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The Degrees of Freedom of Compute-and-Forward
Urs Niesen, and Phil Whiting

Abstract

We analyze the asymptotic behavior of compute-and-forwardrelay networks in the regime of high signal-to-
noise ratios. We consider a section of such a network consisting of K transmitters andK relays. The aim of the
relays is to reliably decode an invertible function of the messages sent by the transmitters. An upper bound on
the capacity of this system can be obtained by allowing full cooperation among the transmitters and among the
relays, transforming the network into aK × K multiple-input multiple-output (MIMO) channel. The number of
degrees of freedom of compute-and-forward is hence at mostK. In this paper, we analyze the degrees of freedom
achieved by the lattice coding implementation of compute-and-forward proposed recently by Nazer and Gastpar.
We show that this lattice implementation achieves at most2/(1+ 1/K) ≤ 2 degrees of freedom, thus exhibiting a
very different asymptotic behavior than the MIMO upper bound. This raises the question if this gap of the lattice
implementation to the MIMO upper bound is inherent to compute-and-forward in general. We answer this question
in the negative by proposing a novel compute-and-forward implementation achievingK degrees of freedom.

I. INTRODUCTION

The two central problems of reliable communication over a wireless relay network are the signal
interactions introduced by the wireless medium and the additive noise experienced at the nodes in the
network. Traditional approaches of dealing with these problems fall broadly into two categories. On the
one hand, intermediate relays in the network can try to completely remove the receiver noise. Thedecode-
and-forwardscheme (see [1]–[3], among others) falls into this category. While this solves the problem of
noisy reception, its performance is adversely affected by the signal interactions, which are usually avoided
by careful scheduling of transmissions. On the other hand, intermediate relays can try to make use of
the signal interactions introduced by the channel either bynot removing the additive noise at all, or by
only removing it partially. Schemes such asamplify-and-forward(see, e.g., [2], [4]–[6]) orcompress-and-
forward (see, e.g., [1], [3], [7]–[10]) fall into this category. Since noise is not or only partially removed
at the relays, these schemes suffer from noise accumulation.

A third approach, referred to as eithercompute-and-forward[11], [12], physical-layer network coding
[13], [14], or analog network coding[15], aims to both harness the signal interactions introduced by the
channel and remove the noise at the relays. This is achieved by allowing the relays to decode noiseless
functionsof the transmitted messages. At the destination node all theinformation streams are combined
to determine the original messages being sent. In this paper, we examine the design and performance of
such schemes.

A small example illustrates the approach, see Fig. 1. Consider a section of a larger relay network
with 2 transmitters and2 relays. The channel gains(hm,k) between the transmitters and the relays are
assumed to be constant and known throughout the network. Thetransmitters have access independent
messagesw1, w2, which are separately encoded, modulated, and then sent over the channel. The relays
receive a linear combination of these transmitted signals corrupted by additive noise. Each relay decodes
independently; however, the receivers do not aim to decode the original messagesw1, w2. Rather, each
relaym decodes an intermediate quantityum, which is a noiseless function of the messagesw1 andw2.
Crucially, these functions are chosen to be adapted to the channel gains. In other words, the computation of
the functionsu1, u2 is aided by the signal interactions introduced by the channel. Following the decoding
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stage, the decoded functionsu1, u2 are combined and inverted to recover the original messagesw1, w2.
This combining and inverting of the decoded functions is to be interpreted as taking place at the destination
node (not explicitly modeled in this scenario), which is interested only in the original messages.

Encoder

Encoder

Decoder

Decoder

ŵ1

ŵ2

Inverter

z2

w2

h1,2

h2,1

h2,2

h1,1

u2

u1

z1

w1

Fig. 1. A section of a relay network with two transmitters andtwo relays.

In [11], Nazer and Gastpar propose an ingenious coding scheme for compute-and-forward using lattice
codes (see [16], [17], among others) at each transmitter. These lattice codes have the property that any
integer linear combination of two codewords is again a codeword. Due to the additive nature of the
channel, each relay receives a linear combination of the lattice codewords (which is again a codeword)
plus some additive noise. The relays then decode the linear combination of the codewords, removing the
noise. The relays thus decode a noiseless function of the messages. In terms of our example with two
sources and relays, we see that the decoded quantitiesu1, u2 are linear functions of the messagesw1, w2

in this case. Assuming the resulting system of linear equations is invertible, the original messagesw1 and
w2 can be recovered at the final destination fromu1 andu2.

However, there is a subtle difficulty with this approach thatwe have neglected in the above description.
The lattice property of the codes ensures only that anyinteger linear combination of codewords is again
a codeword, whereas the linear combination computed by the wireless channel can have arbitraryreal
(or complex) coefficients. To overcome this difficulty, [11]proposes to scale the received channel output
so that the scaled received linear combination of codewordsis close to an integer linear combination. In
general, the larger the scaling factor the better the approximation, increasing achievable rates. At the same
time, a larger scaling factor results in amplification of noise, decreasing achievable rates.

We hence see that there is a tradeoff between closeness of approximation and noise amplification. This
tradeoff is a central theme in the field ofDiophantine approximation, which studies the approximation of
real numbers by rationals, and we will refer to this as theDiophantine tradeoffin compute-and-forward.
The rates achievable by the lattice coding implementation of compute-and-forward in [11] are not given
by an analytic expression, but rather as the solution to an optimization problem, in which this tradeoff
appears implicitly. It is hence not clear how significant theloss due to this Diophantine tradeoff is.

In this paper, we show that the loss in rate due to this tradeoff is indeed significant at high but still
realistic values of signal-to-noise ratio (SNR), say20dB and above. In particular, for the two-user example
discussed earlier, we show that due to this Diophantine tradeoff the compute-and-forward scheme in [11]
achieves only one degree of freedom (capacity pre-log factor), the same as time sharing between the
transmitters. In other words, in the two-user case, the compute-and-forward implementation in [11] and
time sharing have the same high-SNR behavior. For the general case withK transmitters andK relays,
we show that the lattice scheme achieves at most2/(1+1/K) ≤ 2 degrees of freedom. While potentially
better than time sharing, this is considerably worse than the MIMO upper bound ofK degrees of freedom
that would be achievable with full cooperation among the transmitters and among the relays.

This negative result raises the question as to whether this Diophantine tradeoff and the associated
loss are inherent to compute-and-forward as a scheme in general or whether they are an artifact of the
implementation in [11]. We show that the latter is the case and that compute-and-forward in general does
not suffer from this tradeoff. To this end, we propose a novelimplementation of compute-and-forward that
achievesK degrees of freedom, matching the MIMO upper bound. Thus, compute-and-forward can achieve
the same asymptotic rates as if cooperation among the transmitters and among the relays were allowed.
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The proposed achievable scheme introduces the concept ofsignal alignment, related to the alignment of
interference. This alignment of signals is crucial to achieve theK degrees of freedom upper bound, and
indicates that the compute-and-forward problem and the interference channel problem are closely related.

The remainder of this paper is organized as follows. SectionII provides a general formulation of the
compute-and-forward setting. Section III states the main results. Proofs are presented in Sections IV–VI.
Section VII contains concluding remarks.

II. PROBLEM STATEMENT AND NOTATION

A. Notational Conventions

Throughout this paper, we use the following notational conventions. Vectors and matrices are written in
bold font in lower and upper case, respectively, e.g.,h andH. For a matrixH, its transpose is denoted
by HT, and its determinant bydet(H). For a vectorh, we write‖h‖ for its Euclidean norm. We denote
Lebesgue measure byµ. We say that a property holds for almost everyH if the setB of H for which
the property doesnot hold has Lebesgue measureµ(B) equal to zero. Finally, all logarithms are to the
base2, and therefore channel capacities are expressed in bits perchannel use.

B. Problem Statement

We consider a section of a relay network withK transmitters andK relays modeled by a discrete-time
real Gaussian channel.1 The channel outputym[t] at receiverm ∈ {1, . . . , K} and timet ∈ N is

ym[t] ,
K
∑

k=1

hm,kxk[t] + zm[t]. (1)

Herexk[t] ∈ R is thechannel inputat transmitterk ∈ {1, . . . , K}, hm,k ∈ R is thechannel gainbetween
transmitterk and receiverm, and zm[t] ∈ R is additive white Gaussiannoisewith zero mean and unit
variance. Note that the channel gains(hm,k) are deterministic and constant across time. As such, they are
known throughout the network. To simplify notation, let therow vector

hm ,
(

hm,1 hm,2 · · · hm,K

)

be the channel gains to receiverm, and set

H ,









h1

h2
...

hK









.

Transmitterk has access to an independentmessagewk uniformly distributed over{0, 1, . . . ,Wk − 1}.
The goal of receiverm is to compute the (deterministic) function

um , am(w1, w2, . . . , wK) ∈ {0, 1, . . . , Um − 1}.
Sinceam is a deterministic function, its range can contain at mostUm ≤

∏K
k=1Wk elements. We impose

that the messages(wk) can be recovered from the decoded equations(um), i.e., that the vector map
induced by theK functions(am) is invertible.

Formally, ablock codeof lengthT and power constraintP consists ofK encoders

fk : {0, . . . ,Wk − 1} → RT

1Throughout this paper, we assume real channels. Using arguments similar to the ones in [18], [19], the results can be extended to hold
for complex channels as well.
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for k ∈ {1, . . . , K}, mapping the messagewk to channel inputs

(xk[t])
T
t=1 , fk(wk)

such that
1

T
‖fk(wk)‖2 ≤ P,

andK decoders
φm : RT → {0, 1, . . . , Um − 1}

for m ∈ {1, . . . , K}, mapping the channel outputs(ym[t])Tt=1 to the estimate

ûm , φm

(

(ym[t])
T
t=1

)

of um. The probability of error of this block code is

P
(

∪m∈{1,...,K}{ûm 6= um}
)

.

Observe that the probability of error is defined with respectto the equationsum and not the original
messageswk. The (sum)rate of this block code is

1

T

K
∑

k=1

log(Wk).

