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Networks

Oliver Kosut, Lang Tong, and David Tse

Abstract

Network coding is studied when an adversary controls a $udfseodes in the network of limited
quantity but unknown location. This problem is shown to berendifficult than when the adversary
controls a given number of edges in the network, in that lineaes are insufficient. To solve the node
problem, the class of Polytope Codes is introduced. PotytOpdes are constant composition codes
operating over bounded polytopes in integer vector fieldse Polytope structure creates additional
complexity, but it induces properties on marginal disttibns of code vectors so that validities of
codewords can be checked by internal nodes of the network.sthown that Polytope Codes achieve
a cut-set bound for a class of planar networks. It is also shthat this cut-set bound is not always

tight, and a tighter bound is given for an example network.

I. INTRODUCTION

Network coding allows routers in a network to execute pdgstomplex codes in addition
to routing; it has been shown that allowing them to do so camemse communication rate
[1]. However, taking advantage of this coding at internatle® means that the sources and
destinations must rely on other nodes—nodes they may nat hawnplete control over—to
reliably perform certain functions. If these internal ned# not behave correctly, or, worse,
maliciously attempt to subvert the goals of the users—dainisiy a so-called Byzantine attack

[2], [B]—standard network coding techniques fail.
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Suppose an omniscient adversary controls an unknown podfothe network, and may
arbitrarily corrupt the transmissions on certain commatian links. We wish to determine how
the size of the adversarial part of the network influenceslskd communication rates. If the
adversary may control anyunit-capacity edges in the network, then it has been shoat fibr
the multicast problem (one source and many destinatioms)capacity reduces 3¢ compared
to the non-Byzantine problern![4],/[5]. To achieve this rately linear network coding is needed.
Furthermore, if there is just one source and one destinatimoling is needed only at the source
node; internal nodes need only do routing.

The above model assumes that any setefiges may be adversarial, which may not accurately
reflect all types of attacks. This model is accurate if thackitr is able to cut transmission lines
and change messages that are sent along them. Howevete#dnthe attacker is able to seize
a router in a network, it will control the values on all linksrmected to that router. Depending
on which router is attack, the number of the links controlgdthe adversary may vary. In an
effort to more accurately model this situation, in this pape assume that the adversary may
control any set ok nodes.

Defeating node-based attacks is fundamentally differemhfdefeating edge-based attacks.
First, the edge problem does not immediately solve the nodelgm. Consider, for example,
the Cockroach network, shown in Fig. 1. Suppose we wish taleaamy single adversarial node
in the network (i.es = 1). One simple approach would be to apply to edge result fidmH
no node controls more than two unit-capacity edges, so walefgat the node-based attack by
using a code that can handle an attack on any two edges. Howete that the achievable rate
for this network without an adversary is 4, so subtractingéwhe number of bad edges leaves
us with an achievable rate of 0. As we will show, the actualac#ty of the Cockroach network
with one traitor node is 2. In effect, relaxing the node d&tpmblem to the edge attack problem
is too pessimistic, and we can do better if we treat the nodblepm differently.

Node-based attacks and edge-based attacks differ in anneoen fundamental way. When
the adversary may sieze control of any setzofinit-capacity edges, it is clear that it should
always take over edges on the minimum cut of the network. Hewd the adversary may sieze
any s nodes, it is not so obvious: it may face a choice between a dodetly on the min-cut,
but with few output edges, and a node away from the min-cutwiiln many output edges. For

example, in the Cockroach network, node 4 has only one owgge, but it is on the min-cut



Fig. 1. The Cockroach Network. All edges have capacity 1. @dyeacity is 2, but no linear code can achieve a rate higher
than 4/3. A proof of the linear capacity is given in Appenfik B capacity-achieving linear code supplemented by noaline

comparisons is given in Sec] V, and a capacity-achievingtBioé Code is given in SeC._VII.

(which is between nodes, 1,2, 3,4, 5 and D); node 1 has two output edges, so apparently more
power, but it is one step removed from the min-cut, and tloeeeits power may be diminished.
This uncertainty about where a network is most vulnerab&mseto make the problem hard.
Indeed, we find that many standard network coding technifmieso achieve capacity, so we

resort to nonlinear codes, and in particular Polytope Cotiebe described.

A. Related Work

Byzantine attacks on network coding were first studied[in {@hich looked at detecting
adversaries in a random linear coding environment. T beit-capacity edge adversary problem
was solved in[[4], [[5]. In[[V], the same problem is studiedpyiding distributed and low
complexity coding algorithms to achieve the same asymgalyi optimal rates. In addition,
[7] looks at two adversary models slightly different frometbmniscient one considered in [4],
[5] and in this paper. They show that higher rates can be aetiiander these alternate models.
In [8], @ more general view of the adversary problem is giwehereby the network itself is
abstracted into an arbitrary linear transformation.

Network coding under Byzantine attacks that are more géleaa the simple edge-based
model was first studied in [9], a conference version of thiskwand [10]. The latter looked at the

problem of edge-based attacks when the edges may have limegaaities. This problem was



found to have similar complications to the node-based prablin particular, both [9] and [10]
found that linear coding is suboptimal, and that simple m&ar operations used to augment
a linear code can improve throughput. Indeed, [10] used waorktalmost identical to what
we call the Cockroach network to demonstrate that nonlilgarations are necessary for the
unequal edge problem. We show in Se¢. X that the unequaktitaaige problem is subsumed
by the node problem.

These works seek to correct for the adversarial errors atélgnation. An alternative strategy
known as the watchdog, studied for wireless network codmdlil], is for nodes to police
downstream nodes by overhearing their messages to deteatificatons. In [12], a similar
approach is taken, and they found that nonlinear operasongar to ours can be helpful, in

which comparisons are made to detect errors.

B. Main Results

Many achievability results in network coding have been prbusing linear codes over a finite
field. In this paper we demonstrate that linear codes ardficimt for this problem. Moreover,
we develop a class of codes called Polytope Codes, originmaiioduced in [[9] under the less
descriptive term “bounded-linear codes”. Polytope codesuged to prove that a cut-set bound,
stated and proved in Séc.llll, is tight for a certain classeaifvorks. Polytope Codes differ from

linear codes in three ways:

1) ComparisonsA significant tool we use to defeat the adversary is that imalenodes in the
network perform comparisons: they check whether theirivededata could have occurred
if all nodes had been honest. If not, then there must be anagpsttraitor that altered one of
the received values, in which case this traitor can be IpedliThe result of the comparison,
a bit signifying whether or not it succeeded, can be trartechilownstream through the
network. The destination receives these comparison bdsuaes them to determine who
may be the traitors, and how to decode. These comparisoatipes are nonlinear, and, as
we will demonstrate in Se€.]V, incorporating them into a dtad finite-field linear code
can increase achieved rate. However, even standard limekes csupplemented by these
nonlinear comparison operations appears to be insuffitdeathieve capacity in general.

Polytope Codes also incorporate comparisons, but of a nupkisticated variety.



2) Constant Composition Codebookdnlike usual linear network codes, Polytope Codes are
essentially constant composition codes. In particulath d2olytope Code is governed by a
joint probability distribution on a set of random variahlese for each edge in the network.
The codebook is composed of the set of all sequences with fgoe exactly equal to
this distribution. The advantage of this method of code tracton is that an internal
node knows exactly what joint type to expect of its receiveqguences, because it knows
the original distribution. In a Polytope Code, comparispesformed inside the network
consist of checking whether the observed joint type matthesxpected distribution. If
it does not, then the adversary must have influenced one aktteeved sequences, so it
can be localized.

3) Distributions over PolytopesThe final difference between linear codes and Polytope
Codes—and the one for which the latter are hamed—comes fiemdture of the proba-
bility distributions that, as described above, form theiba$ the code. They are uniform
distributions over the set of integer lattice points on pabes in real vector fields. This
choice for distribution provides two useful propertiestsEithe entropy vector for these
distributions can be easily calculated merely from prapsrof the linear space in which
the polytope sits. For this reason, they share charadtarisith finite-field linear codes. In
fact, a linear code can almost always be converted into aéfmyCode achieving the same
rate. (There would be no reason to do this in practice, simtgdpe Codes require much
longer blocklengths.) The second useful property has toittolvaw the comparisons inside
the network are used. These distributions are such thabiigimcomparisons succeed, the
adversary is forced to act as an honest node and transméctanformation. We consider
this to be the fundamental property of Polytope Codes. ltlvdlelaborated in examples in
Sec[V] and Sed¢. VI, and then stated in its most general fariiteeoreni3 in Se€._VIII.

We state in Sed. IV our result that the cut-set bound can b\ using Polytope Codes

for a class of planar networks. Planarity requires that tiaplg can be embedded in a plane such
that intersections between edges occur only at nodes. Thiges that enough opportunities for
comparisons are available, allowing the code to more wd#atehe adversary. The theorem is
proved in Sed_IX, but first we develop the theory of Polytopal€s through several examples
in Sec.[VEVII. In addition, we show in SeL. X that the cut-seubd is not always tight, by



giving an example with a tighter bound. We conclude in Sed¥d

[I. PROBLEM FORMULATION

Let (V, E') be an directed acyclic graph. We assume all edges are yrdtity, and there may
be more than one edge connecting the same pair of nodes. @eeimd” is denotedS, the
source, and one is denotdd the destination. We wish to determine the maximum achievab
communication rate fron$ to D when any set o nodes inV \ {S, D} aretraitors; i.e. they
are controlled by the adversary. Given a r&end a block-lengtm, the messagél is chosen
at random from the setl, ..., 2"%}. Each edge: holds a valueX, € {1,...,2"}.

A code is be made up of three components:

1) an encoding function at the source, which takes the mesaagnput and produces values

to place on all output edges,

2) a coding function at each internal node V'\ {S, D}, which takes the values on all input

edges toi, and produces values to place on all output edges fom

3) and a decoding function at the destination, which takesvilues on all input edges and

produces an estimafé’ of the message.

Supposel’ C V \ {S, D} is the set of traitors, withT'| = s. They may subvert the coding
functions at nodes € T by placing arbitrary values on all the output edges from ehesdes.
Let Zr be the set of values on these edges. For a particular codefyspg the messagél’
as well asZ; determines exactly the values on all edges in the networladuhition to the
destination’s estimatél’. We say that a rate? is achievableif there exists a code operating
at that rate with some block-length such that for all messages, all sets of traitéysand all
values of Zr, W = W. That is, the destination always decodes correctly no mattat the

adversary does. Let thmapacityC' be the supremum over all achievable rates.

. CuT-SET UPPERBOUND

It is shown in [4], [5] that, if an adversary contratsunit-capacity edges, the network coding
capacity reduces 3. This is a special case of a more general principle: an adieontrolled
part of the network does twice as much damage in rate as itdnbdihat part of the network
were merely removed. This doubling effect is for the samesaeathat, in a classical error

correction code, the Hamming distance between codewords beuat least twice the number



of errors to be corrected; this is the Singleton bound [13%. M#w give a cut-set upper bound
for node-based adversaries in network coding that makssettplicit.

A cutin a network is a subset of nodelsC V' containing the source but not the destination.
The cut-set upper bound on network coding without advezsasi the sum of the capacities of all
forward-facing edges; that is, edgesj) withi € A andj ¢ A. All backward edges are ignored.
In the adversarial problem, backward edges are more of aeconchis is because the bound
relies on messages that are sent along edges not contrglkbe ladversary being unaffected by
those that are, which is not guaranteed in the presence afkavbeds edge. We give an example
of this in AppendiX_A. To avoid the complication, we stateéer simplified cut-set bound that
applies only to cuts without backward edges. This bound bellenough to find the capacity
of the class of planar networks to be specified in $e¢. 1V, butttie general problem it can
be tightened. We state and prove a tighter version of thesetubound in AppendikJA. Unlike
the problem without adversaries, we see that there is nonezalonotion of a cut-set bound.
Some even more elaborate bounds are found_ ih [L0O], [14].€'pbapers study the unequal-edge
problm, but the bounds can be readily applied to the nodel@mb

It was originally conjectured in_[10] that even the best set-bound is not tight in general.
In Sec.[X, we demonstrate that there can be an active upperdbau capacity fundamentally
unlike a cut-set bound. The example used to demonstratettiiagh it is a node adversary
problem, can be easily modified to confirm the conjecturesdtat [10].

Theorem 1:Consider a cutd C V with S € A and D ¢ A and with no backward edges;
that is, there is no edgg, j) € £ with i ¢ A andj € A. If there ares traitor nodes, then for
any setU C V' \ {S, D} with |U| = 2s, the following upper bound holds on the capacity of the
network:

C<|{(i,j)e E:ic A\U,j & A}|. (1)

Proof: Divide U into two setsT} andT;, with |T1| = |T3| = s. Let E; and E; be the sets of
edges out of nodes i, and T, respectively that cross the cut; that is, edgeg) with : € A
andj ¢ A. Let E be the set of all edges crossing the cut not out of nodds ior 7,. Observe
that the upper bound irtl(1) is precisely the total capacitydib edges inE. Note also that,
since there are no backwards edges for theAuthe values on edges il are not influenced

by the values on edges ifi; or E,. This setup is diagrammed in Fig. 2.



Fig. 2. Diagram of the proof of Theorelnh 1. The values on thkslicrossing the cut are such that it is impossible to detexmin

whetherT; or T; is the true set of traitors, and which af; or w- is the true message.

Supposel(1) does not hold. Therefore there exists a codeblitk-lengthn achieving a rate
R higher than the right hand side a&fl (1). For any set of edgesS E, for this code, we can
define a function

Xp:2" ]2 2)

eeF

such that for a message assuming all nodes act honestly, the values on edgésisngiven by
Xpr(w). SinceR is greater than the total capacity for all edgestinthere exists two messages
wy andw, such thatX z(wq) = Xz (ws).

