each of these implies the other, so it will be enough to prove just one. Suppose (112)

holds. Therefore, if the distribution observed by the destination ofKD⊥{i,j}W̃ does not match

49

that ofKD⊥{i,j}W̃, then at least one ofi, j will not be in L. If they both were inL, it would

have had to be possible for nodei to be the traitor, make it appear as if nodej were the traitor,

but also corrupt part ofKD⊥{i,j}W . By (112), this is impossible. Hence, ifj is the traitor and

i ∈ L, then the distribution of theKD⊥{i,j}YD must remain uncorrupted. This vector includes

KD⊥jW , a vector that can certainly not be corrupted by nodej. Since rank(KD⊥j) ≥ M − 2,

and there are onlyM − 2 degrees of freedom, the only choice nodej has to ensure that the

distribution ofKD⊥{i,j}W matchesp is to leave this entire vector uncorrupted. That is, (113)

holds.

Fix a pair (i, j). We proceed to prove either (112) or (113). Doing so will require placing

constraints on the actions of the traitor imposed by comparisons that occur inside the network,

then applying one of the corollaries of Theorem 3 in Sec. VIII. LetK⊥i be a basis for the space

orthogonal toKi. If node i is the traitor, we have thatK⊥iW̃ ∼ K⊥iW. Moreover, sincej ∈ L,

KD⊥jW̃) ∼ KD⊥jW. These two constraints are analogous to (57) and (56) respectively, where

the symbols on the output of nodei are analogous toX1, X2. The subspace ofKD orthogonal

to bothKi andKj corresponds toZ in the example. We now seek pairwise constraints of the

form (58)–(60) from successful comparisons to apply Theorem 3.

Being able to apply Theorem 3 requires thatKD⊥j has rankM − 2 for all j. Ensuring this

has to do with the choices for the coefficientsγi,1, γi,2 used in (86). A rank deficiency inKD⊥j

is a singular event, so it is not hard to see that random choices for theγ will cause this to occur

with small probability. Therefore suchγ exist.

We now discuss how pairwise constraints on the output symbols of i or j are found. Consider

the following cases and subcases:

• i, j ∈ W1 ∪W2: Suppose nodei is the traitor. Lete1, e2 be the output edges of nodei. For

eachl = 1, 2, we look for constraints onXel by following theρ = ρ(el) path until one of

the following occurs:

– We reach an edge on theρ = ρ(el) path carrying a symbol influenced by node

j: This can only occur immediately after a branch nodek with input edgesf1, f2

whereρ(f1) = ρ(el), ρ(f2) < ρ(f1), andXf2 is influenced by nodej. At nodek, a

comparison occurs betweeñXf1 , which is influenced by nodei but notj, andX̃f2 . If

the comparison succeeds, then this places a constraint on the distribution of(X̃f1 , X̃f2).

If the comparison fails, the forwarding pattern changes such that theρ = ρ(el) path

50

becomes a non-destination path; i.e. the value placed onel does not affect any variables

available at the destination. Hence, the subspace available at the destination that is

corruptible by nodei is of dimension at most one.

– We reach nodej itself: In this situation, we make use of the fact that we only need to

prove that nodei cannot corrupt values available at the destination that cannot also be

influenced by nodej. Consider whether theρ = ρ(el) path, betweeni andj, contains

a branch nodek with input edgesf1, f2 such thatρ(f1) = ρ(el) andρ(f2) > ρ(f1). If

there is no such node, thenXel cannot influence any symbols seen by the destination

that are not also being influenced byj. That is,Xel is in span(Ki→D ∩Kj→D), so we

do not have anything to prove. If there is such a branch nodek, then the output edge

e of k with ρ(e) = ρ(f2) contains a symbol influenced byi and notj. We may now

follow the ρ = ρ(e) path from here to find a constraint onXel. If a comparison fails

further along causing the forwarding pattern to change suchthat theρ = ρ(e) path

does not reach the destination, then the potential influenceof Xel on a symbol seen by

the destination not influenced by nodej is removed, so again we do not have anything

to prove.

– Theρ = ρ(el) path leaves the network without either of the above occurring: Immedi-

ately before leaving the network, the symbol will be compared with a non-destination

symbol. This comparison must succeed, becausej cannot influence the non-destination

symbol. This gives a constraint̃Xel.