A rateR(H , P, (am)) is achievableif for every η > 0 there exists a block code of lengthT and power
constraintP with probability of error less thanη and rate at leastR(H , P, (am)). The computation
capacity for functions(am), denoted byC(H , P, (am)), is defined as the supremum of achievable rates.
Finally, define thecomputation capacity

C(H , P ) , sup
(am)

C(H , P, (am)),

where the supremum is over all invertible (deterministic) functions(am).
Note that in this definition of computation capacity, it is irrelevant which functions the receivers decode,

as long as all the decoded equations allow recovery of the original messages. This requirement is best
understood in the context of a larger relay network, in whichthe channel considered here is only one
component of the network, and the receivers here correspondto intermediate relays. The invertibility of the
map(am) guarantees that collectively the decoded equations(um) at these relays contain all the information
about the messages(wk) at the transmitters. However, the decoded equations have tobe deterministic,
i.e., all noise introduced by the channel has to be removed atthe relays. This ensures that noise is not
forwarded further down the larger relay network. These two requirements (invertibility and noise removal)
are the essence of the compute-and-forward approach. We point out that decode-and-forward is a special
case of the above definition in which the functionam are given by

um = am(w1, w2, . . . , wK) = wm

for all m. On the other hand, schemes like amplify-and-forward or compress-and-forward do not satisfy
the above definition, since they compute randomized (i.e., noisy) functions of the messages.

While the above definition of computation capacity allows for arbitrary functionsam it is worth
mentioning the special case oflinear functions. In this case, receiverm aims to compute the function

um ,

K
∑

k=1

am,kwk,
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with am,k ∈ R.2 Define the row vector

am ,
(

am,1 am,2 · · · am,K

)

and the corresponding matrix

A ,









a1

a2
...

aK









.

The messages(wk) can in this case be recovered from the decoded equations(um) if the matrix A is
full rank. With slight abuse of notation, we writeC(H , P,A) for the computation capacity for the linear
function determined by the coefficient matrixA.

In the remainder of his paper, we will be interested in thedegrees of freedomof the computation
capacityC(H , P ) defined as

lim
P→∞

C(H , P )
1
2
log(P )

assuming the limit exists. If this limit is equal toD, then

C(H , P ) =
D

2
log(P ) + o(log(P ))

as P → ∞. Thus, the degrees of freedom describe the behavior ofC(H , P ) at high SNR. Since the
o(log(P )) approximation alone can be quite weak, we will provide tighter second-order asymptotics as
well.

III. M AIN RESULTS

Nazer and Gastpar [11, Theorems 1 and 2] provide an achievable scheme based on lattice codes for
computation of linear equations over the channel (1), showing that, forA ∈ ZK×K ,

C(H , P,A) ≥ RL(H , P,A)

,

K
∑

k=1

min
m:am,k 6=0

RL(hm, P,am)

,

K
∑

k=1

min
m:am,k 6=0

(

1

2
log
(

1 + P‖hm‖2
)

− 1

2
log

(

‖am‖2 + P
(

‖hm‖2‖am‖2 −
(

hma
T

m

)2
)

)

)

(2)

is achievable. We emphasize that (2) is only valid forinteger matricesA ∈ ZK×K. This restriction turns
out to be a significant limitation, as we will see later.

Let us interpret the terms in the definition ofRL(hm, P,am). The first term corresponds to the sum
capacity of a multiple-access channel with channel gainshm. The second term represents the rate loss
incurred by using the coefficientsam. This rate loss, governed by

‖am‖2 + P
(

‖hm‖2‖am‖2 −
(

hma
T

m

)2
)

, (3)

consists of two parts: the squared norm ofam, and the powerP times the gap arising from the Cauchy-
Schwarz inequality, which is therefore nonnegative. This second term is zero if and only ifam andhm

2This setting can be slightly generalized by considering avectorof messageswk (instead of a scalarwk) and computinguk by applying
the same linear function to every component ofwk. The distinction between the scalar and vector cases is immaterial for the purpose of
this paper, and we will refer to both as linear computation.
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are collinear. Recall thatam has integer components and can therefore not be chosen to be collinear to
hm in general. Denote by

RL(H , P ) , max
A∈ZK×K :rank(A)=K

RL(H , P,A)

the largest rate achievable with the lattice scheme proposed in [11].3

As mentioned earlier, the scheme by Nazer and Gastpar uses lattice codes, which have the property that
every integer linear combination of two codewords is again acodeword. With this approach, the receivers
directly decode the linear combinations(um) and never explicitly decode the messages(wk). A different
approach would be to chooseA = I so thatum = wm for all m. This can be implemented by time
sharing between all the transmitters, achieving a sum rate of at least

C(H , P ) ≥ C(H , P, I)

≥
K
∑

k=1

1

2K
log
(

1 +KP |hk,k|2
)

. (4)

For A = I, the problem actually reduces to the standard interferencechannel, for which interference
alignment achieves

C(H , P ) ≥ C(H , P, I)

≥ K

4
log(P )− o(log(P )) (5)

as P → ∞ for almost every channel matrixH [20]. As P → ∞, this rate is the best achievable for
A = I and almost everyH, as it is shown in [21] that

C(H , P, I) ≤ K

4
log(P ) + o(log(P )). (6)

Finally, by allowing cooperation among the transmitters and among the receivers, the computation rate
can be upper bounded by the capacity of the MIMO channel with the same channel matrixH. This can
be further upper bounded by relaxing the per-antenna power constraint to a sum power constraint, so that,
by [22],

C(H , P ) ≤ max
1

2
log det

(

I +HQHT
)

, (7)

where the maximization is over all covariance matricesQ with trace at mostKP .
To compare the upper bound (7) to the lower bounds (2), (4), and (5), it is insightful to consider their

asymptotic behavior as powerP grows. The time-sharing lower bound (4) yields

lim inf
P→∞

C(H , P )
1
2
log(P )

≥ 1,

i.e., time sharing achieves one degree of freedom. The interference-alignment lower bound (5) yields

lim inf
P→∞

C(H , P )
1
2
log(P )

≥ K/2

for almost every channel matrixH, i.e., interference alignment achievesK/2 degrees of freedom. On
the other hand, almost every channel matrixH has full rank, in which case the MIMO upper bound (7)
yields

lim sup
P→∞

C(H , P )
1
2
log(P )

≤ K, (8)

3By [11, Lemma 1], a maximizingA ∈ ZK×K exists.
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i.e., the corresponding MIMO channel hasK degrees of freedom. Thus, at high SNRs, time sharing and
interference alignment behave very differently from the MIMO upper bound for almost everyH. Observe
that by (6) any scheme using decode-and-forward, i.e., withcoefficient matrixA = I, achieves at most
K/2 degrees of freedom for almost everyH. Hence, if we are to attain the upper bound ofK on the
degrees of freedom, the use of general compute-and-forward(as opposed to simple decode-and-forward)
will be necessary.

The behavior of the rateRL achieved by the lattice scheme is more difficult to evaluate.If H ∈ ZK×K

has integer components and is invertible, we can setA = H in (2) to obtain

RL(hm, P,hm) =
1

2
log
(

1 + P‖hm‖2
)

− 1

2
log
(

‖hm‖2
)

.

Hence, in this case,

lim inf
P→∞

RL(H , P )
1
2
log(P )

≥ K.

More generally, ifH ∈ QK×K has rational components and is invertible, then there exists aq ∈ N such
that qH ∈ ZK×K . SettingA = qH in (2) yields that lattice coding achieves a rate of

RL(hm, P, qhm) =
1

2
log
(

1 + P‖hm‖2
)

− 1

2
log
(

q2‖hm‖2
)

,

and again

lim inf
P→∞

RL(H , P )
1
2
log(P )

≥ K.

SinceRL ≤ C, we obtain together with the MIMO upper bound (7) that for invertibleH ∈ QK×K

lim
P→∞

RL(H , P )
1
2
log(P )

= K.

In other words, for invertibleH with rational components, the scheme based on lattice coding is
asymptotically optimal. In particular, this implies that the lattice scheme significantly outperforms the
schemes based on time sharing and based on interference alignment.

However, the requirement of rational channel gainsH is quite strong. In fact, this event has Lebesgue
measure zero. The question arises whether the behavior of the rateRL achieved by the lattice scheme of
[11] is significantly altered if we relax this assumption of rational channel gains. The next theorem shows
that this is indeed the case. In fact, for almost all channel gains, the lattice scheme has an asymptotic
behavior that is not significantly better than time sharing.

Theorem 1. For anyK ≥ 2 and almost everyH ∈ RK×K there exists a positive constantc1 = c1(K,H)
such that for allP ≥ 3

RL(H , P ) ≤ 1

1 + 1/K
log(P ) + c1 log log(P ).

In particular, this implies that for anyK ≥ 2 and almost everyH ∈ RK×K

lim sup
P→∞

RL(H , P )
1
2
log(P )

≤ 2

1 + 1/K
.

We remark that, forK = 2, Theorem 1 can be sharpened to

lim sup
P→∞

max
am∈Z2\{0}

RL(hm, P,am)
1
2
log(P )

≤ 1/2, (9)

for almost everyhm ∈ R2, so that

lim sup
P→∞

RL(H , P )
1
2
log(P )

≤ 1
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for almost everyH ∈ R2×2.
Theorem 1 shows that for almost every channel matrixH there is only limited asymptotic gain over

time sharing by using the lattice scheme in [11]. In particular, forK = 2, time sharing and lattice coding
achieve the same degrees of freedom. For largeK, the upper bound in Theorem 1 is approximately2—
better than time sharing, but still far off from theK/2 degrees of freedoms achievable with interference
alignment and the MIMO upper bound ofK degrees of freedom. In other words, it seems to suggest
that, at high SNR, compute-and-forward offers only limitedadvantage over standard coding schemes. This
conclusion turns out to be misleading, as we will see later.

The bad asymptotic performance of the lattice scheme is due to the rate loss term (3). As pointed out
earlier, to make the second term in (3) small, the coefficients am should be as close to collinear to the
channel gainshm as possible. However, sinceam is forced to be an integer vector, and sincehm is a
real vector, this is in general only possible by increasing the norm ofam. This, in turn, increases the
first term in (3). The tradeoff between the two terms in (3) is amain theme in the field ofDiophantine
approximation. In particular, the proof of Theorem 1 builds on a result of Khinchin to show that, for
almost every channel gainhm, the coefficient vectoram can only be close to collinear tohm if ‖am‖ is
large.

Example 1. Consider the channel vectorh = (1 h2) to one of the receiver. Consider

max
a∈Z2\{0}

RL(h, P,a),

the maximal rate at whichany (nontrivial) integer linear equation can be decoded at the receiver. From
(9), we know that

lim sup
P→∞

max
a∈Z2\{0}

RL(h, P,a)
1
2
log(P )

≤ 1/2

for almost every4 h2 ∈ R. On the other hand, forh2 ∈ Q,

lim
P→∞

max
a∈Z2\{0}

RL(h, P,a)
1
2
log(P )

= 1.