We demonstrate that it is possible for the adversary to enfhhe message; with ws.
Supposew; were the true message, and the traitors/@reThe traitors replace the values sent
along edges int; with Xz, (w,). If there are edges out of nodes’lh that are not inE;—i.e.
they do not cross the cut—the traitors do not alter the vatuethese edges. Thus, the values
sent along edges ifv are given byX;(w;). Now supposev, were the true message, and the
traitors arel,. They replace the messages going along edgés iwith Xz, (w,), again leaving
all other edges alone. Note that in both these cases, thesvaluF,; are Xg, (w,), the values
on £, are X, (w, ), and the values ot are X z(w,). This comprises all edges crossing the cut,
so the destination receives the same values under eachtleassfpre it cannot distinguista,
from ws. [ |

We illustrate the use of Theorem 1 on the Cockroach netwaksteown in Fig[Il, with a



single adversary node. To apply the bound, we choose a @ard a set/ with |U| = 2s = 2.
Take A = {S5,1,2,3,4,5}, andU = {1,4}. Four edges cross the cut, but the only ones not
out of nodesUU are (3, D) and (5, D), so we may apply Theorem 1 to give an upper bound on
capacity of 2. Alternatively, we could také = {S,1,2,3} andU = {1,2}, to give again an
upper bound of 2. Note that there are 6 edges crossing thimdemt, even though the cut-set
bound is the same. It is not hard to see that 2 is the smallgsrumund given by Theoren 1
for the capacity of the Cockroach network. In fact, rate 2 dhievable, as will be shown in
Sec[V using a linear code supplemented by comparison apesatind again in Sec. VIl using

a Polytope Code.

IV. CAPACITY OF A CLASS OFPLANAR NETWORKS

Theorem 2:Let (V, E) be a network with the following properties:

1) Itis planar.

2) No node other than the source has mare than two unit-dgpadiput edges.

3) No node other than the source has more output edges thanedpges.

4) There is at most one traitor (i.e.= 1).

The cut-set bound given by Theorémn 1 is tight {of £).

Polytope Codes are used to prove achievability for thisrém®o The complete proof is given
in Sec.[IX, but first we develop the theory of Polytope Codesri®ans of several examples in
Sec.[VEVIl and general properties in Sec. VIII.

Perhaps the most interesting condition in the statemenhebiieni 2 is the planarity condition.
Recall that a graph is said to leenbeddedn a surface (generally a two dimensional manifold)
when it is drawn in this surface so that edges intersect onlyodes. A graph iplanar if it
can be embedded in the plane.

V. A LINEAR CODE WITH COMPARISONS FOR THECOCKROACH NETWORK

The Cockroach network satisfies the conditions of ThedreRdgdl shows a plane embedding
with both S and D on the exterior, and the second and third conditions ardyesséen to be
satisfied. Therefore, since the smallest cut-set bounchdye Theoreni Il for a single traitor
node is 2, Theorerl 2 claims that the capacity of the Cockroettvork is 2. In this section,

we present a capacity-achieving code for the Cockroacharkttihat is composed of a linear
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code over a finite-field supplemented by nonlinear compasis®his illustrates the usefulness
of comparisons in defeating Byzantine attacks on netwodingp Before doing so, we provide
an intuitive argument that linear codes are insufficient. Arentechnical proof that the linear
capacity is in fact 4/3 is given in Appendix B.

Is it possible to construct a linear code achieving rate 2ierCockroach network? We know
from the Singleton bound-type argument—the argument ab¢laet of the proof of Theorem 1—
that, in order to defeat a single traitor node, if we take augtrgthing controlled by two nodes,
the destination must be able to decode from whatever remauppose we take out nodes 2 and
3. These nodes certainly control the values(onD) and (3, D), so if we hope to achieve rate
2, the values oril, D) and (4, D) must be uncorruptable by nodes 2 and 3. EfigeD) is not a
problem, but considef4, D). With a linear code, the value on this edge is a linear continna
of the values or{1,4) and(2,4). In order to keep the value gr, D) uncorruptable by node 2,
the coefficient used to construct the value (@nD) from (2,4) must be zero. In other words,
node 4 must ignore the value @@, 4) when constructing the value it sends ph D). If this
is the case, we lose nothing by removi@4) from the network. However, without this edge,
we may apply Theoreinl 1 with = {S,1,2,3} andU = {1, 3} to conclude that the capacity is
no more than 1. Therefore no linear code can successfulligaehate 2.

This argument does not rigorously show that the linear dapa less than 2, because it
shows only that a linear code cannot achieve exactly rateitdt does not bound the achievable
rate with a linear code away from 2. However, it is meant to én&uitive explanation for the
limitations of linear codes for this problem, as comparethwhe successful nonlinear codes
that we will subsequently present. The complete proof thatlinear capacity is 4/3 is given in
Appendix[B.

We now introduce a nonlinear code to achieve the capacity. ¥ work in the finite field
of p elements. Let the messagebe a2k-length vector split into twdk-length vectorse andy.
We will use a block length large enough to place on@df values on each link. In particular,
this is enough to place on a link some linear combination ehdy, as well as one additional
bit. For large enouglt, this extra bit becomes insignificant, so we still achieve 2

The scheme is shown in Figuré 3. Nodleeceives the vectoy from both noded and?2. It
forwards one of these copies i@ (it does not matter which). In addition, it performs a noahn

comparison between the two received copiegyofesulting in a bit comprised of one of the
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Fig. 3. A nonlinear code for the Cockroach Network achieviing capacity of 2.

special symbols= or #. If the two received copies aj agree, it sends-, otherwise it sends
#. The link (4, D) can accommodate this, since it may have ug;ib messages placed on it.
Node5 does the same with its two copies of the vector .

The destination’s decoding strategy depends on the two aosgm bits sent from nodes

and>5, as follows:

« If node5 sends# but noded sends=, then the traitor must be one of nodeg, or 4. In any
case, the vectar — y received from nod@ is certainly trustworthy. Moreoves; + y can be
trusted, because even if nodas the traitor, its transmission must have matched whatever
was sent by nod8; if not, node5 would have transmitteet. Therefore the destination can
trust bothz + y andx — y, from which it can decode the message-= (z,y).

. If node 5 sends# but node4 sends=, then we are in the symmetric situation and can
reliably decodew from x andy.

« If both nodes! and5 send#, then the traitor must be node in which case the destination
can reliable decode from andx — y.

« If both messages are, then the destination cannot eliminate any node as a pedséitor.
However, we claim that at most one ofy, x + y, x — y can have been corrupted by the
traitor. If nodel is the traitor, it may choose whatever it wants fgrand the destination
would never know. However, node cannot impact the value af without inducing a#,

because its transmission to nodds verified against that from node Similarly, node
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3 controlsx — y but notx + y. Nodes4 and 5 control only y and = + y respectively.
Node2 controls nothing, because boghandz +y are checked against other transmissions.
Therefore, if the destination can find threeaxofy, z +y, x — y that all agree on the message
w, then this message must be the truth because only one of tinecdolld be corrupted,
andw can be decoded from the other two. Conversely, there mustdreup of three of
x,y,r+y, x+ 2y that agree, because at most one has been corrupted. Hendestination
can always decode.

Even though our general proof of Theorem 2 uses a Polytope,Guauch differs significantly
from this one, the manner in which the comparisons comespiatp is essentially the same. The
key insight is to consider the code from the perspective efttaitor. Suppose it is node 1, and
consider the choice of what value fgrto send along edgél, 4). If it sends a false value for
y, then the comparison at node 4 will fail, which will lead thestination to consider the upper
part of the network suspect, and thereby ignore all valugisenced by node 1. The only other
choice for node 1 is to cause the comparison at node 4 to silickeethis requires sending the
true value ofy, which means it has no hope to corrupt the decoding procéss.ig the general
principle that makes our codes work: force the to make a ehb&tween acting like an honest
node, or acting otherwise and thereby giving away its pasiti

We make one further note on this code, having to do with whysihecific approach used
here for the Cockroach network fails on the more general [pmbObserve that in order to
make an effective comparison, the values sent along edgégand(2,4) needed to be exactly
the same. If they had been independent vectors, no comparmad be useful. This highly
constrains the construction of the code, and even thougtcitegds for this network, it fails
for others, such as the Caterpillar network, to be introduoethe next section. The advantage
of the Polytope Code is that it deconstrains the types ofegathat must be available in order
to form a useful comparison; in fact, it becomes possibleaeehuseful comparisons between

nearly independent variables, which is not possible witlodecbuilt on a finite-field.

VI. AN EXAMPLE PoLYTOPE CODE: THE CATERPILLAR NETWORK

The Caterpillar Network is shown in Figuré 4. We considerighsly different version of the

node-based attack on this network: at most one node may lagétar,tbut only nodes 1-4. This
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Fig. 4. The Caterpillar Network. All edges have unit capacdne node may be a traitor, but only one of the black nodes:

nodes 1-4.

network is not in the class defined in the statement of The@gebut we introduce it in order
to motivate the Polytope Code.

Even though this problem differs from the one defined eaifiethat not every node in the
network may be a traitor, it is easy to see that we may stillyaghe cut-set bound of Theorem 1
as long as we take the s&tto be a subset of the allowable traitors. If we apply Theorém 1
with A = {S5,1,2,3,4} andU = {1,2}, we find that the capacity of this network is no more
than 2. As we will show, the capacity is 2.

Consider what is required to achievae rate 2. Of the fouresln the edge§l, 5), (2,6),
(3,7), and(4, 8), one may be corrupted by the adversary. This means that filnesealues must
form a (4,2) MDS code. That is, given any uncorrupted pair of these folwes it must be
possible to decode the message exactly. Since each edgagaasty 1, in order to achieve rate
2, the values on each pair of edges must be independent, dy me#ependent. For example,
we could take the message to be composed of two elemeptsom a finite field, and transmit
on these four edges, y, x + y, x — y. However, as we will show, this choice does not succeed.

Now consider the two edg€g9, D) and (10, D). As these are the only edges incident to the
destination, to achieve rate 2, both must hold values gtesdrto be uncorrupted by the traitor.
We may assume that nodes 5-8 forward whatever they receitheimincoming edges to all
their outgoing edges, so node 10 receives all four valuesfsem nodes 1-4. From these, it

can decode the entire message, so it is not a problem for iristiuct a trustworthy value to
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send along 10, D). However, node 9 has access to only three of the four valugdreen nodes
1-4, from which it is not clearly possible to construct a twethy value. The key problem,
then, is to design the values on eddes5), (2,6), (3,7) to be pairwise independent, but such
that if one value is corrupted, it is always possible to cartdta trustworthy value to transmit
on (9, D). This is impossible to do using a finite field code. For examplgpose node 9 is
given values forz, y, x +y, one of which may be corrupted by the traitor. If the lineanstoaint
among these three values does not hold—that is, if the redeislue forr + y does not match
the sum of the value far and the value fog—then any of the three values may be the incorrect
one. Therefore, from node 9’s perspective, any of nodes &r 3,could be the traitor. In order
to produce a trustworthy symbol, it must be able to correctyclude that one of these three
nodes is not the traitor. If, for example, it could determihat the traitor was node 1 or node 2
but not node 3, then the value sent algg7) could be forwarded t@9, D) with a guarantee

of correctness. A linear code over a finite field does not alloi, but a Polytope Code does.

A. Coding Strategy

We now begin to describe a capacity-achieving Polytope Godthe Caterpillar network. We
do so first by describing how the code is built out of a probhdistribution, and the properties
we need this probability distribution to satisfy. Subseglye we give an explicit construction
for a probability distribution derived from a polytope in @af vector field, and show that it has
the desired properties.

Let X, Y, Z, W be jointly distributed random variables, each defined okerfinite alphabet
X. Assume all probabilities on these random variables aienalt Let 7" (XY ZW) e X"
be the set of joint sequencés™y”2"w™) with joint type exactly equal to the distribution on
X,Y, Z, W. Forn such thatl'™ (XY ZW) is not empty, we know from the theory of types that

1
T"( XY ZW)| > mQ”H(XYZW). 3)

Our coding strategy will be to associate each elemert’gfX'Y Z1W') with a distinct message.
Given the message, we find the associated four sequeficgs, 2", w™, and transmit them on
the four edges out of nodes 1,2,3,4 respectively. Doing ridtglires placing a sequence 1%

on each edge. The rate of this code is
log |T™"(XY ZW)] - H(XYZW) B |X|*log(n + 1)

4
nlog |X| —  log|X]| nlog |X| @)
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Note that for sufficiently larges, we may operate at a rate arbitrarily close #§-2")

ey
Therefore, to achieve rate 2, we would like the following gedy to hold. .

Property 1: H(l%élw) = 2.

The adversary may alter the value of one of the sequencesosémtf nodes 1-4. By the
Singleton bound argument, it must be possible to recorstinecmessage from any two of these
four sequences. We therefore need the following property.

Property 2: Any two of X, Y, Z, W determine the other two.

For reasons that will become clear, we also need the foligyioperty. It is an example of
the fundamental property of Polytope Codes.

Property 3: Any random variables\, Y, Z satisfying the three conditions

(X,Y) ~ (X,Y) (5)
(X,2) ~(X,2) 6)
(Y, 2) ~ (Y, Z) 7
also satisfy
(X,Y,Z) ~ (X,Y,2). ®)

Suppose we are given random variables’, Z, W satisfying Propertids| [+-3. We now describe
what nodes 9 and 10 transmit to the destination.i”ef;", 2", @w™ be the four sequences that are
sent on the edges out of nodes 1-4; because of the traitorsitane of these may differ from
", y", 2", w". Let random variablest,Y, Z, W have joint distribution equal to the joint type
of (z", g™, 2", w™). This is a formal definition; these variables do not existg®in the network,
but defining them make it convenient to describe the behafitne code. Since node 9 recevies
", g™, 2", it knows exactly the joint distribution oK, Y, Z. In particular, it can check which
of (B)—(8) are satisfied for these variables.

Supposel[(8) holds. Then all three sequengeg™, z"* are trustworthy, because if a traitor is
among nodes 1-3, it must have transmitted the true valuesadutput sequence, or else the
empirical type would not match, due to Propelty 2. In thisecasode 9 forwards™ to the
destination, confident that it is correct. Meanwhile, nofecén also observ&, Y, Z, and so it
forwardsy™ to the destination.

Now supposel(8) does not hold. Then by Propelty 3, onélof[{b)mlst not hold. Suppose,
for example, that X,Y) « (X,Y). Because of our constant composition code construction,
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this can only occur if either node 1 or 2 is the traitor. Henuede 3 is honest, so Node 9 may
forward z" to the destination without error. Similarly, no matter whijgairwise distribution does
not match, node 9 can always forward the sequence not irvolvéhe mismatch. Meanwhile,
node 10 may forwardo™ to the destination, since in any case the traitor has beealized to
nodes 1-3. The destination always receives two of the foguesgces, both guaranteed correct;

therefore it may decode.

B. The Polytope Distribution

All that remains to prove that rate 2 can be achieved for ther@dlar network is to show that
there exists variableX, Y, Z, W such that Propertiés [I-3 hold. In fact, this is not quite ibss
In particular, Property]1l implies thaX,Y, Z, W are pairwise independent. If so, Propery 3
cannot hold, because we can takeY’, Z to be jointly independent wittk ~ X, Y ~ Y, and
Z ~ Z. This satisfies[{5)E{7) but nofl(8). We therefore replacep®riy[1 with the following
slight relaxation.