We may classify the fates of the two symbols out ofi as discussed above as follows:

1) Either the forwarding pattern changes such that the symbol does not reach the desti-

nation, or the symbol is in span(Ki→D ∩Kj→D), and so we do not need to prove that

it cannot be corrupted. Either way, we may ignore this symbol.

2) The symbol leaves the network, immediately after a successfully comparison with a

non-destination symbol.

3) The symbol is successfully compared with a symbol influenced by nodej. In particular,

this symbol from nodej has a strictly smallerρ value thanρ(el).

We divide the situation based on which of the above cases occur for l = 1, 2 as follows:

– Case 1 occurs for bothl = 1, 2: We have nothing to prove.

51

– Case 1 occurs for (without loss of generality)l = 1: Either case 2 or 3 gives a successful

comparison involving a symbol influenced bỹXel̄
. Applying Corollary 1 allows us to

conclude thatX̃el̄
cannot be corrupted.

– Case 2 occurs for bothl = 1, 2: If the two paths reach different non-destination symbols,

then we may apply Lemma 4 to conclude that nodei cannot corrupt either̃Xe1 nor X̃e2.

Suppose, on the other hand, that each path reaches the same non-destination path, in

particular the one associated with 2-to-1 nodev. Sinceφ(e1) 6= φ(e2), assume without

loss of generality thatφ(e1) 6= v. We may follow the path starting frome1 throughΓ(v)

to find an additional constraint, after which we may apply Corollary 2. All symbols

on this path are influenced bỹXe1. This path eventually crosses the non-destination

path associated withv. If the symbol compared against the non-destination symbolat

this point is not influenced byj, then the comparison succeeds, giving an additional

constraint. Otherwise, there are two possibilities:

∗ The path throughΓ(v) reachesj: There must be a branch node on the path toΓ(v)

before reachingj such that the path frome1 has the smallerρ value. If there were

not, then case 1 would have occurred. Consider the most recent such branch nodek

in Γ(v) before reachingj. Let f1, f2 be the input edges tok, wheref1 is on the path

from e1. We know ρ(f1) < ρ(f2). The comparison atk must succeed. Moreover,

this successful comparison comprises a substantial constraint, because the only way

the destination can decodeXf2 is through symbols influenced by nodej.

∗ The path throughΓ(v) does not reachj: Let k be the first common node on the

paths fromi and j throughΓ(v). Let f1, f2 be the input edges ofk, wheref1 is

on the path fromi and f2 is on the path fromj. If the comparison atk succeeds,

this provides a constraint. If it fails, then the forwardingpattern changes such that

the ρ = ρ(f1) path becomes a non-destination path. Since we are not in case1,

ρ(e1) 6= ρ(f1), but a symbol influenced byXe1 is compared against a symbol on the

ρ = ρ(f1) path at a branch node inΓ(v). This comparison must succeed, providing

an additional constraint.

– Case 3 occurs for (without loss of generality)l = 1, and either case 2 or 3 occurs

for l = 2: We now suppose instead that nodej is the traitor. That is, we will prove

52

(113) instead of (112). Recall that a successful comparisonoccurs at a branch node

k with input edgesf1, f2 whereX̃f1 is influenced byX̃e1 , X̃f2 is influenced by node

j, and ρ(f2) < ρ(f1). Let e′1, e
′
2 be the output edges of nodej, and suppose that

ρ(e′1) = ρ(f2); i.e. the symbolXf2 is influenced byXe′1
. The success of the comparison

gives a constraint oñXe′1
. Sinceρ(f2) < ρ(f1), we may continue to follow theρ = ρ(f2)

path from nodek, and it continues to be not influenced by nodei. As above, we

may find an additional constraint onXe′1
by following this ρ path until reaching a

non-destination symbol or reaching another significant branch node. Furthermore, we

may find a constraint onX̃e′2
in a similar fashion. This gives three constraints on

X̃e′1
, X̃e′2

, enough to apply Corollary 2, and conclude that nodej cannot corrupt its

output symbols.