While these statements are only valid asymptotically asP → ∞, this qualitative behavior is already
visible at moderate values of SNR, as is depicted in Fig. 2. ♦

We now introduce a different implementation of the compute-and-forward approach that achievesK
degrees of freedom, matching the asymptotic behavior of theMIMO upper bound (8). In other words,
even though both the receivers and the transmitters are distributed, the proposed communication scheme
achieves the same number of degrees of freedom as a centralized communication scheme in which all
transmitters can cooperate and all receivers can cooperate.

Theorem 2. For everyK ≥ 2 and almost everyH ∈ RK×K there exist positive constantsc2 = c2(K,H)
and c3 = c3(K,H) such that for allP ≥ 2

K

2
log(P )− c2 log

K2

1+K2 (P ) ≤ C(H , P ) ≤ K

2
log(P ) + c3.

In particular, this implies that for anyK ≥ 2 and almost everyH ∈ RK×K ,

lim
P→∞

C(H , P )
1
2
log(P )

= K.

Recall that the implementation of compute-and-forward in [11] uses lattice/linear codes together with
output scaling. The aim of this output scaling is to make the scaled channel gains close to integer. The

4While (9) is stated for almost everyh ∈ R2, the same arguments can be used to show that (9) also holds foralmost everyh of the form
(1 h2).
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Fig. 2. Normalized ratemaxa RL(h, P,a)/
1
2
log(1+h

2P ) achievable with lattice codes [11] with optimized coefficient vectora ∈ Z2\{0}
for channel gainh = (1 h2) as a function ofh2 ∈ [0, 1]. The plots are for a valueP of 20dB, 30dB, 40dB, and50dB (from top to bottom).
As P → ∞, the normalized rate converges to at most1/2 for almost every value ofh2. On the other hand, forh2 ∈ Q (a set of measure
zero), the normalized rate converges to1. This limiting behavior can already be observed at the values of SNR shown here.

difficulty with this approach is that the scaling of the channel outputs amplifies the additive receiver noise.
In order for the scaled channel gains to be close to integer, the scaling factor should be large. On the
other hand, in order to have small noise amplification, the scaling factor should be small. These two
conflicting requirements result in the Diophantine tradeoff mentioned in the introduction. This tradeoff
can be observed in the tension between the two terms in (3) as discussed earlier.

Our proposed achievable scheme in Theorem 2 also uses linearcodes at the transmitters. However,
it avoids the scaling of the channel outputs and thereby the Diophantine tradeoff. Instead, we use a
modulation scheme based onsignal alignmentover the real numbers to convert the real linear combinations
produced by the channel into integer linear combinations. This step builds on a construction suggested
recently for the alignment ofinterferencein [20], [23], which itself is based on prior work on Diophantine
approximation on manifolds [24], [25]. The proposed approach is best illustrated with an example.

Example 2. Consider again theK = 2 case. Assume the channel gains are of the form

H ,

(

1 h2
h1 1

)

.

Set the channel input to be

x1 , w̄1,

x2 , w̄2,
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where bothw̄k are codewords from the same lattice code. The channel outputis then

y1 = w̄1 + h2w̄2 + z1,

x2 = h1w̄1 + w̄2 + z2.

Given that both codewords are from the same lattice code, onemight hope that an integer combination of
them might be decodable at higher rates than the individual messages themselves. However, the arguments
in Theorem 1 show that, for almost allH and at high enough SNR, each receiver can essentially decode
both w̄1 andw̄2 whenever it can decode an integer combination of them. This limits the computation rate
to one degree of freedom.

A simple improvement over this scheme is to set

x1 , w̄1,

x2 , h1w̄2,

The channel output is now

y1 = w̄1 + h1h2w̄2 + z1,

x2 = h1(w̄1 + w̄2) + z2.

This results in the signals̄w1 and w̄2 to be both observed with the same effective channel gainh1 at
receiver two. In other words, we have signal alignment at thesecond receiver. However, the signals at the
first receiver are still unaligned. This limits the computation rate to again only one degree of freedom.

To achieve alignment at both receivers, split the messages into two parts, and set

x1 , w̄1,1 + h1h2w̄1,2,

x2 , h1w̄2,1 + h21h2w̄2,2.

This results in the channel outputs

y1 = w̄1,1 + h1h2(w̄1,2 + w̄2,1) + h21h
2
2w̄2,2 + z1,

x2 = h1(w̄1,1 + w̄2,1) + h21h2(w̄1,2 + w̄2,2) + z2.

We now have partial alignment at both receivers. Receiver one decodes̄w1,1, w̄1,2+w̄2,1, andw̄2,2. Receiver
two decodesw̄1,1 + w̄2,1 and w̄1,2 + w̄2,2. It can be shown that this achieves a computation rate of4/3
degrees of freedom.

By breaking the messages into more submessages and aligningthem pairwise in the same manner, this
construction achieves a computation rate approaching two degrees of freedom, as promised in Theorem 2.

♦

Remark1: In the channel model (1), the channel gainsH are assumed to be constant and as such
known everywhere. In practice, this channel state information (CSI) would have to be estimated and
distributed throughout the network, resulting in signaling overhead.

Having access to CSI at both the receivers and the transmitters is critical for the operation of the
compute-and-forward scheme proposed here (achievingK degrees of freedom) as well as for the in-
terference alignment scheme in [20] (achievingK/2 degrees of freedom). In contrast, the lattice coding
implementation of compute-and-forward in [11] (and shown here to achieve at most2 degrees of freedom)
requires only CSI at the receivers but not at the transmitters. Whether the lattice coding scheme in [11]
achieves the optimal degrees of freedom if the use of transmitter CSI is excluded is an open question.

Remark2: Throughout this paper, we have been concerned almost exclusively with degrees of freedom.
The second-order asymptotics in Theorem 2 are quite poor, especially for larger values ofK. Deriving
tighter approximations valid for moderate values of SNR is an interesting direction for further investigation.
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IV. PRELIMINARIES: DIOPHANTINE APPROXIMATION

In all of the proofs, we will be using facts from Diophantine approximation. Here we provide the
necessary background as well as some extensions of well-known results.

Let h be a real anda, q be integers. How well canh be approximated by the ratioa/q? Since the
rationalsQ are dense in the realsR, this can be done to any arbitrary degree of accuracy. However, to get
a good approximation, the denominatorq will, in general, have to be large. The question then becomes
one of quantifying the tradeoff between the quality of approximation and the size ofq. Formally, the
problem is to analyze the behavior of

min
a∈Z

|h− a/q| (10)

as a function ofq ∈ N for fixed h ∈ R. A result due to Khinchin (see, e.g., [26, Theorem 1]) statesthat
if ψ is a nonnegative function such that

∞
∑

q=1

qψ(q) (11)

converges, then for almost everyh ∈ R there exists a positive constantc = c(h) such that

min
a∈Z

|h− a/q| ≥ cψ(q)

for all q ∈ N. On the other hand, if (11)diverges, then for almost everyh ∈ R and every positive constant
c, there are infinitely many values ofq ∈ N such that

min
a∈Z

|h− a/q| ≤ cψ(q)

The convergent and divergent parts of Khinchin’s theorem show that for almost everyh ∈ R the
approximation error|h− a/q| can be made to decay at least as fast asO(q−2+δ) but no faster than
Ω(q−2−δ) for any δ > 0.

The next lemma provides a simple generalization of the convergent part of Khinchin’s theorem to more
than one dimension and to approximations with denominator

√
q.

Lemma 3. Let ψ : N → R+. If
∞
∑

q=1

(
√
qψ(q))K <∞,

then for almost everyh ∈ RK there is a positive constantc = c(K,h) such that

max
k∈{1,...,K}

min
ak∈Z

|hk − ak/
√
q| ≥ cψ(q)

for all q ∈ N.

The lemma implies that, for almost everyh ∈ RK , the approximation error

max
k

min
ak∈Z

|hk − ak/
√
q|

can decay no faster thanΩ(q−1/2−1/K−δ) for any δ > 0.
Proof: Let Bq be the vectorsh ∈ [0, 1)K such that

max
k

min
ak∈Z

|hk − ak/
√
q| ≤ ψ(q). (12)

Sincehk ∈ [0, 1), the integerak can be restricted to the set{0, . . . , ⌈√q⌉} for all k. Settinga = (ak), we
see that a vectorh is in Bq if and only if it is at aℓ∞ distance of at mostψ(q) of such a vectora/

√
q.
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Thus, eacha ∈ {0, . . . , ⌈√q⌉}K contributes at most a subset of volume(2ψ(q))K to Bq. Since there are
at most(

√
q + 2)K such vectorsa, we have

µ(Bq) ≤ (
√
q + 2)K(2ψ(q))K .

By the convergence assumption, this implies that
∞
∑

q=1

µ(Bq) ≤
∞
∑

q=1

(
√
q + 2)K(2ψ(q))K <∞.

Applying the Borel-Cantelli lemma (see, e.g., [27, Theorem1.6.1]), this shows that

µ(Bq i.o.) = 0,

where “i.o.” stands for “infinitely often” (as a function ofq). Thus, almost everyh ∈ [0, 1)K satisfies (12)
only finitely many times. SinceRK is the countable union of integer cubes

∏K
k=1[bk, bk + 1), the same

holds also for almost allh ∈ RK .
Fix a h ∈ RK for which (12) holds only finitely many times. Then there exists a finite numberQ(h)

such that
max

k
min
ak∈Z

|hk − ak/
√
q| ≥ ψ(q)

for all q ≥ Q(h). Set

c = c(K,h) , min

{

1, min
q∈{1,...,Q(h)}

max
k

min
ak∈Z

|hk − ak/
√
q|

ψ(q)

}

,

and observe thatc is positive. Then

max
k

min
ak∈Z

|hk − ak/
√
q| ≥ cψ(q)

for all q ∈ N, concluding the proof of the lemma.
We will also need a generalization of the convergent part of Khinchin’s theorem to manifolds in

Euclidean space. We start with a small example to illustratethe setting. Consider again the question of
rational approximation in (10). This can be generalized to several dimensions as follows. FixH ∈ RK×K;
what is the behavior of

min
a∈Z

∣

∣

∑

k,mqm,khm,k − a
∣

∣

as a function ofqm,k ∈ Z? The generalization of Khinchin’s theorem to this setting is referred to as
Groshev’s theorem.