Property 4: H(l%éw) >2—e.

If for every ¢ > 0, there exists a set of random variables satisfying Prage@&4, then byl {4)
we achieve rate 2.

The most unusual aspect of the Polytope Code is Propérty 3tsrgkneralization, to be
stated as Theorefm 3 in Séc. VIIl. Therefore, before constgia distribution satisfying all
three properties, we illustrate in Taklle | a very simple ribstion on three binary variables
variables that satisfy just Propefty 3. This distributisnonly on X, Y, Z; for simplicity leave
out TV, as it is not involved in Properfy 3. We encourage the reanlaranually verify Propertly]3
for this distribution. Observe that, Y, Z as given in Tablé]| may be alternatively expressed as

being uniformly distributed on the following polytope:
{x,y,ze{O,l}:x+y+z:1}. (9)

This is a special case of the construction of the distrimgim the sequel.
We now construct a distribution satisfying Properfiesl 2edidrbitrarily smalle. Takek to be

a positive integer, and leX, Y, Z, W be uniform over the set

{(z,y,z,w) € {~k,....k}* ;2 +y+2=0and3z — y+ 2w = 0}. (20)
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TABLE |

A SIMPLE DISTRIBUTION SATISFYINGPROPERTYZ.

r oy z plryz)
000 0
00 1 1/3
01 0 1/3
0 1 1 0

1 0 0 1/3
1 0 1 0

1 1.0 0

1 1 1 0

Y

Fig. 5. An example polytope projected into tfe, y) plane.

Note that this is the set of integer lattice points in a pghgto
By the linear constraints i_(10), this distribution saésfPropert{|2. Now consider Propdrty 4.
The region of(X,Y") pairs with positive probability is shown in Figuré 5. NotethX and Y
are not independent, because the boundedne8saoid IV requires thatX andY satisfy certain
linear inequalities. Nevertheless, the area of the polygloown in Figureds grows a&(k?).
Hence
log HXYZW)  log O(k?)

= >2— 11
log |X| log(2k +1) — ‘ (11)

where the last inequality holds for sufficiently largeThus these variables satisfy Propérty 4.
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We now consider Properfy 3. Assumitg Y, Z satisfy [5)-(7), we may write

E[(X+Y +2)? =E[X*+Y?+ Z° +2XY +2XZ + 2V Z] (12)
=E[X?+Y?+ 2?4+ 2XY +2XZ +2Y Z] (13)
=E[(X+Y + 2)7 (14)
—0 (15)

where [18) holds from{5)H(7), and because each term in theisuolves at most two of the
three variables; and (IL5) holds because-Y + Z = 0 by construction. Henc& +Y + Z = 0,

SO we may write

(X,Y,2)=(X,Y,-X-Y) (16)
~(X,Y,-X - Y) (17)
= (X,Y,2) (18)

where [(1¥) holds by (5). This verifies Propéerty 3, and we may oonclude that the distribution
on X,Y, Z, W satisfies all desired properties, so the induced Polytopie @ahieves rate 2 for
the Caterpillar network.

The above argument took advantage of the linear constkaint” + Z = 0, but this constraint
was in no way special. Property 3 would hold as longXas’, Z are subject to any linear
constraint with nonzero coefficients for all three variable

Observe that wheh is large, any pair of the four variables are nearly indepahde that their
joint entropy is close to the sum of their individual entregi We have therefore constructed
something like a(4,2) MDS code. In fact, if we reinterpret the linear constraims(i0) as
constraints on elements, y, z,w from a finite field, the resulting finite subspace would be
exactly a(4,2) MDS code. This illustrates a general principle of Polytoped€s: any code
construction on a finite field can be immediately used to cansia Polytope Code, and many
of the properties of the original code will hold over. Theukisg code will be substantially
harder to implement, in that it involves much longer blodijths, and more complicated coding

functions, but additional properties, such as Propérty &y imold.
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VIlI. A PoLYTOPE CODE FOR THECOCKROACH NETWORK

We return now to the Cockroach network, and demonstrateacidgpachieving Polytope Code
for it. We do this not to find the capacity for the network, hesmwe have already done so with
the simpler code in SeC.]V, but rather to illustrate a Polgt@ode on a network satisfying the
conditions of Theorernl2, which are of a somewhat differemofldhan the Caterpillar network.

In Sec.[V, we illustrated how performing comparisons andgraitting comparison bits
through the network can help defeat traitors. In Sed. VI, lestrated how a code can be
built out a distribution on a polytope, and how a special propof that distribution comes into
play in the operation of the code. To build a Polytope Codetli@ Cockroach network, we
combine these two ideas: the primary data sent through tlveoriecomes from the distribution
on a polytope, but then comparisons are performed in theanktin order to localize the traitor.

The first step in constructing a Polytope Code is to descridéestibution over a polytope.
That is, we define a linear subspace in a real vector field, akel & uniform distribution over
the polytope defined by the set of vectors with entrieg+%, ..., k} for some integek. The
nature of this distribution depends on the characterigiicthe linear subspace. For our code
for the Cockroach network, we need one that is equivalent 6 2) MDS code. That is, the
linear subspace sits iR°, has dimension 2, and is defined by four constraints suchatiatwo
variables determine the others. One choice for the subspacexample, would be the set of
(a,b,c,d, e, f) satisfying

a+b+c=0 (19)
a—b+d=0 (20)
a+2b+e=0 (21)
2a+b+ f=0. (22)

Let the random variabled, B, C, D, E, F' have joint distribution uniformly distributed over the
polytope defined by (19)=(22) andb,c,d, e, f € {—k,...,k}. By a similar argument to that

in Sec.[V], for largek,
H(ABCDEF) _

log(2k + 1)
We choose a block length and associate each message with a joint sequeriéec"d"e” f™)

(23)

with joint type exactly equal to the distribution of the signables. For large. and k£, we may
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Fig. 6. A capacity-achieving Polytope Code for the Cockloaietwork.

place one sequenceé'—f™ on each unit capacity edge in the network and operate near2rat
These six sequences are generated at the source and thed tloaiugh the network as shown
in Fig.[6. For convenience, the figure omits thesuperscript, but we always mean them to be
sequences.

As in Sec[Vl, we defined, B, C, D, E, F to have joint distribution equal to the type of the
Six sequences an they actually appear in the network, whahdiffer from the sequences sent
by the source because of the adversary. In addition to faliwgrone sequence, nodes 4 and
5 perform more elaborate operations. Like in the code forGbekroach network described in
Sec.[V, they each perform a comparison and transmit either £ depending on whether the
comparison succeeds. In particular, they compare the typtwir received sequences with the
original distribution. For example, node 4 receives the sgquences” andc”, from which it
can construct3 andC. If the joint distribution of(B, C') matches that of B, C), it sends= to
the destination; if not, it sendg. This single bit costs asymptotically negligible rate, sbas
no effect on the achieved rate of the code for largand k. Node 5 performs a similar action,
comparing the distribution ofD, E) with that of (D, E), and transmitting a comparison bit to
the destination.

We now describe the decoding operation at the destinatioa fifst step is to compile a list of
possible traitors. We denote this listC {1,...,5}. The destination does this in the following

way. Since the code is entirely known, with no randomness déstination determines whether
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all its received data could be induced if each node were #n®tr That is, it considers each
possible message, each possible traitor, and each possibté values on the output edges of
that traitor. Any combination of these determines the \&ltexeived at the destination, which
may be compared to what that the destination has in factwedeif a node; is such that it
could have been the traitor and induced the set of valuesveztat the destination, for any
message and any action by nagéhen: is put ontoL. This process ensures that the true traitor,
even though it may not be known by the destination, is sunely.i Note that this procedure
could in principle be done for any code, not necessarily gtBpe Code.

Because we defing in this non-constructive manner, our arguments for codeectmess
may sometimes seem backwards. We will make assumptiong @hoand from there reason
about the resulting constraints on what the traitor coukehdone, even though this is opposite
to the causal relationship. We do this because it is mosteroant to partition possible traitor
actions based on thé that results. As long as our analysis considers every pesSibwe can
be assured that the code can handle any possible traitonacti

Once/ is determined, the next step in the decoding process is t& usedecide from which
of the four symbols available at the destination to decodleceSany pair of the six original
symbols contain all the information in the message, if astiéao of the four symbols, ¢, d, f
can be determined to be trustworthy by the destination, ithean decode. The destination
discards any symbol that was touched by every nod€,irand decodes from the rest. For
example, ifC = {2}, then the destination discardsi and decodes from, f. If £ = {2,4}, the
destination discards just—because it is the only symbol touched by both nodes 2 and 4—an
decodes fromu, d, f. If £ ={1,...,5}, then it discards no symbols and decodes from all four.

The prove the correctness of this code, we must show thatesigndtion never decodes from
a symbol that was altered by the traitor. This is easy to seé|if= 1, because in this case
the destination knows exactly which node is the traitor, arsimply discards all symbols that
may have been influenced by this node. Since no node touches thren two of the symbols
available at the destination, there are always at least én@ining from which to decode.

More complicated is whemnl| > 2. In this case, the decoding process, as described above,
sometimes requires the destination to decode from symbothed by the traitor. For example,
suppose node 2 were the traitor, afid= {1,2}. No symbols are touched by both nodes 1 and

2, so by the decoding rule the destination decodes usingoatl df its received symbols. In
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particular, the destination usesandd to decode, even though both are touched by node 2. To
prove correctness we must show that node 2 could not haventitied anything but the true
values ofc and d. What we use to prove this is the fact thatcontains node 1, meaning that
node 2 must have acted in a way such that it appears to theagsti that node 1 could be the
traitor. This induces constraints on the behavior of nod&he first is that the comparison that
occurs at node 5 betweehande must succeed. If it did not, then the destination would legrn
and conclude that node 1 could not be the traitor, in whicle dagiould not be inC. Hence the
distribution of (D, F) must match that of D, E). This constitutes a constraint on node 2 in its
transmission ofl. Moreover,(D, ') ~ (D, F'), because the destination may obsehand f, so

it could detect a difference between these two distribgtibrit existed. Because both symbols
are untouched by node 1 ande £, the distributions must match. Furthermore, because ereith

e nor f are touched by the traitor node @&, F) ~ (E, F). To summarize:

(D,E) ~ (D, E), (24)
(D,F) ~ (D, F), (25)
(E,F)~ (E,F). (26)

Using these three conditions, we apply Propéity 3 to corcthdt(D, E, F) ~ (D, E, F). We
may do this because, as we argued in $et. VI, Propérty 3 hotd®if any three variables in
a polytope subject to a single linear constraint with noozarefficients on each one. Since we
have constructed the 6 variables to be&a2) MDS code, this is true here. (In the space defined
by (19)-(22), the three variabld3, E, F' are subject td) + £ — F' = 0.) Sincee and f together
specify the entire message, in order for this three-wayildigion to match, the only choice for
d is the true value ofl. Now we have to show that can also not be corrupted by the traitor.
Since the only symbol seen by the destination that could behied by node 1 is, we must
have(C, D, F) ~ (C, D, F), or else 1 would not be if. Again since any two symbols specify
the entire message, and beatland f/ are uncorrupted by the traitor, the value tosent by node
2 must also be its true value. Therefore the destinationmailmake an error by usingandd
to decode.

The above analysis holds for ary containing{1,2}. That is, if node 2 is the traitor, and
1 € L, then node 2 cannot corruptor d (even if £ contains additional nodes). To prove

correctness of the code, it is enough to demonstrate a sifaité for every pair of nodes: we



23

must show that for every pair of nodés j), if 7 is the traitor andj € £, nodei is forced to

transmit the true value of any symbol that is not also toudmedode;. If this can be shown

for each pair, the destination always decodes correctlyibyadding only the symbols touched
by every node ing.

Moreover, it is enough to consider each unordered pair onbeoFor example, as we have
already performed the analysis fo= 2 and;j = 1, we do not need to perform the same analysis
for i =1 andj = 2. This is justified as follows. We have shown that when node thestraitor
and1 e £, symbolsc andd are uncorrupted. Therefofel, C', D, F) ~ (A, C, D, F). Hence if
le L and(A C,D,F)« (A C,D,F), node 2 cannot be the traitor, 8¢ £. Now, if node
1 is the traitor and® € £, then it must be the case thad, C, D, F) ~ (A, C, D, F). Since of
these four symbols only is touched by node 1, it cannot be corrupted. This same angume
can apply to any pair of nodes.

We now complete the proof of correctness of the proposediéimyCode for the Cockroach
network by considering all pairs of potential traitors ire thetwork:

(1,2): Proof above.

(1,3): Suppose node 1 is the traitor aBd= £. We must show that node 1 cannot corrupt
We have tha{ A, C', D) ~ (A, C, D), because these three symbols are not touched by
node 3, and are available at the destination. Sinaadd determine the message, this
single constraint is enough to conclude that node 1 cannotigioa. This illustrates
a more general principle: when considering the pair of nqdes, if the number of
symbols available at the destination untouched by bath; is at least as large as the
rate of the code, we may immediately conclude that no symtenbsbe corrupted. In
fact, this principle works even for finite-field linear codes

(1,4): Follows exactly ag1, 3).

(1,5): Follows exactly ag1, 3).

(2,3): Follows exactly ag1,2).

(2,4): Suppose node 4 is the traitor agds £. The only symbol touched by both nodes 1
and 4 isc, so the destination will decode fromd, f. But node 4 does not touch any
of these symbols, so it cannot corrupt them.

(2,5): Follows exactly ag2,4).

(3,4): Follows exactly ag1, 3).
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(3,5): Follows exactly ag1, 3).
(4,5): Follows exactly ag1, 3).

VIIl. THE PoLYTOPE CODE

We now describe the general structure of Polytope Codestateltheir important properties.