• i ∈ W3 ∪ V2,1 \ Nin(D), j ∈ W1 ∪ W2: Assume nodei is the traitor. If i ∈ V2,1 with

single output edgee such thatψ(e) = 1, then nodei controls no symbols received at the

destination and we have nothing to prove. Otherwise, it controls just one symbol received

at the destination, so any single constraint on nodei is enough. Lete′ be the output symbol

of i with ψ(i) = 0. Since we assumei /∈ Nin(D), theρ = ρ(e′) path is guaranteed to cross

a non-destination path after nodei. As above, follow theρ = ρ(e′) path until reaching

a branch nodek at which the symbol is combined with one influenced by nodej. If the

comparison at nodek succeeds, it gives a constraint oñXe′ . If the comparison fails, then the

forwarding pattern will change such that theρ = ρ(e′) path will fail to reach the destination,

so we’re done.

• i ∈ W1 ∪W2, j ∈ Nin(D): Assume nodei is the traitor. By construction, since one output

edge ofj goes directly into the destination, the other must be on a non-destination path.

Hence,j only controls one symbol at the destination, so we again needto place only one

constraint on nodei. Let e ∈ Eout(i) be such thatφ(e) 6= φ(e′) for all e′ ∈ Eout(j). This

is always possible, since the two output edges ofi have differentφ values, and since one

output edge ofj goes directly to the destination, only one of the output edges of j has aφ

value. Letv = φ(e). Follow the path frome throughΛ(v) until reaching the non-destination

symbol at nodek with input edgesf1, f2. AssumeX̃f1 is influenced byX̃e and X̃f2 is a

non-destination symbol. The comparison between these two symbols must succeed, because

53

nodej cannot influence either̃Xf1 or X̃f2. This places the necessary constraint onX̃e.

• i, j ∈ W3 ∪ V2,1: Nodesi, j each control at most one symbol available at the destination,

so either one, in order to make it appear as if the other could be the traitor, cannot corrupt

anything.

E. Proof of Theorem 2 when the Cut-set Bound isM − 3

We now briefly sketch the proof of Theorem 2 for the case that the cut-set bound isM − 3.

The proof is far less complicated than the above proof for theM − 2 case, but it makes use

of many of the same ingredients. First note that the set of 2-to-2 nodesi that cannot reach any

2-to-1 nodes must form a path. We next perform a similar edge labeling as above, definingφ

andψ as in (80)–(81). Properties (A) and (B) must still hold, except that edges may have null

labels, and property (C) is replaced by

C’ For every 2-to-2 node that can reach at least one 2-to-1 node,at least one of its output

edges must have a non-null label.

Internal nodes operate in the same way based on the edge labels as above, where symbols are

always forwarded along edges with null labels. The decodingprocess is the same. Proving an

analogous version of Lemma 5 requires only finding a single constraint on one ofi or j. This

is always possible since one is guaranteed to have a label on an output edge, unless they are

both in the single path with no reachable 2-to-1 nodes, in which case they influence the same

symbol reaching the destination.

Interestingly, this proof does not make use of the planarityof the graph. We may therefore

conclude that for networks satisfying properties (2) and (3) in the statement of Theorem 2, the

cut-set bound is always achievable if the cut-set is strictly less thanM − 2.

X. LOOSENESS OF THECUT-SET BOUND

So far, the only available upper bound on achievable rates has been the cut-set bound. We

have conjectured that for planar graphs this bound is tight,but that still leaves open the question

of whether there is a tighter upper bound for non-planar graphs. It was conjectured in [10] that

there is such a tighter bound, and here we prove this conjecture to be true. We do this in two

parts. First, consider the problem that the traitor nodes ina Byzantine attack are constrained

to be only from a certain subset of nodes. That is, a special subset of nodes are designated as

54

potential traitors, and the code must guard against adversarial control of anyz of those nodes.

We refer to this as the limited-node problem. Certainly the limited-node problem subsumes

the all-node problem, since we may simply take the set of potential traitors to be all nodes.

Furthermore, it subsumes the unequal-edges problem studied in [10], because given an instance

of the unequal-edge problem, an equivalent all-node problem can be constructed as follows:

create a new network with every edge replaced by a pair of edges of equal capacity with a node

between them. Then limit the traitors to be only these interior nodes.