A further generalization, and the one that will be needed in this paper, is to allow forfunctionsof H.
Let G be a collection of functionsg : RK×K → R. Fix H ∈ RK×K ; what is the behavior of

min
a∈Z

∣

∣

∑

g∈Gqgg(H)− a
∣

∣

as a function ofqg ∈ Z? In particular, we will be interested in the collection of functions

GL ,

{

K
∏

k=1

K
∏

m=1

h
sm,k

m,k : S ∈ {0, . . . , L− 1}K×K

}

. (13)

In words,GL is the collection of all monomials in the channel gainsH with exponents between0 and
L−1. In the following, we will usually fix a particular realization ofH and treat the setGL as a collection
of LK2

points inR.

Remark3: It is straightforward to verify that, for almost everyH ∈ RK×K, all LK2
monomials in

GL evaluate to distinct numbers. This implies that, for almosteveryH ∈ RK×K, we have|GL| = LK2
.
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Furthermore, again for almost allH, everyg ∈ GL can be uniquely factorized into powers ofhm,k. In
other words, to eachg corresponds auniqueset of powersS such that

g =
∏

m,kh
sm,k

m,k .

We refer to this as theunique factorizationproperty. Given that we are only interested in results that hold
for almost every channel matrixH, we may assume in the following thatGL has this unique factorization
property.

The following lemma is a special case of a more general resultfrom [24], [25] (see also [20]).

Lemma 4. Let ψ : N → R+ be a monotonically decreasing function andL ∈ N, L ≥ 2. If
∞
∑

q=1

q|GL|−2ψ(q) <∞,

then for almost everyH ∈ RK×K there is a positive constantc = c(K,H) such that

min
a∈Z

∣

∣

∑

g∈GL,g 6=1qgg − a
∣

∣ ≥ cψ
(

maxg∈GL,g 6=1|qg|
)

for all (qg) ∈ Z|GL|−1 \ {0}.

Lemma 4 implies that, for almost everyH ∈ RK×K, the approximation error

min
a∈Z

∣

∣

∑

g∈GL,g 6=1qgg − a
∣

∣

can decay no faster than
Ω
(

(

maxg∈GL,g 6=1|qg|
)−|GL|+1−δ

)

for any δ > 0.

V. PROOF OFTHEOREM 1

We want to upper bound the largest rate

RL(H , P ) , max
A∈ZK×K :rank(A)=K

RL(H , P,A) (14)

achievable with the lattice coding scheme of [11]. From the above definition, we see that the coefficient
matrix A can be chosen as a function ofP . In particular, to eachP corresponds an optimalA = A(P )
maximizing the right-hand side of (14).5 We consider thisA in the following so that

RL(H , P ) = RL(H , P,A(P )). (15)

Recall that

RL(H , P,A) =

K
∑

k=1

min
m:am,k 6=0

RL(hm, P,am), (16)

and thatRL(hm, P,am) consists of two terms, the desired term

1

2
log
(

1 + P‖hm‖2
)

and the loss term

−1

2
log

(

‖am‖2 + P
(

‖hm‖2‖am‖2 −
(

hma
T

m

)2
)

)

.

5It can be shown that such an optimalA exists, see [11, Lemma 1]. If more than one maximizer exists,we choose one of them.
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We start by upper boundingRL(hm, P,am) for a fixed value ofm ∈ {1, . . . , K}. Together with (16), this
yields an upper bound onRL(H , P,A) and hence onRL(H , P ).

We can rewrite the quantity inside the logarithm of the loss term inRL(hm, P,am) as

‖am‖2 + P
(

‖hm‖2‖am‖2 −
(

hma
T

m

)2
)

= ‖am‖2 + P‖hm‖2‖am‖2
(

1− cos2(∠(hm,am))
)

= ‖am‖2 + P‖hm‖2‖am‖2 sin2(∠(hm,am)).

Now, for x ∈ [−π/2, π/2],
sin2(x) ≥ 4

π2
x2,

and, for∠(hm,am) measured in∈ [−π, π],

|∠(hm,am)| ≥
∥

∥

∥

∥

hm

‖hm‖
− am

‖am‖

∥

∥

∥

∥

by lower bounding the distance along the great circle on the unit sphere by its chordal distance. Since
RL(hm, P,am) is invariant to multiplication ofam by −1, we can assume that∠(hm,am) ∈ [−π/2, π/2]
so that

‖am‖2 + P
(

‖hm‖2‖am‖2 −
(

hma
T

m

)2
)

≥ ‖am‖2 +
4

π2
P‖hm‖2‖am‖2

∥

∥

∥

∥

hm

‖hm‖
− am

‖am‖

∥

∥

∥

∥

2

≥ ‖am‖2 +
4

π2
P‖hm‖2‖am‖2 max

1≤k≤K

∣

∣

∣

∣

hm,k

‖hm‖
− am,k

‖am‖

∣

∣

∣

∣

2

≥ ‖am‖2 +
4

π2
P‖hm‖2‖am‖2 max

1≤k≤K−1

∣

∣

∣

∣

hm,k

‖hm‖
− am,k

‖am‖

∣

∣

∣

∣

2

. (17)

As we will see shortly, the restriction of the maximum in the last inequality tok ∈ {1, . . . , K − 1} is
necessary to decouple the (implicit) optimization overam into the firstK − 1 individual componentsak
and the magnitude‖am‖2.

Define

h̃m ,
1

‖hm‖
(

hm,1 · · · hm,K−1

)

,

qm , ‖am‖2 ∈ N,

ψm(qm) , max
k∈{1,...,K−1}

∣

∣h̃m,k − am,k/
√
qm
∣

∣.

With this, we can rewrite (17) as

‖am‖2 + P
(

‖hm‖2‖am‖2 −
(

hma
T

m

)2
)

≥ qm +
4

π2
P‖hm‖2qmψ2

m(qm). (18)

We want to minimize the rate loss (18). The first term in the right-hand side of (18) is increasing inqm.
As we shall see, the second term is decreasing inqm. Hence there is a tradeoff between the two terms
that determines the optimal value ofqm.

The behavior of the approximation errorψm(qm) can be bounded using the convergent part of Khinchin’s
theorem inK − 1 dimensions. To this end, note that

ψm(qm) ≥ min
am∈ZK−1

max
k∈{1,...,K−1}

∣

∣h̃m,k − am,k/
√
qm
∣

∣

= max
k∈{1,...,K−1}

min
am,k∈Z

∣

∣h̃m,k − am,k/
√
qm
∣

∣,
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which is of the form analyzed in Lemma 3. Applying Lemma 3 inK− 1 dimensions shows then that for
any fixedδ > 0 and almost everỹhm there existsc = c(K, h̃m) = c(K,h) > 0 such that

ψm(qm) > cq−1/2−1/(K−1)−δ
m (19)

for all qm ∈ N. Observe that this lower bound holds for any choice ofam; in particular, the constantc
is uniform inam. We can then continue to lower bound the loss term inRL(hm, P,am) as

qm +
4

π2
P‖hm‖2qmψ2

m(qm) ≥ qm +
4

π2
cP‖hm‖2q−2/(K−1)−2δ

m

≥ max

{

qm,
4

π2
cP‖hm‖2q−2/(K−1)−2δ

m

}

. (20)

This shows the tradeoff between the two cost terms. Recall that we are allowed to chooseA = A(P ),
and hence alsoqm, as a function of powerP . Asymptotically, the optimal choice ofqm is

qm = qm(P ) = Θ
(

P (1+2/(K−1)+2δ)−1)

,

and hence
qm + P‖hm‖2

4

π2
qmψ

2
m(qm) ≥ Ω

(

P (1+2/(K−1)+2δ)−1)

asP → ∞.
Combined with (18), this shows that, for almost everyh̃m,

RL(hm, P,am(P )) ≤
1

2
log
(

1 + P‖hm‖2
)

− 1

2
log
(

Ω
(

P (1+2/(K−1)+2δ)−1))

asP → ∞. This implies that

lim sup
P→∞

RL(h, P,am(P ))
1
2
log(P )

≤ 2 + δ̃

K + 1 + δ̃
, (21)

where we have set
δ̃ , 2(K − 1)δ > 0.

We have argued that (21) holds for almost everyh̃m ∈ RK−1. It is shown in Appendix A that this implies
that (21) also holds for almost everyhm ∈ RK .

Up to this point, we have analyzed the rate for a single receiverm. Using the definition ofRL(H , P,A)
in (16), this yields the upper bound

RL(H , P,A(P )) =
K
∑

k=1

min
m:am,k 6=0

RL(hm, P,am(P ))

≤ K max
m∈{1,...,K}

RL(hm, P,am(P ))

on the sum rate. Together with (21) and using the union bound overm ∈ {1, . . . , K}, this implies that

lim sup
P→∞

RL(H , P,A(P ))
1
2
log(P )

≤ 2 + δ̃

1 + 1/K + δ̃/K

for almost everyH. As we have assumed thatA(P ) is the optimal coefficient matrix for powerP , this
implies by (15) that

lim sup
P→∞

RL(H , P )
1
2
log(P )

≤ 2 + δ̃

1 + 1/K + δ̃/K
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for almost everyH. Sinceδ̃ > 0 is arbitrary, we may take the limit as̃δ → 0 to obtain

lim sup
P→∞

RL(H , P )
1
2
log(P )

≤ 2

1 + 1/K
,

yielding the desired upper bound on the degrees of freedom ofthe lattice scheme.
We now derive an estimate of the speed of convergence. Observe that we can chooseδ in (19) as

δ = δ(qm) =
2 log log(1 + qm)

(K − 1) log(qm)

and still satisfy the convergence condition in Lemma 3 inK − 1 dimensions. The lower bound (20) on
the loss term inRL(hm, P,am) then becomes

qm +
4

π2
P‖hm‖2qmψ2

m(qm) ≥ max

{

qm,
4

π2
cP‖hm‖2q

− 2
K−1

m log
− 4
K−1 (1 + qm)

}

≥ log
− 4
K−1 (1 + qm)max

{

qm,
4

π2
cP‖hm‖2q

− 2
K−1

m

}

.

By [11, Lemma 1], we can restrict the optimization overA to matrices satisfying

qm = ‖am‖2 ≤ ‖hm‖2P
so that

qm +
4

π2
P‖hm‖2qmψ2

m(qm) ≥ log
− 4
K−1 (1 + ‖hm‖2P )max

{

qm,
4

π2
cP‖hm‖2q

− 2
K−1

m

}

.