Given a matrixF' € Z"*™, consider the polytope
?k:{XGZm:Fx:O,|xi|Sl{:forizl,...,m}. (27)

We may also describe this polytope in terms of a maiffixvhose columns form a basis for the
null-space ofF'. Let X be anm-dimensional random vector uniformly distributed odgr. Take
n to be a multiple of the least common denominator of the diistion of X and let7™(X) be
the set of sequences® with joint type exactly equal to this distribution. In a Ptdpe Code,
each message is associated with an elemeft"¢K). By the theory of types, the number of
elements in this set is at lea®t!/(X)—) for anye > 0 and sufficiently large:. Given a message
and the corresponding sequencg each edge in the network holds a sequengdor some
i =1,...,m. As we have seen in the example Polytope Codes in[Sec. V[ ahdhé joint
entropies for large: can be calculated just from the properties of the linear gads defined
by F'. The following proposition states this property in general

Proposition 1: For anyS C {1,...,m}

lim A (Xs)
k—o0 log

= rank(Kg) (28)

where K5 is the matrix made up of the rows @& corresponding to the elements 8f
Proof: For any S C {1,...,m}, let P,(Xs) be the projection ofP, onto the subspace
made up of dimension§. The number of elements iff;, is O(k™™Ks)), That is, there exist

constants:; andc, such that for sufficiently largé
ey kPMES) <P (X )| < cphk™KES), (29)

For S ={1,...,m}, becaus&X is defined to be uniform of?;, (29) gives
HX) _ . log[®]

1}1_{20 ek A Tog = rank(K). (30)
Moreover, by the uniform bound
H(X
(Xs) < rank(Ky). (31)

k—o0 log k
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ForanyS C {1,...,m},letT C {1,...,m} be a minimal set of elements such that rgik ) =
rank(K); i.e. such thatXs, completely specifyX under the constrainf’X = 0. Note that
rank(Kr) = rank(K') — rank(Ks). Hence

H(X5) H(Xsr) H(Xr|Xs)

el log k& - kh—{go logk  logk (32)
. H(X) H(Xr)
> _
- kh—{go log k log k (33)
> rank(K) — rank K1) (34)
= rank(K). (35)
Combining [(31) with [(36) completes the proof u

Recall that in a linear code operating over the finite fiEldwe may express the elements
on the edges in a netwotk € F™ as a linear combination of the message- Kw, where K
is a linear transformation over the finite field, andis the message vector. Taking a uniform

distribution onw imposes a distribution oiX satisfying
H(Xg) =rank Kg) log |F|. (36)

This differs from [28) only by a constant factor, and alsot t{fZ8) holds only in the limit
of large k. Hence, Polytope Codes achieve a similar set of entropyl@sofis standard linear
codes. They may not be identical, because interpreting @ixnAly as having integer values
as opposed to values from a finite field may cause its rank togehaHowever, the rank when
interpreted as having integer values can never be less tham wmterpreted as having finite
field values, because any linear equality on the integerk hwild on a finite field, but not
necessarily vice versa. The matris could represent, for example, the source-to-destination
linear transformation in a code, so its rank is exactly thieiea@d rate. Therefore, a Polytope
Code always achieves at least as high a rate as the equiliakartcode. Often, when designing
linear codes, the field size must be made sufficiently largeree¢he code works; here, sending
k to infinity serves much the same purpose, albiet only asytcptty.

In Sec.[V] and_V1l, we saw that Property 3 played an importaié in the functionality of
the Polytope Codes. The following theorem states the monergé version of this property. It

compromises the major property that Polytope Codes possektinear codes do not.
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Theorem 3 (Fundamental Property of Polytope Codé®t X € R™ be a random vector
satisfying FX = 0. Suppose a second random veclr € R™ satisfies the followingL
constraints:

AX ~AXfori=1,....L (37)

where A; € R“*™, The two vectors are equal in distribution if the followingld:
1) There exists a positive definité € R“** and matrices;;, € R“** such that

L
F'CF =) A%A,. (38)

=1

2) There exist$* € {1,..., L} such that{j
l*

Proof: The following proof follows almost exactly the same argumas the proof of
Property 8 in Sed._VI. We may write

} has full column rank.

E[(FX)"C(FX)] = Zm: E[(AX)"S(AX)] (39)
= Zm: E[(AX)"%(AX)] (40)
=E[(FX)"C(FX)] (41)
=0 (42)

where [39) and (41) follow froni_(38);_(40) follows frorh (38nd because each term in the sum
involves A;X for somel; and [42) follows becausé'X = (. BecauseC is positive definite,
@2) impliesFX = 0.
By the second property in the statement of the theorem, thessG; € R™** and G, €
R™*™+ such that
G F + Gy A = 1. (43)

HenceGyA,- X = X, so we may write
X = G AprX (44)
~ GoApX (45)

~X. (46)
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u
As an example of an application of Theorém 3, we use it to pemaen Property/I3 in Sec. VI.
Recall that variableX,Y, Z € {—k, ... k} satisfyingX + Y + Z = 0, and the three pairwise
distributions of X, Y, Z match as stated ifJ(5J2(7). In terms of the notation of Thedg we

havem = 3, L = 3, and

F:[l 1 1], (47)
100

Alz ) (48)
010
100

A2: 3 (49)
00 1
010

Ay = . (50)
00 1

To satisfy the second condition of Theoréin 3, we mayiset 1, since [A } has rank 3. In
1
fact, we could just as well have sétto 2 or 3. To verify the first condition, we need to check
that there exist}; for [ = 1,2, 3 and a positive definité€’ (in this case, a positive scalar, because

F has only one row) satisfying (88). If we let

5, = 01,11 0112 (51)
0121 01,22
then, for instance,
01,11 01,12 0
AleAl = | o121 0122 0 |- (52)
0 0 0

The right hand side of (38) expands to

3 01,11 + 02,11 01,12 0912
T _
E AN A = 01,21 01,22 + 0311 03,12 . (53)
=1
02,21 03,21 02,22 + 0322

Therefore, for suitable choices ¢E;}?_,, we can produce any matrix for the right hand side of
(38). We may simply sef’ = 1 and calculate the resulting matrix for the left hand sidentket
{¥,}3_, appropriately. This allows us to apply Theorem 3 to conchirde(X, Y, Z) ~ (X, Y, Z).
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Fig. 7. The constraints on the random vec¥rin Corollaries2 (left) an13 (right). Rectangles represembnstraint on the

marginal distribution of all enclosed variables; linesresgnt pairwise constraints on the two connected variables

In our proof of Theorem|2, we will not use Theorém 3 in its moshegral form. Instead, we
state three corollaries that will be more convenient. Th& i a generalization of the above
argument for more than three variables.

Corollary 1: Let X satisfy FX = 0 for someF e Z'*™ with all nonzero values. X satisfies
(Xi, X;) ~ (X;, X;) foralli,5=1,...,m (54)
(X, Xon) ~ (X, -+, Xin) (55)

thenX ~ X.

Proof: We omit the explicit construction of thé; matrices corresponding to the conditions
(B4), (55). The second condition for Theoréin 3 is satisfiedd8), since the linear constraint
FX = 0 determinesX; given X, ---X,,. To verify the first condition, note that from the
conditions in [(E#), we may construct an arbitrary matrix de tight hand side of[(38) for
suitable{>;} = ,. Therefore we may simply seét = 1. [ |

Corollary[1 considers the case with variables andn — 1 degrees of freedom; i.e. a single
linear constraint. The following corollary considers aeagth m variables andn — 2 degrees
of freedom.

Corollary 2: Let F' € Z**™ be such that angx 2 submatrix off’ is non-singular. LeX satisfy
FX = 0. The non-singular condition oA’ implies that anym — 2 variables specify the other

two. Assume thatn > 4, and for convenience I = (X5, ..., X,,) andZ = (X5,..., X,,)). If
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X satisfies

(X1, X0, Z) ~ (X1, X5, Z), (56)
(X3, X4, Z) ~ (X3, X4, Z), (57)
(X1, X3) ~ (X1, X3), (58)
(Xa, Xy) ~ (Xa, Xy), (59)
(X1, Xy) ~ (X1, Xy) (60)

thenX ~ X. Fig.[7 diagrams the constraints &f

Proof: We prove Corollary 2 with two applications of Corolldry 1r$t consider the group
of variables(X; X, X,Z). Thesem — 1 variables are subject to a single linear constraint, as in
Corollary[1. From[(56),[(59), an@_(60) we have all pairwisergirzal constraints, satisfying (54).
Furthermore,[(86) satisfies_(55). We may therefore applylGowy [1 to conclude

(X17X27X472) ~ (X17X27X47Z)‘ (61)
A similar application of Corollary1l using (57), (58), aridjj6allows us to conclude
<X17X37X47Z> ~ <X17X37X4uz)' (62)

Observe that{81) an@(62) share thevariables(X;, X4, Z), which together determin&, and
X, in exactly the same way thak,, X4, Z) determineX, and X;. Therefore we may combine
1) and [6R) to concludX ~ X. m

All five constraints [(56)-£(60) are not always necessary, @wadmay sometimes apply The-
orem[3 without[(6D). However, this depends on an interestuhdjtional property of the linear
constraint matrixF', as stated in the third and final corollary to Theolgm 3.

Corollary 3: Let F' € Z*>*™ be such that ang x 2 submatrix of ' is non-singular, and let
X satisfy FX = 0. In addition, assume

| Kx,x02] [ Kxsxu2] | Kx,x52] |Kx,xiz| <0 (63)

where againk is a basis for the null space df, and Kx, for S C {1,...,m} is the matrix
made up of the rows ok corresponding to the variabléX;);cs. If X satisfies[(56)-£(39) (Fid] 7
diagrams these constraints), thEn~ X.
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Proof: Either [56) or [(5F) satisfies the second condition in ThedBnio verify the first
condition, first letG = >, AT¥,4,. In the four constraints (56)=(59), each pair of variables
appears together except foX;, X4) and (X,, X3). Therefore, for suitable choices af;, we
can construct anys satisfyingG, 4 = Ga3 = Gs2 = G417 = 0. We must show that such @
exists satisfying

FI'CF=aG (64)

for some positive definite'.

We build G row-by-row. By [64), each row of is a linear combination of rows of’; i.e.
it forms the coefficients of a linear equality constraint ospd on the random vect®. Since
G1.4, the first row of G represents a linear constraint on the variabtesX,, X3, Z. Since any
m — 2 variables specify the other two, there is exactly one lireguality constraint on these

m — 1 variables, up to a constant. This constraint can be writgen a

—0. (65)

since the vectoX, X», X3, Z forms a linear combination of the columns Bf, x, x, z. Hence,

the first row of G is a constant multiple of the coefficients [n 165). In partéu
Gl,l == O“KXzX3Z‘7 (66)
G1,2 = _a|KX1X3Z| (67)

for some constantv. SinceG, ;3 = 0, the second row ofy represents the linear constraint on

X1, Xy, X4, Z. Using similar reasoning as above gives
Goa = Bl Kx,x,zl, (68)
Goo = —B|Kx, x,z] (69)
for some constant. Moreover, by [(64)G is symmetric, a7 > = Go1, and by [(6¥) and (68)

| K x,x52]
= ———""""q. 70
& | K x, x4z (70)
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Positive definiteness af’ is equivalent to positive definiteness of the upper et 2 block of

G, so the conditions we need are

0 < Gr1 = alKx,x,zl, (71)
0 < Gi11Ga2 — G12Ga (72)
2 [\K)QXSZ\ | Kxxaz| [ Kxxqz| Ilex;,zlz] . (73)
| K x, x,2]
We may chooser to trivially satisfy [71), and[(Z3) is equivalent to
| K x, x,7] |KX2X4Z|<|KX2X3Z| |Kxyxuz] — [Kx,x,z] |KX1X3Z|) >0 (74)
which may also be written a§ (63). [

The necessity of satisfying (63) in order to apply TheofénuBBstantially complicates code
design. When building a linear code, one need only worry alfoel rank of certain matrices;
i.e. certain determinants need be nonzero. Here, we seththaigns of these determinants may

be constrained as well.

IX. PROOF OFTHEOREM[Z

To prove Theoreni]2, we need to specify a Polytope Code for emttvork satisfying
conditions 1-3 in the statement of the theorem. This inwkeecifying the linear relationships
between various symbols in the network, the comparisortsatigadone among them at internal
nodes, and then how the destination uses the comparisormiafion it receives to decode.
We then proceed to prove that the destination always deccalesctly. The key observation
in the proof is that the important comparisons that go ondmghe network are those that
involve a variable that does not reach the destination. ®hisecause those symbols that do
reach the destination can be examined there, so further aasops inside the network do not
add anything. Therefore we will carefully route these nestohation symbols to maximize the
utility of their comparisons. In particular, we design tegsths so that for every node having
one direct edge to the destination and one other output ¢dgegutput edge not going to the
destination holds a non-destination variable. The adgentd this is that any variable, before
exiting the network, is guaranteed to cross a non-destinatariable at a node where the two
variables may be compared. The existence of non-destmptths with this property depends

on the planarity of the network. This is described in much endetail in the sequel.
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Notation: For an edge: € E, with e = (i, 7), wherei, j € V, let heade) = i and taile) = j.

For a nodei € V, let (i) be the set of edges with tail(e) = i, and let€q,(i) be the set of
edgese with heade) = i. Let N, () be the set of input neighbors @gfthat is, the set of hegel)

for eache € &in(7). Similarly, let Noy(i) be the set of output neighbors af For integersa, b,

let V,, be the set of nodes witta inputs andb outputs. We will sometimes refer to such nodes
asa-to-b. Forl € {1,2}, letl =2 —I. A pathis defined as an ordered list of edgss. . ., ¢,
satisfying taile;) = heade;;;) for i =1,...,k — 1. The head and tail of a path are defined as
heade;) and taile;) respectively. A nodé is said toreacha nodej if there exists a path with
head: and tail j. By convention, a node can reach itself.

Consider an arbitrary network satisfying the conditionsTofeorem[2. By condition (3),
no node has more output edges than input edges. Therefommitheut is that between the
destination and the rest of the network. LMdtbe the value of this cut; i.e., the number of edges
connected to the destination. We now state a lemma givirtgnoses of the cut-set upper bound
on capacity in terms of quantities that make the bound easibandle than Theoref 1 itself.
We will subsequently show that the minimum upper bound giklgnLemmall is achievable
using a Polytope Code; therefore, the cut-set bound givesdpacity.

Lemma 1:Fori,j € V, let d;; be the sum of (k)| — |Eou(k)| for all nodesk reachable
from either: or 7, not includingi or j. That is, if k is a-to-b, it contributesa — b to the sum.
Recall that this difference is always positive. Letbe the total number of output edges from
nodei, and lete; be the number of output edges from nadiat go directly to the destination.