We will show in Section X-A that the all-node problem actually subsumes the limited-node

problem, and therefore also the unequal-edge problem. Thenin Section X-B we give an example

of a limited-node network for which there is an active upper bound on capacity other than the

cut-set. This proves that, even for the all-node problem, the cut-set bound is not tight in general.

Transforming the example in Section X-B into an unequal-edge problem is not hard; this therefore

confirms the conjecture in [10].

A. Equivalence of Limited-Node and All-Node

Let (V,E) be a network under a limited-node Byzantine attack, where there may be at most

z traitors constrained to be inU ⊆ V , and letC be its capacity. We construct a sequence of

all-node problems, such that finding the capacity of these problems is enough to find that of the

original limited-node problem. Let(V (M), E(M)) be a network as follows. First makeM copies

of (V,E). That is, for eachi ∈ V , put i(1), . . . , i(M) into V (M), and for each edge(i, j) ∈ E,

put (i(1), j(1), . . . , (i(M), j(M)) into E(M). Then, for eachi ∈ U , mergei(1), . . . , i(M) into a single

nodei∗, transferring all edges that were previously connected to any of i(1), . . . , i(M) to i∗. Let

C(M) be the all-node capacity of(V (M), E(M)) with z traitors. This construction is illustrated in

Fig. 12, where we show a limited-node network(V,E) and the all-node network(V (M), E(M))

with M = 3. For largeM , the all-node problem will be such that for anyi /∈ U , the adversary

has no reason to control one of the respective nodes because it commands such a small fraction

of the information flow through the network. That is, we may assume that the traitors will only

ever be nodes inU . This is stated explicitly in the following theorem.

Theorem 4:For anyM , C(M) is related toC by

1

M
C(M) ≤ C ≤

1

M − 2z
C(M). (114)

55

Moreover,

C = lim
M→∞

1

M
C(M) (115)

and if C(M) can be computed to arbitrary precision for anyM in finite time, then so canC.

Proof: We first show that 1
M
C(M) ≤ C. Take any code on(V (M), E(M)) achieving rateR

when anyz nodes may be traitors. We use this to construct a code on(V,E), achieving rate

R/M when anyz nodes inU may be traitors. We do this by first increasing the block-length

by a factor ofM , but maintaining the same number of messages, thereby reducing the achieved

rate by a factor ofM . Now, since each edge in(V,E) corresponds toM edges in(V (M), E(M)),

we may place every value transmitted on an edge in the(V (M), E(M)) code to be transmitted

on the equivalent edge in the(V,E) code. That is, all functions executed byi(1), . . . , i(M) are

now executed byi. The original code could certainly handle anyz traitor nodes inU . Hence

the new code can handle anyz nodes inU , since the actions performed by these nodes have not

changed from(V (M), E(M)) to (V,E). Therefore, the new code on(V,E) achieving rateR/M

for the limited-node problem.

Now we show thatC ≤ 1
M−2z

C(M). Take any code on(V,E) achieving rateR. We will

construct a code on(V (M), E(M)) achieving rate(M − 2z)R. This direction is slightly more

difficult because the new code needs to handle a greater variety of traitors. The code on

(V (M), E(M)) is composed of an outer code andM copies of the(V,E) code running in parallel.

The outer code is a(M,M − 2z) MDS code with coded output valuesw1, . . . , wM . These

values form the messages for the inner codes. Since we use an MDS code, ifw1, . . . , wM are

reconstructed at the destination such that no more thanz are corrupted, the errors can be entirely

corrected. Thejth copy of the(V,E) code is performed byi∗ for i ∈ U , and byi(j) for i /∈ U .

That is, nodes inU are each involved in allM copies of the code, while nodes not inU are

involved in only one. Because the(V,E) code is assumed to defeat any attack on only nodes

in U , if for somej, no nodesi(j) for i /∈ U are traitors, then the messagewj will be recovered

correctly at the destination. Therefore, one of thewj could be corrupted only ifi(j) is a traitor

for somei /∈ U . Since there are at mostz traitors, at most of thew1, . . . , wM will be corrupted,

so the outer code corrects the errors.