We can now solve for the optimalqm. Proceeding as before, we obtain an upper bound on the computation
rate with lattice coding of

RL(H , P ) ≤ max
m∈{1,...,K}

K

(

1

2
log
(

1 + P‖hm‖2
)

− 1

2
log Ω

(

log
− 4
K−1 (1 + ‖hm‖2P )P

(

1+
2

K−1

)−1
)

)

≤ 1

1 + 1/K
log(P ) +O

(

log log(P )
)

asP → ∞. This implies that for anyK ≥ 2 and almost everyH ∈ RK×K there exists a positive constant
c1 = c1(K,H) such that for allP ≥ 3

RL(H , P ) ≤ 1

1 + 1/K
log(P ) + c1 log log(P ),

proving the theorem.

VI. PROOF OFTHEOREM 2

The upper bound in Theorem 2 follows immediately from (7). Wefocus here on the lower bound
showing that

lim inf
P→∞

C(H , P )
1
2
log(P )

≥ K.

We start with a high-level description of the scheme achieving this performance in Section VI-A. The
detailed analysis can be found in Section VI-B.
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A. Description of Communication Scheme

The proposed coding scheme consists of two components: a modulation scheme and an outer code
(see Fig. 3). The encoderfk for the outer code at transmitterk maps the messagewk into the sequence
of coded symbols(w̄k[t])

T
t=1. The modulatorf̄k at transmitterk maps each coded symbol̄wk[t] into a

channel symbolxk[t]. Thus, while the outer code produces a block of coded symbols, the modulation
scheme operates on a single coded symbol to produce a single channel symbol. The encoder in the
definition of computation capacity is the concatenation of these two encoding operations. At receiverm,
the demodulator̄φm computeŝ̄um[t] from the channel outputym[t], and the decoderφm for the outer code
maps the sequence(ˆ̄um[t])Tt=1 into an estimatêum of the desired functionum. Bothum andūm are defined
as a function of(wk) and(w̄k), respectively. The decoder in the definition of computationcapacity is the
concatenation of these two decoding operations.

x1[t]

x2[t]

x3[t]

f̄1

f̄2

f̄3

Py|x

y1[t]

y2[t]

y3[t]

w̄1[t]

w̄2[t]

w̄3[t]

(w̄1[t])
T
t=1

(w̄2[t])
T
t=1

(w̄3[t])
T
t=1

f1

f2

f3

w1

w2

w3

(ˆ̄u2[t])
T
t=1

(ˆ̄u3[t])
T
t=1

(ˆ̄u1[t])
T
t=1 φ1

φ2

φ3

û1

û2

û3

ˆ̄u1[t]φ̄1

ˆ̄u2[t]φ̄2

ˆ̄u3[t]φ̄3

Fig. 3. Modulation scheme({f̄k}, {φ̄m}) together with outer code({fk}, {φm}). At transmitterk, the messagewk is mapped by the
encoderfk of the outer code into the sequence(w̄k[t])

T
t=1 of modulator inputs. Each̄wk[t] is mapped by the modulator̄fk to a channel

input xk[t]. At receiverm, the channel outputym[t] is mapped by the demodulator̄φm into a demodulated equation̄̂um[t]. The sequence
of these demodulated equations(ˆ̄um[t])Tt=1 is mapped by the decoderφm of the outer code to an estimatêum of the desired equationum.

Note that in the description of the proposed achievable scheme we are using the following notational
conventions. Quantities related to the outer code are denoted by standard font, i.e.,fk, φm, wk, . . . The cor-
responding quantities related to the modulation scheme areindicated by bars, i.e.,̄fk, φ̄m, w̄k, . . . Estimated
quantities are indicated by hats, i.e., the outputûm of the decoder of the outer code is an estimate of the
correct outputum, and similarly the output̂̄um of the demodulator is an estimate of the correct output
ūm.

The construction is as follows. Each messagewk is split into |GL| = LK2
submessages(wk,g)g∈GL

with
GL defined in (13). Everyfk encodes each of these submessageswk,g using the same linear code. Thus,
all encoders{fk} are identical. The modulator̄fk combines these|GL| codewords into a single sequence
of channel inputs.

Consider now receiverm. The channel to this receiver is in effect aK-user multiple-access channel
(MAC). By splitting the transmitted message into submessage, we have transformed thisK-user MAC
into aK|GL|-user MAC, with each user corresponding to one submessage. The demodulator̄φm splits this
MAC at receiverm into |GL+1| subchannels. Through careful design of the modulators, this splitting can
be done such that each of the resulting|GL+1| MACs outputs a (noisy) sum of onlyK out of theK|GL|
possible input signals. Observe that this channel is linearwith integer channel coefficients. Hence, the
linear codes used as outer code can now be efficiently decoded. The decoderφm of the outer code is thus
chosen to recover the submessage corresponding to thesumof the K codewords seen over this MAC.
Decoding is shown to be possible with vanishing probabilityof error with a rate of order 1

2|GL+1| log(P ) for
each of the submessages for largeP . Moreover, it can be shown that the resulting collection of decoded
functions is invertible.

Since there are|GL| submessages for each of theK transmitters, the sum rate achieved by this scheme
is on the order of

K|GL|
2|GL+1|

log(P ) =
K

2(1 + 1/L)K2 log(P ).

The scheme achieves therefore
K

(1 + 1/L)K2

degrees of freedom. For largeL, this is approaches theK degrees of freedom claimed in Theorem 2.
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B. Detailed Proof of Achievability

The proof of the theorem consists of three steps. First, we show how the modulation scheme transforms
the noisy linear combinations withreal coefficients produced by the channel (1) into a system computing
noisy linear combinations withintegercoefficients. Second, we show how the outer code further transforms
this modulated channel into a system computingnoiselesslinear combinations with integer coefficients.
Third, we argue that the linear combinations produced by theouter code are invertible, i.e., the messages
at the transmitters can be recovered from the computed linear combinations of all receivers.

We now describe the operations of the modulation scheme in detail (see Fig. 4). Recall the definition
of GL in (13) as the collection of all monomials in the channel gains with exponents between0 andL−1.
The input symbolw̄k[t] to the modulatorf̄k at transmitterk at time t consists of|GL| subsymbols

w̄k[t] , (w̄k,g[t])g∈GL
, w̄k,g[t] ∈ {0, . . . , p− 1} ∀k, g, t

for somep, L ∈ N to be chosen later. The output symbolˆ̄um[t] of the demodulator̄φm at receiverm at
time t consists of|GL+1| subsymbols

ˆ̄um[t] , (ˆ̄um,g[t])g∈GL+1
, ˆ̄um,g[t] ∈ {0, . . . , p− 1} ∀m, g, t.

Note that the number of input and output subsymbols per time slot are not the same.

φ̄2

φ̄3

φ̄1f̄1

f̄2

f̄3

x1

x2

x3

y1

y2

y3

Py|x

(ˆ̄u1,g)g∈GL+1

(ˆ̄u2,g)g∈GL+1

(ˆ̄u3,g)g∈GL+1

(w̄1,g)g∈GL

(w̄2,g)g∈GL

(w̄3,g)g∈GL

Fig. 4. Modulation scheme({f̄k}, {φ̄m}). The modulatorf̄k at transmitterk takes(w̄k,g)g∈GL
as input. The demodulator̄φm at receiver

m produces(ˆ̄um,g)g∈GL+1
as its output. Indicated by the dashed box is the modulated channel obtained by viewing the modulation scheme

as part of the channel. This modulated channel is discrete and memoryless. All operations take place over a single time slot t; the dependence
of w̄k,g , xk, ym, ˆ̄um,g on t is omitted in the figure.

The modulatorf̄k at transmitterk is a linear map, producing the channel input

xk[t] , f̄k
(

(w̄k,g[t])g∈GL

)

, B
∑

g∈GL

w̄k,g[t]g (22)

with
B = B(L, p) , (Kp)|GL+1|. (23)

For g ∈ GL+1, define

ūm,g[t] ,

K
∑

k=1

w̄k,(g/hm,k)[t], (24)

where we use the convention thatw̄k,(g/hm,k)[t] = 0 wheneverg/hm,k /∈ GL.
The definition ofūm,g[t] can be interpreted in the following way. Letg̃ ∈ GL, and consider the term

w̄k,g̃[t]g̃ in the definition ofxk[t]. At receiverm, this term is observed as̄wk,g̃[t]g̃hm,k. Thus, for any
g ∈ GL+1, ūm,g[t] is the sum of all input subsymbols(w̄k,g̃[t])g̃∈GL

that are observed with coefficientg at
receiverm. Another way to see this is as follows. The signal observed atreceiverm is

ym = B

K
∑

k=1

∑

g∈GL

w̄k,g[t]hm,kg + zm.
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Now, note thathm,kg is a monomial in the channel gains with highest exponent at mostL. Hencehm,kg ∈
GL+1 for all m, k. Using the definition of̄um,g, we can rewrite the received signal as

ym = B

K
∑

k=1

∑

g∈GL+1

w̄k,(g/hm,k)[t]g + zm

= B
∑

g∈GL+1

ūm,g[t]g + zm.

This last equation is a key step in the construction of the achievable scheme. It shows that the received
signal can be decomposed into|GL+1| termsūm,g, each multiplied by a different effective channel gaing.
Crucially, each of these terms is aninteger linear combination of up toK input signalsw̄k,(g/hm,k), one
from each transmitter.

The demodulator̄φm at receiverm is the maximum likelihood detector of(ūm,g[t])g∈GL+1
, i.e.,

φ̄m(ym[t]) , argmax
(ˆ̄um,g)

P
(

∩g∈GL+1
{ūm,g[t] = ˆ̄um,g}

∣

∣ ym[t]
)

,

where the arg max is over all possible values of(ˆ̄um,g)g∈GL+1
. Denote by

(ˆ̄um,g[t])g∈GL+1
, φ̄m(ym[t])

the output of the demodulator. Theprobability of demodulation errorat receiverm is then defined as

P
(

∪g∈GL+1
{ˆ̄um,g[t] 6= ūm,g[t]}

)

.

Observe that the goal of the demodulator is to recover|GL+1| integers(ūm,g[t])g from a single observation
ym[t].

The next lemma describes the performance of this modulationscheme.

Lemma 5. For anyK ≥ 2 and almost everyH ∈ RK×K there exist positive constantsc4 = c4(K,H)
and c5 = c5(K,H) such that, for allp, L, t ∈ N and k ∈ {1, . . . , K}, the input signal to the channel has
power at most

x2k[t] ≤ cL4 (Kp)
2|GL+1|L2K2

p2

, P (L, p) (25)

and
⋃

g∈GL+1

{ˆ̄um,g[t] 6= ūm,g[t]} ⊂ {|zm[t]| > c5p},

implying that the probability of demodulation error is at most

P
(

∪g∈GL+1
{ˆ̄um,g[t] 6= ūm,g[t]}

)

≤ P
(

{|zm[t]| > c5p
1/2}

)

≤ exp
(

−1
2
c25p
)

, ε(p). (26)

The proof of Lemma 5 is presented in Section VI-C.
Lemma 5 bounds the power of the channel inputxk[t] and, more importantly, states that the probability

of demodulating in error decreases exponentially inp. Thus, whenp is large enough, the probability of
demodulation error is small.