For any distinct pair of nodes, i»,
C<M-—e, —e,. (75)
Moreover, if there is no path betweeénandis,,
C<M+d i —ciy — Ciy. (76)

Proof: Applying Theorenil withA = V' \ {D}, T = {i1,i»} immediately gives[(75). To
prove [76), we apply Theorem 1 with = {iy,i»}, and

A ={k €V :kis not reachable from, or iy} U {iy,is}. (77)

Observe that there are no backwards edges for thelcbecause any node iA© is reachable

from eitheri; or iy, so for any edgé€y, k) with j € A, k is also reachable by from or i, so
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k is also not inA. Therefore we may apply Theordm 1. Since all output neighlodi; andi,

are not inA, each output edge af andi, crosses the cut. Hencel (1) becomes
C <|{e € E : heade) € A, tail(e) ¢ A} —c1 — co. (78)

Since no node in the network has more output edges than imgase the difference between
the first term in [(7B)—the number of edges crossing the cug—ahis exactly the sum of
|€in(k)| — |Eou(k)| for all & € A°. Hence

[{e € E : heade) € A, tail(e) ¢ A} — M = d;, 4,. (79)

Combining [(78) with [(7P) gived (76). [ |

Next, we show that we may transform any network satisfyirgy ¢bnditions of Theorer] 2
into an equivalent one that is planar, and made up of just2+todes and 2-to-1 nodes. We will
go on to show that the upper bound provided by Leriina 1 is aghiefor any such network, so
it will be enough to prove that a transformation exists thasprves planarity, does not reduce
capacity, and does not change the bound given by Lemma 1.

We first replace any:-to-b node: with a cascade of — b 2-to-1 nodes followed by &-to-b
node. This transformation is illustrated in Fig. 8. Dendte #-to-b node in the transformation
7*. Since no node in the original network has more than two dutgdges, the resulting network
contains only 1-to-1 nodes, 2-t0-2 nodes, and 2-to-1 nodeswill shortly argue that the 1-
to-1 nodes may be removed as well. Certainly these transftwns maintain the planarity of
the network. Moreover, any rate achievable on the transgddrmetwork is also achievable on
the original network. This is because if nodes transformed via this operation into several
nodes, any coding operation performed by these nodes ctaintgrbe performed by nodé
Additionally, the traitor taking control of nodein the original network does exactly as much
damage as the traitor taking control ©fin the transformed network, since it controls all edges
sent to other nodes. Now consider the minimum upper boundngby Lemmdll after this
transformation. The only nodes with positive values will bei* nodes, ant:;- = ¢,. Hence
(75) cannot change. I0_(I76), if we takeand;, then the bound is the same in the transformed
network. Taking one of the 2-to-1 nodes instead of aode cannot result in a lower bound,
because they have no more output edges, so no highaiues, and no fewer reachable nodes

with fewer outputs than inputs, so no smalievalues. Therefore, the minimal bound given by
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/ - /7@<
Fig. 8. An illustration of the transformation from a 4-to-2de to an equivalent set of 2-to-1 and 2-to-2 nodes.

(78) for the transformed network is the same as that of thgirai network. Moreover, in the
transformed networld;, ;, is equal simply to the number of 2-to-1 nodes reachable fipor
15 not includingiy, i».

We may additionally transform the network to remove 1-toeties, simply be replacing the
node and the two edges connected to it by a single edge. Tihar ttan always take over the
preceding or subsequent node and have at least as much gdwesnly exception is when the
1-to-1 node is connected only to the source and destinditiothis case, instead of removing
the node, we may add a additional edge to it from the sourceinmiit into a 2-to-1 node. Such
a transformation does not change the capacity, nor the fiiarms the Lemma Il bounds.

We also assume without loss of generality that all nodes éennstwork are reachable from
the source. Certainly edges out of these nodes cannot aayrinformation about the message,
so we may simply discard this portion of the network, if itssi without changing the capacity.

We will show that the smallest bound given by Lemima 1 is a@béy using a Polytope Code.
If we take i, andi, to be two nodes with at least one direct link to the destimat{@3) gives
that the capacity is no more tha — 2. Moreover, since:; < ¢; < 2 for any nodes, neither
(78) nor [76) can produce a bound less thdn— 4. Therefore the minimum bound given by
Lemmall can take on only three possible values=- 4, M — 3, M — 2. It is not hard to see that
M — 4 is trivial achievable; indeed, even with a linear code. Efiame the only interesting cases
are when the cut-set bound Ad — 3 or M — 2. We begin with the latter, because the proof is
more involved, and contains all the necessary parts to ptezvd/ — 3 case. Thel — 3 proof
is subsequently given in Sectién IX-E.

Assume that the right hand sides bfl(75) and (76) are nevelteantiaan M — 2. We describe

the construction of the Polytope Code to achieve rate- 2 in several steps. The correctness
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of the code will be proved in Lemmads [2-5, which are statednduthe description of the
construction process. These Lemmas are then proved ino8sidiX-AHIX-DL
1) Edge LabelingWe first label all the edges in the network except thosé;ifD). These

labels are denoted by the following functions
qb B \ ain (D) — V271 (80)
v E\ En(D) — {0,1}. (81)

For a 2-to-1 node, let A(v) be the set of edges with ¢(e) = v. The setA(v) represents the
edges carrying symbols that interact with the non-destinagymbol that terminates at node
The set of edges witkb(e) = v and(e) = 1 represent the path taken by the non-destination
symbol that terminates at node The following Lemma states the existence of labglg with
the necessary properties.
Lemma 2:There exist functiong and with the following properties:
A The set of edges with ¢(e) = v and(e) = 1 form a path.
B If ¢(e) = v, then either taile) = v or there is an edge’ with heade’) = tail(e) and
o(e) =v.
C For every 2-to-2 nodeé with output edges;,es, eithery(e;) = 1, ¥(ey) = 1, or
¢(e1) # olea).
Note that if property (B) holdsA(v) is a union of paths ending at From property (A), the
edges on one of these paths satigfy) = 1.
2) Internal Node OperationAssume that) and are defined to satisfy properties (A)—(C) in
Lemmal2. Given these labels, we will specify how internalemith the network operate. Every
edge in the network will hold a symbol representing a lineambination of the message, as

well as possibly some comparison bits. We also define a fomcti
pE—>{177|80Ut<S)‘} (82)

that will serve as an accounting tool to track symbols as theys through the network. We
begin by assigning distinct and arbitrary valuegte) for all e € E,u(S) (p therefore constitutes
an ordering ort,(S)). Further assignments af will be made recursively. This will be made

explicit below, but if a symbol is merely forwarded, it trdsealong edges with a constapt
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When linear combinations occur at internal nodesjalues are manipulated, anddetermine
exactly how this is done.

For every node with 2 input edges, leff;, f» be these edges. ifis 2-to-2, lete, e; be its
two output edges; if it is 2-to-1, let be its output edge. b(f1) = ¢(f2), then node compares
the symbols onf; and f,. If nodei is 2-to-2, theng(e;) = ¢(f1) for either! = 1 or 2. Node
1 transmits its comparison bit on. If nodei is 2-to-1, then it transmits its comparison bit on
e. All 2-to-2 nodes forward all received comparison bits or thutput edge with the samge
value as the input edge on which the bit was received. All-2-twodes forward all received
comparison bits on its output edge.

We divide nodes iV, , into the following sets. The linear transformation perfedrt node

¢ will depend on which of these sets it is in.

Wi ={i € Voo 1 ¢(f1) = ¥(f2) = 0,0(f1) # ¢(f2)} (83)
Wy = {i € Voo : (f1) = ¥(f2) = 0,90(f2) = ¢(f2)} (84)
Wi = {i € Voo 1 ¢0(fi) =1 0r¢(f2) =1} (85)

We will sometimes refer to nodes W, as branch nodessince they represent branches in
A(o(f1)). Moreover, branch nodes are significant because a failegh@oson at a branch node
will cause the forwarding pattern within(¢(f,)) to change. For an edge X. denotes the
symbol transmitted omr. The following gives the relationships between these syshwhich
are determined by internal nodes, depending partially encttmparison bits they receive. For

each node, the action of node depends on which set it falls in as follows:

« Wy: Let ! be such that(e;) = ¢(f1). The symbol onf; is forwarded toe;, and the symbol
on f, is forwarded ontce;. Setp(e;) = p(f1), andp(e;) = p(f2).

« Wy Let [ be such that(e;) = ¢(f1) = ¢(f2). Letl’ be such thap(fy) < p(f7). We will
show in Lemma13 that our construction is such thgt,) # p(f) at all nodes, sd@ is well

defined. If neitherf; nor f5 hold a failed comparison bit, the output symbols are

Xe, = YinX g + 72X, (86)

X., = Xy, (87)
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where coefficientsy; 1, » are nonzero integers to be chosen later. Set oytpuatiues to
pler) = p(fr) (88)
pler) = p(fr)- (89)
Note that the symbol on the input edge with smajlevalue is forwarded without linear
combination. If the input edge; reports a failed comparison anywhere previously in
A(é(f1)), then [8F) changes to
Xep = Xy, (90)

« W3 Let [ be such that)(f;) = 1, and !’ be such that)(e;) = 1 and ¢(ey) = o(f)).
The symbol onf; is forwarded toe;, and the symbol ory; is forwarded toe;, with the
following exception. If¢(f1) = ¢(f2) and there is a failed comparison bit sent frgim
then the forwarding swaps: the symbol ¢gnis forwarded toe;, and the symbol ory;
is forwarded toe;. Setp(ey) = p(f;) and p(ey) = p(f;). Again, p is consistent along
forwarded symbols, but only when all comparisons succeed.

« Vy1: Let! be such that)(f;) = 1. The symbol fromf; is forwarded ore, unless there is
a failed comparison bit sent fronf, in which case the symbol frorfj is forwarded ore.
setp(e) = plf7)-

See Fig[ D for an illustration of the linear transformatiguesformed at internal nodes and how
they change when a comparison fails. The following Lemmagsome properties of the internal
network behavior as prescribed above.

Lemma 3:The following hold:

1) For any integer: € {1,...,|Euu(5)|}, the set of edges with with p(e) = a form a path
(we refer to this in the sequel as the= a path). Consequently, there is no nodevith
input edgesfy, f» such thatp(f1) = p(f2).

2) If there are no failed comparisons that occur in the netwibren the linear transformations
are such that the decoder can decode any symbol in the neexcdpt those on non-
destination paths.

3) Suppose a comparison fails at a branch nbdeith input edgesf;, fo with v = ¢(f;) =
o(f2). Assume without lack of generality thatf;) < p(f2). The forwarding pattern within
A(v) changes such that symbols sent along ghe p(f;) path are not decodable at the
destination, but what was the non-destination symbol aatsutwithv is decodable.
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Fig. 9. An example of the linear transformations performed {v) for somev (labeled as such). Solid edges dengte) = v,
dashed edges denogée) # v. Thick edges denoté(e) = 1. Near the head of each edge is the correspongdinglue. Also
shown is the symbol transmitted along that edge, givenainsymbolsa— at the furthest upstream edges in the network. When
several symbols are written on an edge, this indicates kieaetige carries a linear combination of those symbols. Tinbsls
indicated in brackets are those carried by the edges wheoatigarison at the indicated black node fails. Symbols oregdg

labeled without brackets do not change when the compariits f

3) MDS Code ConstructionThe rules above explain how the symbols are combined and
transformed inside the network. In addition, when the ahiget of symbols are sent into the
network from the source, they are subject to linear conggsaMe now describe exactly how
this is done. Assume that no comparisons fail in the netwawkhe linear relationships between
symbols are unmodified. For a 2-to-1 nodédet ¢! be the edge witlp(e}) = v, ¢(ef) = 1, and
tail(e’) = v; i.e. it is the last edge to hold the non-destination symbéohinating atv. Observe
that it will be enough to specify the linear relationshipscaim the symbols oRe} : v € Vo }
as well as thel/ edges ini,(D). These collectively form the Polytope Code equivalent of a
(M +|Vq4|, M —2) MDS code. We must construct this code so as to satisfy cdrtaiances of

(63), so that we may apply Theorém 3 as necessary. The foliplemma states the existence
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of a set of linear relationships among thé + |V, ;| variables with the required properties.
Lemma 4:For each 2-to-1 node, let Z(v) be the set of edges with tail(e) = D such that

there is an edge’ with tail(¢’) = heade), ¢(¢’) = v, andy(¢’) = 1. That is, the symbol on

e, just before being sent to the destination, was comparethstgdie non-destination symbol

associated withv. Note that any edge € i, (D) is contained irn=(v) for some 2-to-1 node.

There exists a generator mattx € ZM+V211xM=2 \where each row is associated with an edge

in {e} : v e Vy1}UCEp(D) such that for all,, v, € Vy; and all f; € Z(vy), fo € Z(vq), the

constraints

(an Xfw Z) ~ (Xf1>Xf2v Z) (91)
(Xes, s Xes , Z) ~ (Xeg s Xey , Z) (92)
(Xpre;l) ~ (Xwaei‘,l) (93)
(Xfw X€Z2) ~ (szv X€Z2) (94)

imply
(X.ﬁ’ Xfw Xef,l ) X€Z2 Z) ~ (Xf1 ) Xf2v Xe,’gl ) Xe?EQ Z) (95)

where
Z=(X.:e€&nD)\{f1, o} (96)

4) Decoding ProcedurelTo decode, the destination first compiles a list V' of which nodes
may be the traitor. It does this by taking all its availabléadaeceived comparison bits from
interior nodes as well as the symbols it has direct accesmtbdetermines whether it is possible
for each node, if it were the traitor, to have acted in a waydose these data to occur. If so,
it adds this node taC. For each nodé, let K; be the linear transformation from the message
vectorW to the symbols on the output edges of nad#Vith a slight abuse of notation, regard
Kp represent the symbols on the input edge®tmstead. For a set of nodeésC V, let Kp, g
be a basis for the subspace spannedshy orthogonal to

() spart&;_p). (97)

jeSs
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The destination decodes froiip, . W. If ¢ is the traitor, it must be thate £, so

rank(KDJ_L) > M — dim (m Spaij)> (98)
jeSs

> M — rank( K;) (99)

> M -2 (100)

where we used the fact that nodenas at most two output edges. Singg,, ; has rank at
leastM — 2, this is a large enough space for the destination to decaglertire message. The
follow Lemma allows us to conclude that all variables in thspace spanned bl . are
trustworthy.

Lemma 5:Consider any pair of nodesj. Suppose is the traitor, and acts in a way such

that j € £. Node: cannot have corrupted any value iy,  (; ;3 W.

A. Proof of Lemmal2

We begin with¢(e) = ¢(e) = 0 for all edgese, and setp and ) progressively. First we
describe some properties of the graph E) imposed by the fact that the right hand sides of
(Z8) and [(7b) are never less than — 2.