From (114), (115) is immediate. We can easily identifyM large enough to computeC to any

desired precision.

56

PSfrag replacements

S

1

2

3

4

5

6

7

8

9

10

D

Fig. 12. A network with capacity strictly less than the cut-set bound. The limited-node network is shown on the left, and the

equivalent all-node problem with 3 copies is shown on the right.

The significance of Theorem 4 is that if we could calculate thecapacity of any all-node

problem, we could use (114) to calculate the capacity of any limited-node problem. Furthermore,

it is easy to see that for largeM the cut-set bound of(V (M), E(M)) is simplyM times the cut-set

bound of(V,E). Hence a limited-node example with capacity less than the cut-set bound—such

as the one in Section X-B—leads directly to an all-node example with capacity less than the

cut-set bound.

B. Example with Capacity Less than Cut-Set

Consider the network shown in Figure 12. There is at most one traitor, but it may only be

one of nodes 1–4. The cut-set bound is easily seen to be 2, but in fact the capacity is no more

than 1.5.

Suppose we are given a code achieving rateR. We show thatR ≤ 1.5. For i = 1, 2, 3, 4, let

Xi be the random variable representing the value on the output edge of nodei. Let Y be the

value on edge(9, D) and letZ be the value on(10, D). Let p be the honest distribution on these

variables, and define the following alternative distributions:

q3 = p(x1x2x4)p(x3)p(y|x1x2x3)p(z|x3x4), (116)

q4 = p(x1x2x3)p(x4)p(y|x1x2x3)p(z|x3x4). (117)

We may write

R ≤ Iq3(X1X2X4; Y Z) (118)

57

because, if node 3 is the traitor, it may generate a completely independent version ofX3 and

send it along edge(37), resulting in the distributionq3. In that case, assuming the destination

can decode properly, information about the message must getthrough from the honest edges at

the start of the network,X1, X2, X4, to what is received at the destination,Y, Z. From (118),

we may write

R ≤ Iq3(X1X2X4;Z) + Iq3(X1X2X4; Y |Z) (119)

≤ Iq3(X4;Z) + I(X1X2;Z|X4) + 1 (120)

= Iq3(X4;Z) + 1 (121)

where in (120) we have used that the capacity of(9, D) is 1, and in (121) thatX1X2 −X4 −Z

is a Markov chain according toq3. Using a similar argument in which node 4 is the traitor and

it acts in a way to produceq4, we may write

R ≤ Iq4(X3;Z) + 1. (122)

Note that

q3(x3x4z) = q4(x3x4z). (123)

In particular, the mutual informations in (121) and (122) can both be written with respect to the

same distribution. Therefore,

2R ≤ Iq3(X4;Z) + Iq3(X3;Z) + 2 (124)

= Iq3(X3X4;Z) + Iq3(X3;X4)− Iq3(X3;X4|Z) + 2 (125)

≤ Iq3(X3X4;Z) + 2 (126)

≤ 3 (127)

where (126) follows from the positivity of conditional mutual information and thatX3, X4 are

independent according toq3, and (127) follows because the capacity of(10, D) is 1. Therefore,

R ≤ 1.5.

Observe that all inequalities used in this upper bound were so-called Shannon-type inequalities.

For the non-Byzantine problem, there is a straightforward procedure to write down all the

Shannon-type inequalities relevant to a particular network coding problem, which in principle

can be used to find an upper bound. This upper bound is more general than any cut-set upper

58

bound, and in some multi-source problems it has been shown tobe tighter than any cut-set bound.

This example illustrates that a similar phenomenon occurs in the Byzantine problem even for a

single source and single destination. As the Byzantine problem seems to have much in common

with the multi-source non-Byzantine problem, it would be worthwhile to formulate the tightest

possible upper bound using only Shannon-type inequalities. However, it is yet unclear what the

“complete” list of Shannon type inequalities would be for the Byzantine problem. This example

certainly demonstrates one method of finding them, but whether there are fundamentally different

methods to find inequalities that could still be called Shannon-type, or even how to compile all

inequalities using this method, is unclear. Moreover, it has been shown in the non-Byzantine

problem that there can be active non-Shannon-type inequalities. It is therefore conceivable that

non-Shannon-type inequalities could be active even for a single source under Byzantine attack.