The original channel between transmitters and receivers producesnoisy real linear combinations of
the channel inputs. After applying the modulation scheme, we have transformed this into a channel that
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producesnoisy integerlinear combinations of the channel inputs. More precisely,using the definition of
ūm,g in (24), we can write this new channel as

ˆ̄um,g[t] = ūm,g[t] + z̄m,g[t]

=

K
∑

k=1

w̄k,(g/hm,k)[t] + z̄m,g[t], (27)

where we have defined themodulation noisēzm,g[t] as

z̄m,g[t] , ˆ̄um,g[t]− ūm,g[t]. (28)

Thus, we see that the channel resulting between the input of the modulator and the output of the
demodulator computes noisy linear combinations with integer (indeed, either zero or one) coefficients.

We refer to this new channel after modulation as themodulated channel. Since the modulation scheme
operates on a single time slott, this modulated channel is discrete and memoryless. Note that the noise
z̄m,g of this modulated channel is not necessarily additive, i.e., z̄m,g[t] is not necessarily independent of the
channel input̄um,g[t]. However, by Lemma 5, we know that the noise is small. This modulated channel
is depicted in Fig. 4.

As we have argued before, the probability of demodulation error ε(p) goes to zero asp→ ∞ and hence,
by (25), as powerP → ∞. However, the definition of computation capacity requires that the probability
of error be arbitrarily small forfixed power P . The next step is therefore to transform the modulated
channel into a system producingnoiseless integerlinear combinations of the channel inputs. To this end,
we employ an outer code over the modulated channel. We call the encoder and decoder of this channel
codefk andφm for transmitterk and receiverm, respectively. It will be convenient to choosep to be
a prime number. Reducing the modulator outputs modulop, we can then interpret the input and output
subsymbolsw̄k,g[t] and ˆ̄um,g[t] as well as the integer linear combinations performed by the channel as
being in the finite fieldFp. We refer to the resulting channel overFp as themodulatedFp channel.

We now describe the operations of the outer code in more detail (see Fig. 5). The channel encoderfk
at transmitterk consists of|GL| sub-encoders

fk , {fk,g}g∈GL
.

The channel decodergm at receiverm consists of|GL+1| sub-decoders

φm , {φm,g}g∈GL+1
.

(w1,g)g∈GL

(w2,g)g∈GL

(w3,g)g∈GL

(w̄1,g)g∈GL

(w̄2,g)g∈GL

f1

f2

f3 (w̄3,g)g∈GL

φ1

φ2

φ3

(û1,g)g∈GL+1
( ˆ̄u1,g)g∈GL+1

(û2,g)g∈GL+1

(û3,g)g∈GL+1
( ˆ̄u3,g)g∈GL+1

( ˆ̄u2,g)g∈GL+1

Modulated
Channel

Fig. 5. Outer code({fk}, {φm}) over the modulatedFp channel. Each encoderfk uses the same linear map given by the matrix
S ∈ F

T×TR/ log(p)
p . φm is the corresponding minimum distance decoder for the equations um.

Consider the messagewk,g at sub-encoderg of transmitterk. It will be convenient in the following to
express this message as a vector inF

TR/ log(p)
p . Whenever this vector structure is relevant, we will write

the message aswk,g. The encoderfk,g mapswk,g to the vector (or, equivalently, sequence) of modulator
inputs

w̄k,g , (w̄k,g[t])
T
t=1 ∈ FT

p .

The rate of this channel encoder is hence

log(pTR/ log(p))

T
= R
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bits per use of the modulated channel. The encoder is specified by the linear map

w̄k,g , fk,g(wk,g) , Swk,g, (29)

for some matrixS ∈ F
T×TR/ log(p)
p , and where the multiplication is understood to be overFp. We point

out thatS does not depend onk andg. In other words, each encoderfk,g uses thesamelinear map.
Define the vector version of the demodulator outputˆ̄um,g as

ˆ̄um,g , (ˆ̄um,g[t])
T
t=1 ∈ FT

p .

Similar to the definition of̄um,g[t] in (24), set

um,g ,

K
∑

k=1

wk,(g/hm,k) (mod p), (30)

where we again use the convention thatwm,(g/hm,k) = 0 wheneverg/hm,k /∈ GL.
Recall that the modulated channel computes noisy linear combinations over the finite fieldFp. Since

all channel encoders use the same linear code, this implies that the output of the subchannelg at receiver
m is equal toSum,g plus small noisēzm,g resulting from erroneous demodulation as defined in (28). As
pointed out earlier, the noise term̄zm,g may not be additive, i.e.,̄zm,g may be dependent on the channel
inputs. Formally, the (vector) of demodulated equationsˆ̄um,g is equal to

ˆ̄um,g
(a)
=

K
∑

k=1

w̄k,(g/hm,k) + z̄m,g

(b)
=

K
∑

k=1

Swk,(g/hm,k) + z̄m,g

= S

K
∑

k=1

wk,(g/hm,k) + z̄m,g

(c)
= Sum,g + z̄m,g (mod p), (31)

where(a) follows (27), (b) follows from the definition of the encoderfk,g in (29), and(c) follows from
the definition of the equationum,g in (30). Thus, since all transmitters use thesame linearcode, the
encoding operation commutes with the operation of the channel. Note that (24) and (31) imply that

ūm,g = Sum,g. (32)

The decoderφm,g of the outer code is the minimum (Hamming) distance decoder,i.e.,

φm,g( ˆ̄um,g) , argmin
ûm,g∈FTR/ log(p)

p

T
∑

t=1

1
(

ˆ̄um,g[t] 6= (Sûm,g)[t]
)

,

where(Sûm,g)[t] is componentt of the vectorSûm,g. Note that this decoder might not be the same as
the maximum likelihood decoder, depending on the distribution of z̄m,g. Denote by

ûm,g , φm,g( ˆ̄um,g)

the output of the decoder of the outer code. Theprobability of error of this code is defined as

P
(

∪m,g{ûm,g 6= um,g}
)

.

For x ∈ (0, 1), define thep-ary entropy functionHp(x) as

Hp(x) ,
1

log(p)

(

x log(p− 1)− x log(x)− (1− x) log(1− x)
)

. (33)
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The next lemma states that for the modulatedFp channel there exist linear codesS with large rate that
allow reliable decoding at each receiver.

Lemma 6. Denote byε(p) the upper bound on the probability of demodulation error as defined in(26)
in Lemma 5. For every prime numberp such thatε(p) < 1/4, and everyη ∈ (0, 1/2− 2ε(p)) there exists
a linear codeS (of sufficiently large blocklengthT ) for the modulatedFp channel with rate bigger than

(

1−Hp(2ε(p) + η)
)

log(p)

and probability of error less thanη.

The proof of Lemma 6 is presented in Section VI-D.
Lemma 6 shows that, asymptotically in the blocklengthT , reliable communication over the modulated

subchannels is possible at rates arbitrarily close to
(

1−Hp(2ε(p))
)

log(p),

with probability of demodulation errorε(p) as defined in Lemma 5. Since there areK transmitters each
with |GL| subchannels, the sum rate achieved with this coding scheme is at least

K|GL|
(

1−Hp(2ε(p))
)

log(p).

Note that
lim
p→∞

Hp(2ε(p)) = 0

so that the sum rate is of order
K|GL|(1− o(1)) log(p)

asp→ ∞.
To satisfy the definition of computation capacity, we need toargue that the mapping from(wk,g) to

(um,g) defined in (30) is deterministic and invertible over its range. As the channel gainsH are constant
and known, the mapping is clearly deterministic. The next lemma shows that the mapping is also injective
(and hence invertible over its range).

Lemma 7. Let p be a prime number. For anyK ≥ 2 and almost everyH ∈ RK×K , the mapping from
(

wk,g : k ∈ {1, . . . , K}, g ∈ GL

)

to
(

um,g : m ∈ {1, . . . , K}, g ∈ GL+1

)

is injective overFp.

The proof of Lemma 7 is presented in Section VI-E.
Together with Lemmas 5 and 6, Lemma 7 shows that for every prime numberp, a computation rate

C(H , P (L, p)) ≥ K|GL|
(

1−Hp(2ε(p))
)

log(p) (34)

is achievable, with
P (L, p) = cL4 (Kp)

2|GL+1|L2K2

p2

as defined in (25).
Fix a powerP , and letp and p̃ be two consecutive prime numbers such that

P (L, p) ≤ P ≤ P (L, p̃).

By Bertrand’s postulate (see, for example, [28, Theorem 5.7.1]), any two consecutive primesp and p̃
satisfy,

p < p̃ ≤ 2p.
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SinceP (L, p) is increasing inp, this implies that

P (L, p) ≤ P ≤ P (L, 2p). (35)

Combining (34) and (35) shows that, for every powerP and corresponding prime numberp chosen as
above,

C(H , P )
1
2
log(P )

≥ C(H , P (L, p))
1
2
log(P (L, 2p))

= D(p),

where

D(p) ,
K|GL|

(

1−Hp(2ε(p))
)

log(p)
1
2
L log(c4) + |GL+1| log(2Kp) +K2 log(L) + log(2p)

.

Sincep→ ∞ asP → ∞ (with K andL fixed), this implies that

lim inf
P→∞

C(H , P )
1
2
log(P )

≥ lim
p→∞

D(p) =
K|GL|

|GL+1|+ 1
,

where the limitp→ ∞ is understood as being taken over the prime numbers. By Remark 3 in Section IV,
we have

|GL| = LK2

,

for almost everyH. Hence, this shows that

lim inf
P→∞

C(H , P )
1
2
log(P )

≥ KLK2

(L+ 1)K2 + 1
.

As this is true for all values ofL, we may take the limitL→ ∞ to obtain

lim inf
P→∞

C(H , P )
1
2
log(P )

≥ lim
L→∞

KLK2

(L+ 1)K2 + 1
= K.

Hence, the proposed implementation of compute-and-forward achievesK degrees of freedom, as needed
to be shown.