Given a 2-to-1 node, let I', be the set of nodes for which is the only reachable 2-to-1
node. Note that other than the only nodes ii", are 2-to-2. Moreover, i) can reach another
2-to-1 node,I', is empty. We claim that’, forms a path. If it did not, then there would be
two 2-to-2 nodes,, i, € I', for which there is no path between them. Thatds,, = 1 and
¢, = ¢, = 2, S0 [76) becomes’ < M — 3, which contradicts our assumption that the cut-set
bound isM — 2.

Furthermore, every 2-to-2 node must be able to reach at teas2-to-1 node. If not, then
we could follow a path from such a 2-to-2 node until reachingodei; all of whose output
edges lead directly to the destination. Nagecannot be 2-to-1, so it must be 2-to-2, meaning
e;, = 2. Taking any other nodg& with a direct link to the destination gives no more thah— 3
for the right hand side of (T5), again contradicting our agstion.

The first step in the edge labeling procedure is to specifyetiiges holding non-destination
symbols; that is, for each 2-to-1 nodeto specify the edgesfor which ¢(e) = v andy(e) = 1.

To satisfy property (A), these must form a path. For any nodeN,(D), the output edge of
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1 that goes to the destination has aovalue, so to satisfy property (C), the other output edge
e must satisfyy(e) = 1. Moreover, by property (B), ifs(e) = v, then there is a path from
heade) to v. Hence, ifi € V5, NI, for some 2-to-1 node, then it is impossible for the two
output edges of to have differentp values; hence, by property (C), one of its output edges
must satisfy,)(e) = 1. Therefore, we need to design the non-destination pathBagdltey pass
throughT', for eachv, as well as each node N, (D).

For each 2-to-1 node, we first set the end of the non-destination path associatédwto
be the edges i',. That is, for an edge, if heade), tail(e) € ', sety(e) = 1 and¢(e) = v.
Now our only task is to extend the paths backwards such thaioguaranteed to pass through
each node ifNiy (D).

Construct an embedding of the grafii £) in the plane such that is on the exterior face.
Such an embedding always exists|[15]. If we select a set oéagaking up arundirected
cycle—that is, edges constituting a cycle on the underlying wutéd graph—then all nodes in
the network not on the cycle are divided into those on therimteand those on the exterior,
according to the planar embedding. Takg € Ni,(D) such that; can reachj, and letC; ; be
the undirected cycle composed of a path froto j, in addition to the edge§, D) and(j, D).
We claim that if a nodé: € Nij,(D) is on the interior ofC; ;, then it is reachable from Since
S is on the exterior face of the graph, it must be exterior todyele C, ;. There exists some
path from S to £, so it must cross th€, ; at a nodej’. Observe that’ must be on the path
from i to j, so it is reachable from. Therefore; can reachj’ andj’ can reacht, soi can reach
k. This construction is diagrammed in F[g.] 10.

We may travel around nodP in the planar embedding, noting the order in which the nodes
Nin(D) connect toD. Call this orderu, . .., uy,;. Take anyi € Ni,(D), and suppose = u;. We
claim that the set of nodes iNi,(D) reachable fromu; forms a contiguous block around
in the {u} ordering, where we regard, and u,,; as being adjacent, so two contiguous blocks
containingu; andu,; is considered one contiguous block.

Suppose this were not true. That is, for soimeNj,(D) there exists g € Ni,(D) reachable
from i that is flanked on either side in tHe} ordering by nodeg;, k» € Ni,(D) not reachable
from i. The order in which these four nodes appear{ir} in some cyclic permutation or
reflection of

(4, k1, J, k). (101)
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Fig. 10. A diagram of the planar embedding being used to ptbaea nodek € Nin(D) on the interior ofC; ; is reachable
from 4. Solid lines are single edges; dashed lines represent pahbe up of possibly many edges. Thick lines correspond to

edges inC; ;.

Neither k; nor k, can be on the interior o€, ;, because, as shown above, any such node is

reachable from. However, if they are both on the exterior, then the ordelllij cannot occur,
becauseD is on the boundary of; ;.

By contiguity, if a nodei € Nj,(D) can reach any other node M, (D), it can reach a node
immediately adjacent to it in théu} ordering. Supposé can reach both the node € Nin(D)
immediately to its left and the nodig € Ni,(D) immediately to its right. We show that in fact

i can reach every node INj,(D). In particular, there can be only one such node, or else there

would be a cycle. Nodé has only two output edges, one of which goes directlytd_et i’ be
the tail of the other. Bothy; andj, must be reachable fromi.

We claim it is impossible for both; to be exterior toC; ;, and j, to be exterior toC; ;,.
Suppose both were true. We show the graph must contain a &yatl€ be the undirected cycle
composed of the path from to j;, the path fromi’ to j,, and the edge§j;, D), (j», D). Every
node onC is reachable from. Since bothj, is exterior toC; ;, and j, is exterior toC; ;,, it is
easy to see that must be on the interior of. Therefore any path fron$ to i must cross the
cycle at a nodé’, reachable from. Sincek’ is on a path fromS to £/, i is also reachable from
k', so there is a cycle. See FIg.l11 for a diagram of this.

Therefore, we may assume without loss of generality thé in the interior ofC, ;. Suppose
there were a nodg; € Ni,(D) not reachable from. Node j; must be on the exterior df; ;,,

because we have shown that nodes\in(D) on the interior are reachable froim Therefore,
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Fig. 11. A diagram of the planar embedding being used to ptieaea node reaching its two neighborsNis (D) can reach
every node inNin(D). Solid lines are single edges; dashed lines represent pshe up of possibly many edges. Thick lines

correspond to the undirected cydle Undirected cycle€; ;, andC; ;, are indicated.

in the {u} order, these four nodes must appear in some cyclic perrantati reflection of
(1, Js, J1, j2). However, this is impossible, because bgthand j, were assumed to be adjacent
to i. Therefore,i can reach every node iNjy(D).

Take a node that can reach 2-to-1 nodes, v, € Niy(D). Suppose that cannot reach every
node inNj,(D). Therefore, the nodes it can reach inNi (D) are either entirely to its right or
entirely to its left in the{u} ordering, or else, by contiguity, nodewould be able to reach the
adjacent nodes on both sides. Suppose without loss of diyehat they are all to its right,
and thatv, is further to the right tham,. We claim thatv, is on the interior ofC; ,,. Suppose
it were on the exterior. By contiguity, every node M, (D) on the exterior of¢;,, must be
reachable from. Since we have already argued that every nod&iijjiD) on the interior of
Ci.., IS reachable from, this means can reach every node iNj,(D), which we have assumed
is not the case.

Thereforey; is on the interior ofC; ,,. We may construct a path frosito v, passing through
all nodes inl',,. This path must cros§, ,, at a nodek, reachable from. Node j can reach
both v; and vy, so it cannot be il",,. However,; is on a path passing throudh,, so it can
reach all nodes ii’,,. Therefore there exists a path franto v, passing through',, .

If ¢ can reach every node Nj,(D), then as shown above, eitheris in the interior ofC, ,,,
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or vy is in the interior ofC; ,,. Therefore, by the same argument to that just used for the cas
that: cannot reach every node W, (D), there is either a path fromto v; throughT,, or a
path from: to v, throughT,,.

Fix a 2-to-1 nodey; € Ni,(D). Consider the set of nodes that are:

« contained inV, 2 N Nin(D),

« notinl, for any 2-to-1 node,

« can reachy,

« cannot reach any other node also satisfying the above tlomeditons.

We claim there are at most two such nodes. Suppose there wersuch nodes;, i, both to
the left of v; in the {u} ordering. Ifi; were further to the left, thei could reachi,, sincei;
can reachv; and the nodes reachable frammust form a contiguous block. Henée would
not qualify. Therefore there can be at most one such nodeetdeth of v; and at most one to
the right. Denote these two nodésnd j respectively, if they exist. By contiguity, every node
satisfying the first three conditions must be able to reatiieei or ;. Moreover, all such nodes
to the left ofv; form a single path ending ify and those on the right form a single path ending
in 7. We will proceed to extend two non-destination paths bacdw#: andj. Then, we may
further extend these two paths backwards through all nau®s i N Nj,(D) that can reachy,
and then backwards to the source on arbitrary paths. Here@eed only find paths fromto
the head ofl", for somev, and a distinct one of the same for

Both i andj can reach at least one 2-to-1 node other thanSuppose can reach another
2-to-1 nodewv, € Ni (D). By the argument above, there is a path frorto the leftmost of
v1,ve throughl',, or ', respectively. Similarly, ifj can reach a 2-to-1 nodg € Ni,(D) with
v3 # vy, there is a path fronj to the rightmost ofv,, v3, through the associatdd This is true
even if vy = vs.

Suppose there is no 2-to-1 node Xy (D) reachable from nodé other thanv;. There still
must be a 2-to-1 node, reachable from, thoughv, ¢ Ni,(D). Sincew, is not adjacent to
the destination, it must be able to reach a 2-to-1 node thahsreforel’,, = ), so any path
from i to v, trivially includesT',,. If j can also reach no 2-to-1 nodes ¥, (D) other than
v1, there must be some 2-to-1 node ¢ Ni,(D) reachable fromj. We may therefore select
non-destination paths fromto v, andj to v3, unlessv, = v3. This only occurs if this single

node is the only 2-to-1 node other thanreachable by eitheror j. We claim that in this case,
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either: or j can reach the tail of,,. Therefore we may extend the non-destination pathvfor
back to one ofi or j, and the non-destination path fo§ = v3 to the other. Every node can
reach some 2-to-1 node iNj,(D), sowv, can reachv;, or else: and j would be able to reach
a different 2-to-1 node itNi, (D). By a similar argument to that used above must be on the
interior of the undirected cycle composed of the path froto v, the path from; to v,, and
the edgesi, D), (j, D). If not, v; would not be between and; in the {u} ordering. Note this
is true even ifi can reachj or vice versa. Sincé must be exterior to this cycle, any path from
S to v; including I',, must cross either the path froimto v, or j to v, at a nodek. Node k
must be able to reach the headlgf, so eitheri or j can reach’,,.

Once the non-destination paths are defined, we perform tlesviog algorithm to label other
edges so as to satisfy property (C). We refer to an edggabeledif ¢(e) # (). We refer to a node
aslabeledif any of its output edges are labeled. Any node unlabeleer dfte specifications of
the non-destination paths must not béNp(D), and must be able to reach at least two different
2-to-1 nodes.

1) For any edge such that there exists anhe Eqy(tail(e)) with i(e’) = 1, setg(e) = o(¢').
Observe now that any path eventually reaches a labeled Edgéermore, the tail of any
unlabeled edge cannot be a node contained,ifor any v, so it can lead to at least two
2-to-1 nodes.

2) Repeat the following until every edge other than thoseneoted directly to the destination

is labeled. Consider two cases:

« There is no 2-to-2 node with exactly one labeled output eBggk an unlabeled node
1. Select any path of unlabeled edges out ontil reaching a labeled node. Letbe
the label of a labeled output edge from this node. For all sdge the selected path,
set¢(e) = v. Observe that every node on this path was previously an el@ddt?-to-2
node. Hence every node on this path, except the last one,Xaatlyeone labeled
output edge.

« There is a 2-to-2 node with exactly one labeled output edgeet v; be the label
on the labeled output edge. Select any path of unlabeledsegginning with the
unlabeled output edge fromuntil reaching a node with an output edge labelgd

with v, # v;. This is always possible because any unlabeled edge mushleeaca
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lead to at least two 2-to-1 nodes, including one other tharor all edges: on the
selected path, set(e) = v,. Observe that before we labeled the path, no node in the
path other than the last one had an output edge lahgl|dskcause if it did, we would
have stopped there. Hence, after we label the path, if a nogehas 2 labeled output

edges, they have different labels.

Note that in the above algorithm, whenever an eddsecomes labeled, if there was another
edgee’ with heade) = heade’), eithere’ was unlabeled, op(e) # ¢(e’). Therefore, the final
¢ values satisfy property (B).

B. Proof of Lemmé&l]3

Observe that for any 2-to-2 node, the twwalues on the input edges are identical to the two
p values on the output edges. For a 2-to-1 node pthialue on the output edge is equal to the
value on one of the input edges. Therefore beginning withedge in€q(S), we may follow
a path along only edges with the sam&alue, and clearly we will hit all such edges. Property
(1) immediately follows.

Property (2) follows from the fact that 2-to-2 nodes alwagsmate such that from the symbols
on the two output edges, it is possible to decode the symbth@ input edges. Therefore the
destination can always reverse these transformationsctivee any earlier symbols sent in the
network. The only exception is 2-to-1 nodes, which drop ohéheir two input symbols. The
dropped symbol is a non-destination symbol, so it is cleat tthe destination can always decode
the rest.

We now prove property (3). We claim that when the comparisds &t nodék, it is impossible
for the destination to decod&,,. We may assume that the destination has direct access to all
symbols on edges immediately subsequent to edgeés«n This can only makeX/,, easier to
decode. Recall that(f;) < p(f2), S0 Xy, is forwarded directly on the output edge bfmot in
A(v). Therefore the destination can only deco¥g if it can decode the symbol on the output
edge ofk in A(v). Continuing to follow the path through(v), suppose we reach an edge
with tail(e;) = £/, wherek’ is a branch node. Let, be the other input edge df. Even if
pler) < p(e2), meaningk’ would normally forwardX,, outside ofA(v), because:; carries a
failed comparison bitk’ will instead forward X., outside of A(v). Again, the destination can

only decodeXy, (or equivalentlyX.,) if it can decode the symbol on the output edge:bfn
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A(v). If we reach a node interacting with the non-destination lsyhassociated with, then
because of the failed comparison bit, the formerly nonidason symbol is forwarded outside
of A(v) and the symbol to decode continues traveling throngh). It will finally reach v, at
which point it is dropped. Therefore it is never forwarded oluA(v), so the destination cannot

recover it.