XI. CONCLUSION

The main contribution of this paper has been to introduce thetheory of Polytope Codes. As far

as we know, they are the best known coding strategy to defeat generalized Byzantine attacks on

network coding. However, it remains difficult to calculate the best possible rate they can achieve

for a given network. We have proved that they achieve the cut-set bound, and hence the capacity,

for a class of planar graphs, and we conjecture that this holds for all planar graphs. One would

obviously hope to find the capacity of all networks, including non-planar ones. We have shown

that achieving the cut-set bound is not always possible, meaning there remains significant work

to do on upper bounds as well as achievable schemes. Whether Polytope Codes can achieve

capacity on all networks remains an important open question.

APPENDIX A

TIGHTER CUT-SET UPPER BOUND

Theorem 5:Consider a cutA ⊆ V with S ∈ A andD /∈ A. Let EA be the set of edges

that cross the cut. For two not necessarily disjoint sets of possible traitorsT1, T2, let E1 andE2

be the subset of edges inEA that originate at nodes inT1 and T2 respectively. LetẼ be the

set of edges inE1 ∩ E2 in addition to all edgese ∈ E1 ∪ E2 for which there is no path that

flows throughe followed by any edge inEA \E1 \E2. The following upper bound holds on the

59

capacity of the network:

C ≤
∑

e∈EA\Ẽ

ce. (128)

Proof: Suppose (1) were not true for someA, T1, andT2. Then there would exist a code

achieving a rateR such that

R >
∑

e∈EA\Ẽ

ce. (129)

We will consider two possibilities, one whenT1 are the traitors and they alter the values on

E1∩ Ẽ, and one whenT2 are the traitors and they alter the values onE2∩ Ẽ. We will show that

by (129), it is possible for the traitors to act in such a way that even though the messages at the

source are different, all values sent across the cut are the same; therefore the destination will

not be able to distinguish all messages. Note that traitors in T1 or T2 will only corrupt values

on edges inẼ; that is, those edges controlled by either set of traitors, or those that could not

influenceEA \ E1 \ E2.

Fix a valuez representing one possible set of values that may be placed onthe edgesE1∩E2.

By definition, no edges iñE \ (E1 ∩E2) are upstream of edges inEA \ Ẽ. Since the traitors act

honestly on all edges not iñE, givenz, the values onEA \ Ẽ are a function of the message, so

by (129), there exist two messageswa andwb that cannot be distinguished just fromEA \ Ẽ.

Call y the set of values on these edges underwa or wb.

Choose a coding order on the edges inẼ \ (E1 ∩ E2) written as

(l1, l2, . . . , lK) (130)

whereK = |Ẽ \ (E1 ∩ E2)|, such that if there is a path throughli followed by lj , then i < j.

Observe thatẼ \ (E1 ∩ E2) can be divided intoẼ \ E2 and Ẽ \ E1, and therefore the order

in (130) must alternate between edges in the two sets. Maintaining the order in (130), we may

group the edges by the two sets, rewriting (130) as

(U1,V1,U2,V2, . . . ,UK ′,VK ′) (131)

whereUi ⊂ Ẽ \E2 andVi ⊂ Ẽ \E2, andK ′ is the number of times the edges in (130) alternate

between the two sets. Note thatU1 or VK ′ may be empty.

We now construct the manner in which the two possible sets of traitors,T1 or T2, may cause

wa andwb to become indistinguishable. Supposewa is the message,T1 are the traitors, they

60

placez on E1 ∩ E2, but behave honestly on all other edges. We denote the valueson all edges

crossing the cut as

(z, y, u
(1)
1 , v

(1)
1 , u

(1)
2 , v

(1)
2 , . . . , u

(1)
K ′ , v

(1)
K ′) (132)

wherez represents the values onE1 ∩ E2, y the values onEA \ Ẽ, andu(1)i and v(1)i are the

values placed onUi andVi respectively. Note that only theui values are directly adjustable by

the traitors, but they may affect elements later in the sequence.