We now derive an estimate of the rate of convergence to this limiting value. Fix a power̃P . Set6

L(P̃ ) , log
1

1+K2 (P̃ ),

and letp(P̃ ) be the largest prime numberp such thatP (L(P̃ ), p) ≤ P̃ . Using Bertrand’s postulate as
before, we obtain that

P (L(P̃ ), p(P̃ )) ≤ P̃ ≤ P (L(P̃ ), 2p(P̃ )). (36)

SolvingP (L, p) in (25) for p yields

p =

(

P

cL4K
2|GL+1|L2K2

)

1
2
(|GL+1|+1)−1

.

Together with (36), this implies that

log(p(P̃ )) =
log(P̃ )

2(|GL(P̃ )+1|+ 1)
−Θ(1), (37)

where we have used that|GL+1| = (L+ 1)K
2
.

6The numberL(P̃ ) might not be an integer. We ignore the rounding error since itis immaterial asP̃ → ∞.
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From (34) and (36)

C(H , P̃ ) ≥ C
(

H , P (L(P̃ ), p(P̃ ))
)

= K|GL|
(

1−Hp(2ε(p))
)

log(p), (38)

where we have suppressed dependence ofp andL on P̃ . By the definition of thep-ary entropy function
Hp(x) in (33), we have for anyx ∈ (0, 1)

Hp(x) ≤ x+H2(x)/ log(p).

Therefore, (38) can be further lower bounded as

C(H , P̃ ) ≥ K|GL|
(

(1− 2ε(p)) log(p)−H2(2ε(p))
)

.

Substituting (37),

C(H , P̃ ) ≥ K

2
(1− 2ε(p))

|GL|
|GL+1|+ 1

log(P̃ )− |GL|Θ(1). (39)

From Lemma 5,

1− 2ε(p(P̃ )) ≥ 1− O
(

log
− 1
1+K2 (P̃ )

)

.

Moreover,

|GL(P̃ )|
|GL(P̃ )+1|+ 1

=

((

1 +
1

L(P̃ )

)K2

+
1

(L(P̃ ))K2

)−1

≥ 1−O
(

log
− 1
1+K2 (P̃ )

)

,

and

|GL(P̃ )| = log
K2

1+K2 (P̃ ).

Combining this with (39) yields

C(H , P̃ ) ≥ K

2

(

1− O
(

log
− 1
1+K2 (P̃ )

))

log(P̃ )−O
(

log
K2

1+K2 (P̃ )
)

≥ K

2
log(P̃ )−O

(

log
K2

1+K2 (P̃ )
)

.

Thus, for everyK ≥ 2 and almost everyH ∈ RK×K there exists a positive constantc2 = c2(K,H) such
that for all P̃ ≥ 2

C(H , P̃ ) ≥ K

2
log(P̃ )− c2 log

K2

1+K2 (P̃ ),

completing the proof of the theorem.

C. Proof of Lemma 5

Since modulation involves only a mapping of one symbol at a time, we can drop the time indices in
the following discussion (e.g., we writexk for xk[t]).

We start by analyzing the power of the transmitted signalxk. Eachw̄k,g takes value in{0, . . . , p− 1}
and hence has power̄w2

k,g ≤ p2. Moreover,|GL| = LK2
, and eachg ∈ GL satisfies

|g| ≤
(

max
{

1,maxm̃,k̃|hm̃,k̃|
})LK2

.
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Thus, the channel inputxk as defined in (22) has power at most

x2k =
(

B
∑

g∈GL
w̄k,gg

)2

≤ B2L2K2

p2
(

max
{

1,maxm̃,k̃|hm̃,k̃|
})2LK2

.

Defining the positive constant

c4 , c4(K,H) ,
(

max
{

1,maxm̃,k̃|hm̃,k̃|
})2K2

,

and using the definition ofB in (23), we obtain

x2k ≤ cL4 (Kp)
2|GL+1|L2K2

p2

as required.
We continue by analyzing the probability of demodulation error. Recall that the received signal

ym =

K
∑

k=1

hm,kxk + zm

= B

K
∑

k=1

∑

g∈GL

w̄k,ghm,kg + zm

can be rewritten as
ym = B

∑

g∈GL+1

ūm,gg + zm, (40)

with ūm,g as defined in (24). Receiverm aims to demodulate the functions(ūm,g)g∈GL+1
from ym. We

now argue that this is possible with small probability of error.
Consider a different set of linear combinations(ū′m,g)g∈GL+1

6= (ūm,g)g∈GL+1
, and compute the difference

∣

∣

∑

g∈GL+1
(ūm,g − ū′m,g)g

∣

∣ ,
∣

∣

∑

g∈GL+1
qgg
∣

∣. (41)

Note thatūm,g ∈ {0, . . . , K(p− 1)} and henceqg ∈ {−K(p− 1), . . . , K(p− 1)}. Moreover, observe that
ūm,g = ū′m,g = 0 for g = 1 in any valid set of equations and almost everyH, so thatq1 = 0 and can be
ignored. By Lemma 4, for almost everyH there is a finite constantc = c(K,H) such that

∣

∣

∑

g∈GL+1,g 6=1qgg
∣

∣ ≥ c(Kp)−|GL+1|+1/2

for all (qg)g 6=1 ∈ {−K(p− 1), . . . , K(p− 1)}|GL+1|−1, (qg)g 6=1 6= 0.
Combined with (40) and (41), this shows that the minimum distance between any two signal points at

receiverm is at least
cB(Kp)−|GL+1|+1/2.

Using the definition ofB in (23), we see that the minimum distance between the desiredset of equa-
tions (ūm,g)g and any other set of equations(ū′m,g)g is at leastc(Kp)1/2. Therefore, the probability of
demodulation error is upper bounded by

P
(

∪g{ˆ̄um,g 6= ūm,g}
)

≤ P
(

|zm| > c5p
1/2
)

with

c5 = c5(K,H) ,
cK1/2

2
.

This, in turn, can be upper bounded using the Chernoff bound as

P
(

|z1| > c5p
1/2
)

≤ exp
(

−1
2
c25p
)

,

concluding the proof of the lemma.
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D. Proof of Lemma 6

We derive a lower bound on the rate achievable with linear codes over the modulatedFp channel.
Recall that each channel encoder uses the same linear mapS. By (31), the output of the sub-demodulator
g at receiverm reduced modulop is

ˆ̄um,g = Sum,g + z̄m,g (mod p),

with (non-additive) noisēzm,g satisfying

1(z̄m,g[t] 6= 0) ≤ 1(|zm[t]| > c5p
1/2) (42)

for all g ∈ GL+1, and
P(|zm[t]| > c5p

1/2) ≤ ε(p) = ε (43)

by Lemma 5. Thus, we only need to analyze the performance of linear codes over a point-to-point channel
with input and output alphabetsFp and (non-additive) noisēzm,g[t].

By the Gilbert-Varshamov bound (see, e.g., [29, Theorem 12.3.2, Theorem 12.3.4]), for everyT , prime
numberp, and2 ≤ d ≤ T/2, there exists a linear block code of lengthT overFp with rate at least

(

1−Hp((d− 1)/T )
)

log(p),

and minimum distance at leastd. Recall that0 ≤ ε < 1/4 by assumption, and fixη ∈ (0, 1/2 − 2ε).
Choose

d = ⌊(2ε+ η)T ⌋ ≥ (2ε+ η)T − 1,

so that the linear code can correct up to

⌊(d− 1)/2⌋ ≥ ⌊(ε+ η/2)T − 1⌋ ≥ (ε+ η/2)T − 2

errors.
Since we use minimum-distance decoding at the receivers, this implies that we make an error only if

the noise has Hamming weight larger than(ε+ η/2)T − 2, i.e., if

max
g

T
∑

t=1

1(z̄m,g[t] 6= 0) > (ε+ η/2)T − 2.

Using (42), we have

P

(

max
g

T
∑

t=1

1(z̄m,g[t] 6= 0) > (ε+ η/2)T − 2

)

≤ P

( T
∑

t=1

1(|zm[t]| ≥ c5p
1/2) > (ε+ η/2)T − 2

)

.

Since(zm[t])t is i.i.d., the weak law of large numbers shows together with (43) that7

lim
T→∞

P

(

max
g

T
∑

t=1

1(z̄m,g[t] 6= 0) > (ε+ η/2)T − 2

)

= 0.

In particular, forT large enough this probability is less thanη/K, so that with probability at least1− η
all decoders are able to decode correctly. The rate of this code is at least

(

1−Hp((d− 1)/T )
)

log(p) ≥
(

1−Hp(2ε+ η)
)

log(p),

where we have used thatHp(x) is increasing inx for x ≤ 1/2. This proves the lemma.

7We point out that the law of large numbers doesnot apply toz̄m,g [t], since this sequence is dependent on the channel input and therefore,
without further assumptions on those inputs, not i.i.d.
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E. Proof of Lemma 7

We need to show that the map from the input to the encoder of theouter code
(

wk,g : k ∈ {1, . . . , K}, g ∈ GL

)

to the correct output of the decoder of the outer code
(

um,g̃ : m ∈ {1, . . . , K}, g̃ ∈ GL+1

)

is injective. The mapping fromwk,g to w̄k,g defined in (29) and the mapping fromum,g̃ to ūm,g̃ given by
(32) are both invertible over their range. Hence, it sufficesto prove injectivity of the map from the input
to the modulators

(

w̄k,g : k ∈ {1, . . . , K}, g ∈ GL

)

to the correct output of the demodulators
(

ūm,g̃ : m ∈ {1, . . . , K}, g̃ ∈ GL+1

)

overFp. Finally, since this map is defined at the symbol level, it suffices to prove injectivity for a single
time slot t. To simplify notation, we drop the indext in the following, i.e., we writew̄k,g and ūm,g̃ for
w̄k,g[t] and ūm,g̃[t]. Thus, we need to show that the map from

(

w̄k,g : k ∈ {1, . . . , K}, g ∈ GL

)

to
(

ūm,g̃ : m ∈ {1, . . . , K}, g̃ ∈ GL+1

)

is invertible over its range. This map is defined in (24) as

ūm,g̃[t] =

K
∑

k=1

w̄k,(g̃/hm,k)[t] (mod p),

with the convention that̄wk,g = 0 wheneverw̄k,g /∈ GL, and taking into account that the modulator output
is reduced modulop.

In the remainder of the proof, we make repeated use of the factthat, for almost every channel realization
H, every monomial (evaluated atH) in GL+1 can be uniquely factorized into powers of(hm,k), see
Remark 3 in Section IV. We refer to this as theunique factorizationproperty in what follows. For
g ∈ GL+1, we use the notationhsm,k | g to denote thathsm,k is a factor ofg in this unique factorization.