C. Proof of Lemmal4

From Corollary38, it is enough to prove the existence of anatrix satisfying

|K82§1782§2,Z| |Kf1,f27Z| |Ke*1,f1,Z| |K82§2,f2,Z| <0. (102)

v

We construct a Vandermonde matfikto satisfy [(L0R) for alb,, v, and all f1, f5 in the following

way. We will construct a bijective function (an ordering)given by

(07N {62 U E V2,1} U Nm(D) — {]_, .. .,M + |’\7271|}. (103)
For eachv € V,, seta(el) to an arbitrary but unique number in...,|Vy,|. We may now
refer to a 2-to-1 node as !(a) for an integer € {1,...,|V,1]}. Now seta(e) for e € Eir(D)

such that, inn order, the edge sdf} : v € V51} UNip(D) is written

* * *
€a=1(1)) Ca=1(2) -+ Ca=1([Va1])»

Z(@ (IV21])), E(@ (V2] = 1)), .- E(a7 (1)) (104)

That is, eaclE(v) set is consecutive in the ordering, but in the opposite oadethe associated
non-destination edges. Now let K be the Vandermone matrix with constants givernbyl hat

is, the row associated with edges given by
1 ae) ale)? -+ ale)M? ] : (105)

We claim the matrix/ given by [105) satisfies (102). Fix, vo, and f; € Z(v1), fo € Z(v2).
Due to the Vandermonde structure &f we can write the determinant of a square submatrix in

terms of the constants(e). For instance,

w) —ale;)] [ Tlade) = ate;lfale) — afe;,)

e€Z

|Ke:§1,e:§2,z| = [a(e

II la)—a(e)] (106)

e,e’€Z,a(e)<a(e’)
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where we have assumed without loss of generality that the @ws; are ordered according

to o. Expanding the determinants in_(102) as such gives

\Ke; en,zl | Kp ozl | Key gzl | Key, p2] (107)

v]

= la(ey,) — ale)]lalfz) — a(f)lla(f) = ale,)][alf2) = ale,)]
[ late) = aler)Plate) — aler, ) Plae) — a(fi)Plale) — alfi)?

e€Z

I  laE)—a(e)” (108)

e,e’€Z,a(e)<ale’)
Recall f; € =(vy), fo € Z(v9). Since we choser such that the= sets are in opposite order to

the edges, we have

[a(ey,) — aley)]fa(fz) — a(fi)] < 0. (109)

Moreover, since all th& sets have largex values than the edges,
a(fr) — ale,) >0, (110)
a(f2) —ale),) > 0. (111)

Hence, there is exactly one negative term[in {108), from twihie may conclude (102).

D. Proof of Lemma&l5

The random vectoW is distributed according to the type of the message vectat &s
produced as the source. We formally introduce the randortond@% representing the message
as it is transformed in the network. As in our examples, tleister is distributed according to the
joint type of the sequences as they appear in the netwosy, lading corrupted by the adversary.
For each edge, we defineX, and X, similarly as random variables jointly distributed wit\
and W respectively with distributions given by the expected andupted joint types.

For every pair of nodeséi, j), we need to prove both of the following:
If i is the traitor, andj € £, 7 cannot corrupt values it (; 3 W. (112)

If j is the traitor, and € £, j cannot corrupt values itp, (; ;3 W. (113)

In fact, each of these implies the other, so it will be enouglprove just one. Supposke (112)
holds. Therefore, if the distribution observed by the dedion ofKDl{m}W does not match
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that of KDL{Z-J}W, then at least one aof j will not be in £. If they both were inl, it would
have had to be possible for nod¢o be the traitor, make it appear as if nofavere the traitor,
but also corrupt part of<p, (; j;1V. By (112), this is impossible. Hence, jfis the traitor and

i € £, then the distribution of thé<{p, (; ;Y must remain uncorrupted. This vector includes
Kp,;W, a vector that can certainly not be corrupted by ngd8ince rankiKp, ;) > M — 2,
and there are only// — 2 degrees of freedom, the only choice nodéas to ensure that the
distribution of Kp, (; ;W matchesp is to leave this entire vector uncorrupted. That s, (113)
holds.

Fix a pair (i,j). We proceed to prove either (112) ér (113). Doing so will riegplacing
constraints on the actions of the traitor imposed by comspas that occur inside the network,
then applying one of the corollaries of Theorem 3 in $ec.I\Ml#t K, ; be a basis for the space
orthogonal tokK;. If node: is the traitor, we have that | ;W ~ K ,;W. Moreover, sincg € L,
Kp, ;W) ~ Kp, ;W. These two constraints are analogoustd (57) (56) reeplgcwhere
the symbols on the output of nodeare analogous t&;, X;. The subspace oK, orthogonal
to both K; and K; corresponds t& in the example. We now seek pairwise constraints of the
form (58)—{60) from successful comparisons to apply Theds

Being able to apply Theorei 3 requires that, ; has rankM — 2 for all j. Ensuring this
has to do with the choices for the coefficients, ;> used in[(86). A rank deficiency ik, ;
is a singular event, so it is not hard to see that random chdarethe~ will cause this to occur
with small probability. Therefore such exist.

We now discuss how pairwise constraints on the output sysniiiol or j are found. Consider
the following cases and subcases:

e 0,5 € Wi UW,: Suppose nodeéis the traitor. Lete;, e, be the output edges of nodeFor
each/ = 1,2, we look for constraints otX,, by following the p = p(e;) path until one of
the following occurs:

— We reach an edge on the = p(e;) path carrying a symbol influenced by node
j. This can only occur immediately after a branch nddevith input edgesfi, f»
where p(f1) = pler), p(f2) < p(f1), and Xy, is influenced by nodg. At nodek, a
comparison occurs betwee’ﬁfl, which is influenced by nodebut notj, andX'fQ. If
the comparison succeeds, then this places a constraineafigtiibution of( X ,, X ,).

If the comparison fails, the forwarding pattern changeshsimat thep = p(e;) path
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becomes a non-destination path; i.e. the value placed does not affect any variables
available at the destination. Hence, the subspace awaik#bthe destination that is
corruptible by node is of dimension at most one.

— We reach nodg itself: In this situation, we make use of the fact that we only need to
prove that node cannot corrupt values available at the destination thah@iaalso be
influenced by node. Consider whether thg = p(e;) path, betweer and j, contains
a branch nodé with input edgesf;, f> such thatp(fi) = p(e;) and p(f2) > p(f1). If
there is no such node, theXi, cannot influence any symbols seen by the destination
that are not also being influenced pyThat is, X,, is in spafk;_,p N K;_.p), SO we
do not have anything to prove. If there is such a branch rigdeen the output edge
e of k with p(e) = p(f2) contains a symbol influenced hyand notj. We may now
follow the p = p(e) path from here to find a constraint oxy,. If a comparison fails
further along causing the forwarding pattern to change ghehthep = p(e) path
does not reach the destination, then the potential influehcg,, on a symbol seen by
the destination not influenced by nogés removed, so again we do not have anything
to prove.

— Thep = p(e;) path leaves the network without either of the above occgriimmedi-
ately before leaving the network, the symbol will be comgangth a non-destination
symbol. This comparison must succeed, becgusannot influence the non-destination
symbol. This gives a constrait:ﬁ’el.

We may classify the fates of the two symbols outi &fs discussed above as follows:

1) Either the forwarding pattern changes such that the syidses not reach the desti-
nation, or the symbol is in spaf;_.p N K;_,p), and so we do not need to prove that
it cannot be corrupted. Either way, we may ignore this symbol

2) The symbol leaves the network, immediately after a sisfulg comparison with a
non-destination symbol.

3) The symbol is successfully compared with a symbol infleenzy nodej. In particular,
this symbol from nodeg has a strictly smallep value thanp(e;).

We divide the situation based on which of the above casesrdocu = 1,2 as follows:

— Case 1 occurs for both= 1,2: We have nothing to prove.
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— Case 1 occurs for (without loss of generalitys 1: Either case 2 or 3 gives a successful
comparison involving a symbol influenced b@ei. Applying Corollary[1 allows us to
conclude thatf(el_ cannot be corrupted.

— Case 2 occurs for both= 1, 2: If the two paths reach different non-destination symbols,
then we may apply Lemnid 4 to conclude that nodannot corrupt eithek,, nor X, .
Suppose, on the other hand, that each path reaches the santlestmation path, in
particular the one associated with 2-to-1 nad&inceg(e;) # ¢(es), assume without
loss of generality thap(e;) # v. We may follow the path starting from throughI'(v)
to find an additional constraint, after which we may apply dlary [2. All symbols
on this path are influenced h¥, . This path eventually crosses the non-destination
path associated with. If the symbol compared against the non-destination symabol
this point is not influenced by, then the comparison succeeds, giving an additional

constraint. Otherwise, there are two possibilities:

« The path through’(v) reaches;j: There must be a branch node on the patif'to)
before reaching such that the path from; has the smallep value. If there were
not, then case 1 would have occurred. Consider the mosttreaeh branch nodg
in I'(v) before reaching. Let f;, f, be the input edges th, where f; is on the path
from e;. We know p(f1) < p(f2). The comparison at must succeed. Moreover,
this successful comparison comprises a substantial @wnistbecause the only way
the destination can decod¢,, is through symbols influenced by nogde

« The path through’(v) does not reacly: Let & be the first common node on the
paths fromi and j throughI'(v). Let f;, f> be the input edges of, where f; is
on the path from and f; is on the path fromj. If the comparison ak succeeds,
this provides a constraint. If it fails, then the forwardipgttern changes such that
the p = p(f1) path becomes a non-destination path. Since we are not inlgase
ple1) # p(f1), but a symbol influenced b¥., is compared against a symbol on the
p = p(f1) path at a branch node in(v). This comparison must succeed, providing

an additional constraint.

— Case 3 occurs for (without loss of generality)}= 1, and either case 2 or 3 occurs

for [ = 2: We now suppose instead that noglés the traitor. That is, we will prove
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(113) instead of[(112). Recall that a successful comparagzmurs at a branch node
k with input edgesf, f, where X, is influenced byX,,, X, is influenced by node
J, and p(fa) < p(f1). Let ¢, €, be the output edges of node and suppose that
p(er) = p(f2); 1.e. the symbolXy, is influenced byX... The success of the comparison
gives a constraint of(ezl. Sincep(f2) < p(f1), we may continue to follow the = p(f2)
path from nodek, and it continues to be not influenced by nodeAs above, we
may find an additional constraint oi., by following this p path until reaching a
non-destination symbol or reaching another significanhé&imanode. Furthermore, we
may find a constraint onf(e/2 in a similar fashion. This gives three constraints on
X.;, X.,, enough to apply Corollarif]2, and conclude that ngdeannot corrupt its
output symbols.

e i € W3 UV \ Nin(D),j € Wy UW,: Assume node is the traitor. Ifi € Vy; with
single output edge such thaty(e) = 1, then nodei controls no symbols received at the
destination and we have nothing to prove. Otherwise, itrobsjust one symbol received
at the destination, so any single constraint on nogeenough. Let’ be the output symbol
of ¢ with (i) = 0. Since we assumé¢ Ni,(D), the p = p(¢’) path is guaranteed to cross
a non-destination path after node As above, follow thep = p(e’) path until reaching
a branch node&: at which the symbol is combined with one influenced by ngd# the
comparison at nodk succeeds, it gives a constraint &h . If the comparison fails, then the
forwarding pattern will change such that the- p(e’) path will fail to reach the destination,
so we're done.

e i € W UW,, j € Nin(D): Assume node is the traitor. By construction, since one output
edge ofj goes directly into the destination, the other must be on adestination path.
Hence,j only controls one symbol at the destination, so we again negiace only one
constraint on node. Let e € Equ(i) be such thaw(e) # ¢(e) for all ¢ € Equ(y). This
is always possible, since the two output edges bave differentp values, and since one
output edge ofj goes directly to the destination, only one of the output edafg has a¢
value. Letv = ¢(e). Follow the path frome throughA(v) until reaching the non-destination
symbol at node: with input edgesf, f,. AssumeX, is influenced byX, and X, is a

non-destination symbol. The comparison between theseymbals must succeed, because
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node; cannot influence eithek;, or X,,. This places the necessary constraintXn
« 7,7 € W3 UV, Nodesi, j each control at most one symbol available at the destination
So either one, in order to make it appear as if the other coelthé traitor, cannot corrupt

anything.

E. Proof of Theorerhl2 when the Cut-set Bound/s- 3
We now briefly sketch the proof of Theordm 2 for the case thatcilt-set bound ig/ — 3.

The proof is far less complicated than the above proof for the- 2 case, but it makes use
of many of the same ingredients. First note that the set @F2+odes that cannot reach any
2-t0-1 nodes must form a path. We next perform a similar edgeling as above, defining
and as in [80)4(8Il). Properties (A) and (B) must still hold, gxcthat edges may have null
labels, and property (C) is replaced by

C For every 2-to-2 node that can reach at least one 2-to-1 rmddeast one of its output

edges must have a non-null label.

Internal nodes operate in the same way based on the edgs Ebabove, where symbols are
always forwarded along edges with null labels. The decogimgess is the same. Proving an
analogous version of Lemnia 5 requires only finding a singlestraint on one of or j. This
is always possible since one is guaranteed to have a labeh @utput edge, unless they are
both in the single path with no reachable 2-to-1 nodes, irclitase they influence the same
symbol reaching the destination.

Interestingly, this proof does not make use of the planasftghe graph. We may therefore
conclude that for networks satisfying properties (2) andit3he statement of Theorem 2, the

cut-set bound is always achievable if the cut-set is syrietss than) — 2.

X. LOOSENESS OF THECUT-SET BOUND

So far, the only available upper bound on achievable ratesbean the cut-set bound. We
have conjectured that for planar graphs this bound is tlghttthat still leaves open the question
of whether there is a tighter upper bound for non-planar lggajt was conjectured in [10] that
there is such a tighter bound, and here we prove this comgttube true. We do this in two
parts. First, consider the problem that the traitor nodea Byzantine attack are constrained

to be only from a certain subset of nodes. That is, a spectaetwof nodes are designated as
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potential traitors, and the code must guard against advairsantrol of anyz of those nodes.
We refer to this as the limited-node problem. Certainly thmited-node problem subsumes
the all-node problem, since we may simply take the set of riatletraitors to be all nodes.
Furthermore, it subsumes the unequal-edges problem dtud{&0], because given an instance
of the unequal-edge problem, an equivalent all-node proldan be constructed as follows:
create a new network with every edge replaced by a pair ofsedfequal capacity with a node
between them. Then limit the traitors to be only these intenodes.

We will show in Sectiori X-A that the all-node problem actyadlubsumes the limited-node
problem, and therefore also the unequal-edge problem. ith8actior X-B we give an example
of a limited-node network for which there is an active uppeutd on capacity other than the
cut-set. This proves that, even for the all-node problem cilit-set bound is not tight in general.
Transforming the example in Section X-B into an unequalegoigblem is not hard; this therefore

confirms the conjecture in [10].