Alternatively, ifwa is the message,T2 are the traitors, and they placez onE1∩E2, but behave

honestly elsewhere, the values across the cut are denoted

(z, y, u
(2)
1 , v

(2)
1 , u

(2)
2 , v

(2)
2 , . . . , v

(2)
K ′). (133)

Here, only thevi values may be changed directly by the traitors.

In the two scenarios, the traitors may alter their output values so that (132) and (133) are

transformed to become identical. This can be done as follows. In (132), the traitors may replace

u
(1)
1 with u

(2)
1 . Downstream edges are either controlled by honest nodes, orthey are controlled

by traitors that continue, for now, to behave honestly. Hence, this change may affect the later

edges in the sequence, but they do so in a way determined only by the code. This results in a

set of values denoted by

(z, y, u
(2)
1 , v

(3)
1 , u

(3)
2 , v

(3)
2 , . . . , u

(3)
K ′ , v

(3)
K ′). (134)

In (133), the traitors may now replacev(2)1 with v
(3)
1 , resulting in

(z, y, u
(2)
1 , v

(3)
1 , u

(4)
2 , v

(4)
2 , . . . , v

(4)
K ′). (135)

We may now return to (134) and replaceu(3)2 with u
(4)
2 , further changing downstream values.

Continuing this process will cause the two sequences to become identical, thereby makingwa

andwb indistinguishable at the destination.

APPENDIX B

PROOF OFBOUND ON L INEAR CAPACITY FOR THE COCKROACH NETWORK

We show that no linear code for the Cockroach Network, shown in Figure 1, can achieve a

rate higher than 4/3. Fix any linear code. For any link(i, j), let Xi,j be the value placed on this

link. For every nodei, let Xi be the set of messages on all links out of nodei, andYi be the

61

set of messages on all links into nodei. Let GXi→Yj
be the linear transformation fromXi to Yj,

assuming all nodes behave honestly. Observe that

YD = GXS→YD
XS(w) +

∑

i

GXi→YD
ei (136)

whereei represents the difference between what a traitor places on its outgoing links and what

it would have placed on those links if it were honest. Only onenode is a traitor, so at most

one of theei is nonzero. Note also that the output values of the sourceXS is a function of the

messagew. We claim that for any achievable rateR,

R ≤
1

n

[

rank(GXS→YD
)−max

i,j
rank(GXiXj→YD

)

]

(137)

wheren is the block length used by this code. To show this, first note that for any pair of nodes

i, j there existK,H1, H2 such that

GXS→YD
= K +GXi→YD

H1 +GXj→YD
H2 (138)

and where

rank(K) = rank(GXS→YD
)− rank(GXiXj→YD

). (139)

That is, the first term on the right hand side of (138) represents the part of the transformation

from XS to YD that cannot be influenced byXi or Xj. Consider the case that rank(K) < R.

Then there must be two messagesw1, w2 such thatKXS(w1) = KXS(w2). If the message is

w1, nodei may be the traitor and set

ei = H1(XS(w2)−XS(w1)). (140)

Alternatively, if the message isw2, nodej may be the traitor and set

ej = H2(XS(w1)−XS(w2)). (141)

In either case, the value received at the destination is

YD = KXS(w1) +GXi→YD
H1XS(w2)

+GXj→YD
H2XS(w1).

Therefore, these two cases are indistinguishable to the destination, so it must make an error for

at least one of them. This proves (137).

62

Now we return to the specific case of the Cockroach Network. Observe that theX4,D is a

linear combination ofX1,4 andX2,4. Let k1 be the number of dimensions ofX4,D that depend

only on X1,4 and are independent ofX2,4. Let k2 be the number of dimensions ofX4,D that

depend only onX2,4, and letk3 be the number of dimensions that depend on bothX1,4 and

X2,4. Certainlyk1+k2+k3 ≤ n. Similarly, let l1, l2, l3 be the number of dimensions ofX5,D that

depend only onX2,5, that depend only onX3,5, and that depend on both respectively. Finally,

let m1 andm2 be the number of dimensions ofX1,D andX3,D respectively.

We may write the following:

rank(GXS→Y4)− rank(GX2,X3→Y4) ≤ m1 + k1,

rank(GXS→Y4)− rank(GX1,X3→Y4) ≤ k3 + l1,

rank(GXS→Y4)− rank(GX1,X2→Y4) ≤ l3 +m2.