A. Equivalence of Limited-Node and All-Node

Let (V, E) be a network under a limited-node Byzantine attack, wheeeetimay be at most
z traitors constrained to be itf C V, and letC' be its capacity. We construct a sequence of
all-node problems, such that finding the capacity of thesblpms is enough to find that of the
original limited-node problem. Lefi/ () E(M)) be a network as follows. First make copies
of (V,E). That is, for each € V, puti™ ... i) into V(™) and for each edgé, j) € E,
put (i, 50 (D 53) into EM), Then, for eachi € U, mergeiV, ..., i) into a single
nodei*, transferring all edges that were previously connectechtoad iV, ..., i) to i*. Let
C™M) pe the all-node capacity ¢t/ ™) E(M)) with z traitors. This construction is illustrated in
Fig.[12, where we show a limited-node netwdik £) and the all-node network/ (M) E(11)
with M = 3. For largeM, the all-node problem will be such that for any U, the adversary
has no reason to control one of the respective nodes bedatm®inands such a small fraction
of the information flow through the network. That is, we maglase that the traitors will only
ever be nodes i/. This is stated explicitly in the following theorem.

Theorem 4:For any M, C™) is related toC' by

1
M — 2z

%C(M) <C< D, (114)
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Moreover,
1
C = lim MC(M) (115)

M—o0

and if C™™) can be computed to arbitrary precision for ahin finite time, then so cad.

Proof: We first show thatl;C*) < C. Take any code o), E®)) achieving rateR
when anyz nodes may be traitors. We use this to construct a codélo#'), achieving rate
R/M when anyz nodes inU may be traitors. We do this by first increasing the block-tang
by a factor of M, but maintaining the same number of messages, therebyingdilne achieved
rate by a factor of\/. Now, since each edge iV, £) corresponds td/ edges in(V M) p(M)),
we may place every value transmitted on an edge in(thé?), E*)) code to be transmitted
on the equivalent edge in th@, £) code. That is, all functions executed By, ...,i®) are
now executed by. The original code could certainly handle aaytraitor nodes inU. Hence
the new code can handle amynodes inU, since the actions performed by these nodes have not
changed from(V*) EMD) to (V, E). Therefore, the new code div, E) achieving rateR/M

for the limited-node problem.

1

——C™), Take any code o1V, E) achieving rateR. We will

Now we show thatC' <

construct a code oV ™M) EM)) achieving rate(M — 2z)R. This direction is slightly more
difficult because the new code needs to handle a greatertyaofetraitors. The code on
(VM) M) is composed of an outer code amflcopies of theV, E) code running in parallel.
The outer code is dM, M — 2z) MDS code with coded output values, ..., w),. These
values form the messages for the inner codes. Since we useD&hddde, ifw,...,w,, are
reconstructed at the destination such that no more itee corrupted, the errors can be entirely
corrected. Theith copy of the(V, E) code is performed by for i € U, and byi¥) for i ¢ U.
That is, nodes iV are each involved in all/ copies of the code, while nodes not in are
involved in only one. Because th#&’, £') code is assumed to defeat any attack on only nodes
in U, if for somej, no nodes”) for i ¢ U are traitors, then the message will be recovered
correctly at the destination. Therefore, one of thecould be corrupted only if") is a traitor
for some: ¢ U. Since there are at mosttraitors, at most of thev, ..., w,, will be corrupted,
so the outer code corrects the errors.

From (114),[(11b) is immediate. We can easily idenfifylarge enough to computé to any
desired precision. [ |
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Fig. 12. A network with capacity strictly less than the cat-bound. The limited-node network is shown on the left, drel t

equivalent all-node problem with 3 copies is shown on théatrig

The significance of Theorem 4 is that if we could calculate ¢hpacity of any all-node
problem, we could usé¢ (114) to calculate the capacity of amigdd-node problem. Furthermore,
it is easy to see that for large the cut-set bound of’ ™), E()) is simply M times the cut-set
bound of(V, E'). Hence a limited-node example with capacity less than thwseubound—such
as the one in Section _X{B—Ieads directly to an all-node examgth capacity less than the

cut-set bound.

B. Example with Capacity Less than Cut-Set

Consider the network shown in Figurel 12. There is at most aaitot, but it may only be
one of nodes 1-4. The cut-set bound is easily seen to be 2nbatt the capacity is no more
than 1.5.

Suppose we are given a code achieving rfatéMe show thatkR < 1.5. Fori =1,2,3,4, let
X; be the random variable representing the value on the outjge ef nodei. Let Y be the
value on edgé9, D) and letZ be the value ori10, D). Let p be the honest distribution on these

variables, and define the following alternative distribos:
g3 = p(r12224)p(23)p(y|T170273)p(2|T374), (116)
qa = p(r12223)p(4)p(y|T120273) (2| T324). (117)

We may write
R < I,(X1 XXy Y Z) (118)
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because, if node 3 is the traitor, it may generate a complételependent version ak; and
send it along edgé37), resulting in the distributiorys. In that case, assuming the destination
can decode properly, information about the message mushgerigh from the honest edges at
the start of the networkX;, X,, X4, to what is received at the destination,Z. From [118),

we may write

R S ]q;g(X1X2X4;Z) +Iq:5(X1X2X4;Y|Z) (119)
< Iy (Xa; 2) + I(Xa X Z]Xy) + 1 (120)
= [,,(X4; Z) + 1 (121)

where in [120) we have used that the capacity®fD) is 1, and in[(121) thak; X, — X, — Z
is a Markov chain according tg;. Using a similar argument in which node 4 is the traitor and
it acts in a way to produce,, we may write
R<I,(Xs572)+1. (122)
Note that
q3(x3242) = qu(x3242). (123)

In particular, the mutual informations ih (121) and (1122 deth be written with respect to the

same distribution. Therefore,

OR < I,(X4; Z) + 1, (X3 Z) + 2 (124)
= I (X5 Xa3 Z) + Ly (X Xa) — Ly (X33 X4 Z) + 2 (125)
< I (X3X4 Z) + 2 (126)
<3 (127)

where [126) follows from the positivity of conditional matuinformation and thatX;, X, are
independent according tg, and [12V) follows because the capacity(df, D) is 1. Therefore,
R <1.5.

Observe that all inequalities used in this upper bound wereatied Shannon-type inequalities.
For the non-Byzantine problem, there is a straightforwardcg@dure to write down all the
Shannon-type inequalities relevant to a particular ndtwsmrding problem, which in principle

can be used to find an upper bound. This upper bound is moreajehan any cut-set upper
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bound, and in some multi-source problems it has been shola tighter than any cut-set bound.
This example illustrates that a similar phenomenon ocautbe Byzantine problem even for a
single source and single destination. As the Byzantinelprolseems to have much in common
with the multi-source non-Byzantine problem, it would berthavhile to formulate the tightest

possible upper bound using only Shannon-type inequalitiesvever, it is yet unclear what the

“complete” list of Shannon type inequalities would be foe tByzantine problem. This example
certainly demonstrates one method of finding them, but vdrdtiere are fundamentally different
methods to find inequalities that could still be called Sleamtype, or even how to compile all

inequalities using this method, is unclear. Moreover, i bbaen shown in the non-Byzantine
problem that there can be active non-Shannon-type indgpsalit is therefore conceivable that

non-Shannon-type inequalities could be active even fonglsisource under Byzantine attack.

Xl. CONCLUSION

The main contribution of this paper has been to introducdftaery of Polytope Codes. As far
as we know, they are the best known coding strategy to detgsrglized Byzantine attacks on
network coding. However, it remains difficult to calculakte tbest possible rate they can achieve
for a given network. We have proved that they achieve thesetibound, and hence the capacity,
for a class of planar graphs, and we conjecture that thisshioldall planar graphs. One would
obviously hope to find the capacity of all networks, incluglimon-planar ones. We have shown
that achieving the cut-set bound is not always possible ningahere remains significant work
to do on upper bounds as well as achievable schemes. Whebhgope Codes can achieve

capacity on all networks remains an important open question

APPENDIX A

TIGHTER CUT-SET UPPER BOUND

Theorem 5:Consider a cutd C V with S € A and D ¢ A. Let E4 be the set of edges
that cross the cut. For two not necessarily disjoint setsoskible traitorsl’, 15, let £, and E,
be the subset of edges i, that originate at nodes iff; and 7} respectively. LetE be the
set of edges ink; N E, in addition to all edges € E; U E, for which there is no path that
flows throughe followed by any edge /4 \ E; \ E,. The following upper bound holds on the
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capacity of the network:

c< Y e (128)

EGEA\E
Proof: Supposel(1) were not true for some 7}, andT,. Then there would exist a code

achieving a ratek? such that

R> Y c. (129)

We will consider two possibilities, one whéeh are the traitors and they alter the values on
E N E, and one whefl; are the traitors and they alter the valuesiom E. We will show that
by (129), it is possible for the traitors to act in such a wast tbven though the messages at the
source are different, all values sent across the cut areaime;stherefore the destination will
not be able to distinguish all messages. Note that traitof5, ior 75 will only corrupt values
on edges inE; that is, those edges controlled by either set of traitorghose that could not
influenceE 4 \ E \ Es.

Fix a valuez representing one possible set of values that may be placéteadgess; N E».
By definition, no edges it \ (£, N E,) are upstream of edges i, \ £. Since the traitors act
honestly on all edges not iR, given z, the values or, \ £ are a function of the message, so
by (129), there exist two messages and w, that cannot be distinguished just frofy \ E.
Call y the set of values on these edges undgror wy,.

Choose a coding order on the edgesiin (E, N E,) written as

(I1,ls, ..., lK) (130)

where K = |E\ (E, N E,)|, such that if there is a path throughfollowed by I;, theni < ;.
Observe thatF \ (F, N E,) can be divided intoF \ E, and E \ E;, and therefore the order
in (I30) must alternate between edges in the two sets. Maintpthe order in[(130), we may

group the edges by the two sets, rewritihg (130) as
(Uq, V1, U, Vo, ..., Uk, Vi) (131)

wherel; ¢ E\ E, andV; C E\ F,, andK’ is the number of times the edges [n_(1130) alternate
between the two sets. Note tHadt or V, may be empty.
We now construct the manner in which the two possible setsagbts,T; or T,, may cause

w, and w, to become indistinguishable. Supposg is the message€l; are the traitors, they
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placez on E; N E,, but behave honestly on all other edges. We denote the valuedi edges
crossing the cut as

n (1) 1) @ 1) (1
(z,y,ug),ﬂ),ué),vé),...,ugz,vﬁ(?) (132)

where z represents the values dty N E,, y the values onE, \ E, and uf.l) and vi(l) are the
values placed ofal; andV; respectively. Note that only the; values are directly adjustable by
the traitors, but they may affect elements later in the secgle

Alternatively, if w, is the messagéd,; are the traitors, and they placeon F; N E;, but behave

honestly elsewhere, the values across the cut are denoted
2 2 2 2 2
<Z7y7u§ )7/U§ )7u§)7vg)7"'7/u§{/))' (133)

Here, only thev; values may be changed directly by the traitors.

In the two scenarios, the traitors may alter their outputiealso that[(132) and (133) are
transformed to become identical. This can be done as follow§l32), the traitors may replace
u{V with «{¥. Downstream edges are either controlled by honest nodeseyprare controlled
by traitors that continue, for now, to behave honestly. Herhbis change may affect the later
edges in the sequence, but they do so in a way determined grtlyebcode. This results in a

set of values denoted by

2 3) (3) (3 3) (3
(z,y,u@,v%),ué),vé),...,u%%v%)). (134)

In (I33), the traitors may now replaeé” with v\, resulting in
2 3 4 4 4
<Z7 y7 ug )7U§ )7ug )7U§ )7 A '7U§(,))' (135)

We may now return to[{I34) and replaeg’ with «\”, further changing downstream values.
Continuing this process will cause the two sequences torbeddentical, thereby making,

and w, indistinguishable at the destination. [ |

APPENDIX B

PROOF OFBOUND ON LINEAR CAPACITY FOR THE COCKROACH NETWORK

We show that no linear code for the Cockroach Network, shawRigure[1, can achieve a
rate higher than 4/3. Fix any linear code. For any link;j), let X; ; be the value placed on this

link. For every node, let X; be the set of messages on all links out of nedandY; be the
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set of messages on all links into nodé et Gx, .y, be the linear transformation frork; to Y},

assuming all nodes behave honestly. Observe that
Yp = Gxgoyvp Xs(w) + Z Gx,-vp € (136)

wheree; represents the difference between what a traitor placessavutgoing links and what
it would have placed on those links if it were honest. Only owele is a traitor, so at most
one of thee; is nonzero. Note also that the output values of the soxrges a function of the

messagev. We claim that for any achievable rafe
1
R < " rank(G'x—y,,) — maxrankGx,x,-v,) (137)
Zh]

wheren is the block length used by this code. To show this, first noét for any pair of nodes
1, j there existK, Hy, H, such that

Gxooyp = K+ Gx, 5y, Hi + GXj—>YDH2 (138)

and where
rank K') = rank G'x—yv,,) — rankGx, x,-vy,)- (139)

That is, the first term on the right hand side bf (138) repres#me part of the transformation
from Xg to Y that cannot be influenced by; or X;. Consider the case that raik) < R.
Then there must be two messages w, such thatK Xg(w;) = K Xg(ws). If the message is

wy, hodei may be the traitor and set
e; = Hi(Xs(wy) — Xg(wy)). (140)
Alternatively, if the message is,, node;j may be the traitor and set
e; = Ho(Xg(wy) — Xg(ws)). (141)
In either case, the value received at the destination is
Yp = KXg(wy) + Gx, v, H1 Xs(ws)
+ Gx, -y, Ha Xg(wy).

Therefore, these two cases are indistinguishable to thindéen, so it must make an error for
at least one of them. This provés (137).
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Now we return to the specific case of the Cockroach NetworkseDte that theX, p is a
linear combination ofX; , and X, ,. Let k; be the number of dimensions &f, , that depend
only on X; 4 and are independent of, . Let k, be the number of dimensions of, , that
depend only onX,,4, and letks be the number of dimensions that depend on h&th and
Xs4. Certainlyky + ko + ks < n. Similarly, letiy, l5, l5 be the number of dimensions af; j, that
depend only onX, 5, that depend only otk 5, and that depend on both respectively. Finally,
let m; andm, be the number of dimensions of, , and X; ,, respectively.

We may write the following:

rank(GXs—)Y4) - rank(GXz,X3—>Y4) S ml _'_ kla
rank(G xsy,) — rankGx, x,-v;) < ks + 1,
rankGxq—y,) — rankGx, x,—v,) < ls + ma.

Therefore, using (137), any achievable rétes bounded by

R< %min{ml + ki, ks + 1, s +mao} (142)
subject to
ky + ko + ks < n, (143)
hi+l+l<n, (144)
my < n, (145)
my < n. (146)

It is not hard to show that this implieB < 4/3.
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