Therefore, using (137), any achievable rateR is bounded by

R ≤
1

n
min{m1 + k1, k3 + l1, l3 +m2} (142)

subject to

k1 + k2 + k3 ≤ n, (143)

l1 + l2 + l3 ≤ n, (144)

m1 ≤ n, (145)

m2 ≤ n. (146)

It is not hard to show that this impliesR ≤ 4/3.

REFERENCES

[1] R. Ahlswede, N. Cai, S. R. Li, and R. W. Yeung, “Network information flow,” IEEE Trans. Inf. Theory, vol. 46, pp.

1204–1216, 2000.

[2] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals problem,”ACM Transactions on Programming Languages

and Systems, vol. 4, no. 1, pp. 14–30, 1982.

[3] D. Dolev, “The Byzantine generals strike again,”Journal of Algorithms, vol. 3, no. 1, pp. 14–30, 1982.

[4] R. W. Yeung and N. Cai, “Network error correction, part I:Basic concepts and upper bounds,”Comm. in Inf. and Syst.,

vol. 6, no. 1, pp. 19–36, 2006.

[5] N. Cai and R. W. Yeung, “Network error correction, part II: Lower bounds,”Comm. in Inf. and Syst., vol. 6, no. 1, pp.

37–54, 2006.

63

[6] T. Ho, B. Leong, R. Koetter, M. Médard, M. Effros, , and D.R. Korger, “Byzantine modification detection in multicast

networks using randomized network coding,” inProc. Int. Symp. Information Theory, 2004.

[7] S. Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, and M. M´edard, “Resilient network coding in the presence of Byzantine

adversaries,” inProc. INFOCOM, 2007, pp. 616–624.

[8] R. Koetter and F. R. Kschischang, “Coding for errors and erasures in random network coding,”IEEE Trans. Inf. Theory,

vol. 54, no. 8, pp. 3579–3591, 2008.

[9] O. Kosut, L. Tong, and D. Tse, “Nonlinear network coding is necessary to combat general Byzantine attacks,” inProc.

Allerton Conference on Communication, Control, and Computing, Sep. 2009.

[10] S. Kim, T. Ho, M. Effros, and S. Avestimehr, “Network error correction with unequal link capacities,” inProc. Allerton

Conference on Communication, Control, and Computing, Sep. 2009.

[11] M. Kim, M. Médard, J. Barros, and R. Koetter, “An algebraic watchdog for wireless network coding,” inProc. Int. Symp.

Information Theory, July 2009.

[12] G. Liang and N. H. Vaidya, “When watchdog meets coding,”in Proc. INFOCOM, San Diego, CA, 2010.

[13] R. Singleton, “Maximum distance q -nary codes,”Information Theory, IEEE Transactions on, vol. 10, no. 2, pp. 116 –

118, apr 1964.

[14] S. Kim, T. Ho, M. Effros, and S. Avestimehr, “New resultson network error correction: capacities and upper bounds,”in

Information Theory and Applications Workshop, 2010.

[15] F. Harary,Graph Theory. Addison-Wesley Publishing Company, 1972.

	I Introduction
	I-A Related Work
	I-B Main Results

	II Problem Formulation
	III Cut-Set Upper Bound
	IV Capacity of A Class of Planar Networks
	V A Linear Code with Comparisons for the Cockroach Network
	VI An Example Polytope Code: The Caterpillar Network
	VI-A Coding Strategy
	VI-B The Polytope Distribution

	VII A Polytope Code for the Cockroach Network
	VIII The Polytope Code
	IX Proof of Theorem ??
	IX-A Proof of Lemma ??
	IX-B Proof of Lemma ??
	IX-C Proof of Lemma ??
	IX-D Proof of Lemma ??
	IX-E Proof of Theorem ?? when the Cut-set Bound is M-3

	X Looseness of the Cut-set Bound
	X-A Equivalence of Limited-Node and All-Node
	X-B Example with Capacity Less than Cut-Set

	XI Conclusion
	Appendix A: Tighter Cut-set Upper bound
	Appendix B: Proof of Bound on Linear Capacity for the Cockroach Network
	References