We begin with a small example withL = K = 2. Recall that the channel gain between transmitterk
and receiverm is denoted byhm,k. By definition,

G2 =
{

h
s1,1
1,1 h

s1,2
1,2 h

s2,1
2,1 h

s2,2
2,2 : s1,1, s1,2, s2,1, s2,2 ∈ {0, 1}

}

and |G2| = 16 for almost everyH by unique factorization.
Consider the received monomialg̃ ∈ G3. If

h21,1 | g̃
at receiver 1, theñg can have originated only from transmitter 1 by unique factorization. In other words,
ū1,g̃ = w̄1,(g̃/h1,1) and hencew̄1,(g̃/h1,1) can be recovered from the received signal. If

h22,1 | g̃
at receiver 2 than agaiñg can have originated only from transmitter 1 by unique factorization. Hence
ū2,g̃ = w̄1,(g̃/h2,1) and w̄1,(g̃/h2,1) can be recovered. We can then remove these messages from all other
equations at the receivers.
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A similar conclusion can be drawn ifh21,2 is a factor at receiver 1 or respectivelyh22,2 a factor at receiver
2. In either case the monomial originated at transmitter 2, and the corresponding messagew̄2,g can be
recovered again by unique factorization and the terms againbe removed from all received signals.

Other parts of the signals may also be identified as only originating from transmitter 1. For example
h1,1h2,1 at receiver 1 cannot be seen as a message from transmitter 2 becauseh1,2 is not a factor. All
such messages can be decoded and removed as was done with the previous messages, again by unique
factorization.

This leaves only the messagēw1,g with g = h1,2h2,2 from transmitter 1 and the messagēw2,g with
g = h1,1h2,1 from transmitter 2 to be determined. Buth1,2h2,2 from transmitter 1 is observed at receiver
1 as

g̃ = gh1,1 = h1,1h1,2h2,2

which, to have originated from transmitter 2, would be transmitted as

g̃/h1,2 = h1,1h2,2.

However, this message was already removed in the first round (since it is observed at receiver 2 as
h1,1h

2
2,2) and so the remaining signal at receiver 1 must have originated from transmitter 1. Thus̄w1,g can

be determined. The same can be done forg = h1,1h2,1 from transmitter 2, and the messagew̄2,g can be
obtained. This completes the example as all messagesw̄k,g for g ∈ G2, k ∈ {1, 2} have been determined.

We now extend the above argument toK = 2 but L arbitrary, proceeding by induction. We will argue
that the messages̄wk,g, k = {1, 2}, g ∈ GL are completely determined bȳum,g̃ wherem ∈ {1, 2} and g̃
ranges over the possible received monomials inGL+1. The proof is by induction onL, and our earlier
argument forL = 2 anchors the induction.

Suppose the induction hypothesis holds forL−1 ≥ 2. We now show it holds forL as well. As before,
determine and remove from the received signals all messagesw̄1,g, such thathL−1

1,1 | g or hL−1
2,1 | g at

transmitter 1 (using unique factorization). Do the same, but for messages̄w2,g such thathL−1
1,2 | g or

hL−1
2,2 | g at transmitter 2.
Now, considerg at transmitter 1 such thathL−1

1,2 | g. This will be received as

g̃ = gh2,1

at receiver 2, and eitherh2,2 | g or it is seen as a monomial component originating from transmitter 1
immediately by unique factorization. To be from transmitter 2, the transmit monomial would be

g̃/h2,2.

But thenhL−1
1,2 | (g̃/h2,2) and therefore the message corresponding to this signal has already been removed

from both receivers.
The same is true for all messagesw̄1,g with g such thathL−1

2,2 | g at transmitter 1. Moreover the same
arguments apply to transmitter 2 but withhL−1

1,1 andhL−1
2,1 . It follows that all factorsw̄k,g with the highest

exponent ing beingL− 1 have been determined for both transmitters. The remaining monomials make
up GL−1 at both transmitters. Since the factors involving monomials with highest exponentL − 1 have
been removed, we may apply the induction hypothesis to complete the inversion. Thus, forK = 2 and
arbitraryL ≥ 2, the mapping can be inverted.

It remains to considerK ≥ 2 andL ≥ 2. We will argue that the factors̄wk,g, k ∈ {1, 2, · · · , K}, g ∈ GL

are completely determined bȳum,g̃ wherem = {1, 2, · · · , K} and g̃ ranges over the possible received
monomials inGL+1. As earlier, we proceed by induction, but this time onK. The result holds forK = 2
as we have already demonstrated.

Suppose then the result holds forK − 1 ≥ 2, and consider the case withK transmitters and receivers.
Fix L ≥ 2 arbitrarily. For each transmitterk, we can once again remove all the factorsw̄k,g whenever

hL−1
m,k | g
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for somem.
Now let us fix a receiver, saỹm = 1, and a transmitter, saỹk = 2. Note this choice is entirely arbitrary

as transmitters are in no sense tied to receivers so we may re-index them to obtain this case. Consider a
monomialg at transmitterk such that

hL−1
1,2 | g.

At receiver 2, this is observed as
g̃ = gh2,k.

For such a monomial to be seen at receiver 2 as originating from transmitter 2, we must have that

h2,2 | g̃,
since otherwise we can rule out transmitter 2 at receiver 2 byunique factorization. However, if this is the
case, we see that the corresponding message has already beenremoved for transmitter 2 as

hL−1
1,2 | (g̃/h2,2).

Thus under either outcome this monomial component cannot beseen as originating from transmitter 2.
Proceed as follows. Consider receiversm ∈ {2, 3, · · · , K} (leaving out receiver̃m = 1) and collect all

equations̄um,g̃ such thatm 6= 1 and
hL−1
1,2 | g̃

using unique factorization. We may consider these as originating only from transmittersk ∈ {1, 3, · · · , K}
(leaving out transmitter̃k = 2) by the argument in the preceding paragraph. We thus now havethe problem
of identifying w̄k,g such thathL−1

1,2 | g, k 6= 1, using the received signals atm 6= 1. Denote the corresponding
set of transmit monomials by

G1,2
L ,

{

g ∈ GL : hL−1
1,2

∣

∣ g
}

.

Observe that any power of the channel gainshm,2, m 6= 1 andh1,k, k 6= 2 may be a factor of the monomials
in G1,2

L .
To proceed further, note that the monomials inG1,2

L can be partitioned into equivalence classes such
that eachg in the same class has the same factors

hL−1
1,2

∏

k 6=2

h
s1,k
1,k

∏

m6=1

h
sm,2

m,2 (44)

in their unique factorization for some fixed0 ≤ s1,k ≤ L − 1, 0 ≤ sm,2 ≤ L − 1. We call (44) the
(1,2)-factorof g. We may also partition the receive monomials according to their (1,2)-factor. Denote by

G1,2
L

(

(s1,k)k 6=2, (sm,2)m6=1

)

⊂ G1,2
L

the equivalence class with (1,2)-factor

hL−1
1,2

∏

k 6=2

h
s1,k
1,k

∏

m6=1

h
sm,2

m,2 .

Fix a class(s1,k)k 6=2, (sm,2)m6=1, and consider the messages
(

w̄k,g : k 6= 2, g ∈ G1,2
L

(

(s1,k)k 6=2, (sm,2)m6=1

)

)

(45)

and the equations
(

ūm,g̃ : m 6= 1, g̃ ∈ G1,2
L+1

(

(s1,k)k 6=2, (sm,2)m6=1

)

)

. (46)

Recall that we have removed all messagesw̄2,g from the equations (46). Observe that any equationūm,g̃

in (46) is then solely a function of the messages in (45).
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Divide out the common (1,2)-factor from the transmit and receive monomials in (45) and (46). This
results in a set of messages and equations with monomials in the channel coefficientshm,k, k 6= 2, m 6= 1
with K − 1 transmitters andK − 1 receivers. By our induction hypothesis, we may invert to obtain all
w̄k,g, g ∈ G1,2

L , working with each (1,2)-factor class in turn.
However, the choice of̃k = 1, m̃ = 2 plays no special role in the above argument as we have already

explained, so that we may recoverw̄k,g for all monomials
{

g ∈ GL : hL−1

m̃,k̃

∣

∣ g
}

and any choicẽk, m̃ ∈ {1, 2, · · · , K}. Removing these decoded messages from the received equations, we
have reduced the monomials to have exponent no higher thanL− 2. Hence, we may proceed iteratively,
reducing the order ofL by one in each iteration. Thus,̄wk,g can be recovered for allk ∈ {1, 2, · · · , K}, g ∈
GL, that is, the mapping is invertible over its range.

VII. CONCLUSION

We considered the asymptotic behavior of compute-and-forward over a section of a relay network
with K transmitters andK relays. We showed that the lattice implementation of compute-and-forward
proposed by Nazer and Gastpar in [11] achieves at most2/(1+ 1/K) ≤ 2 degrees of freedom. Thus, the
asymptotic behavior of the lattice scheme is very differentfrom the MIMO upper bound resulting from
allowing full cooperation among transmitters and among relays and achievingK degrees of freedom. We
then argued that this gap is not fundamental to the compute-and-forward approach in general, but rather
due to the lattice implementation in [11]. To this end, we proposed and analyzed a different implementation
of compute-and-forward and showed that it achievesK degrees of freedom. Thus, at least in terms of
degrees of freedom, compute-and-forward can achieve the same asymptotic rates as if full cooperation
among transmitters and among relays were permitted.
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APPENDIX A
CHANGE OF MEASURE IN THE PROOF OFTHEOREM 1

Here we show that if (21) in Section V holds for almost allh̃ ∈ RK−1, then it also holds for almost
all h ∈ RK . In the following discussion, we use the notationµK to denote Lebesgue measure overRK .
Let B ⊂ RK−1 be a set of vectors̃h ∈ RK−1 of measure zero, i.e.,

µK−1(B) = 0.

Let D ⊂ RK be the set of vectorsh ∈ RK such that
1

‖h‖
(

h1 · · · hK−1

)

∈ B.

We want to show thatD has also measure zero, i.e.,µK(D) = 0. We have

µK(D) =

∫

h∈RK

1D(h)dh

=

∫

h∈RK

1B

(

1
‖h‖
(

h1 · · · hK−1

)

)

dh.
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Making the change of variables

h̃k ,
hk
‖h‖ , for k ∈ {1, . . . , K − 1},

s , ‖h‖,
and using the nonnegativity of1B together with Fubini’s theorem, we can rewrite this as

µK(D) =

∫ ∞

s=0

sK−1

∫

h̃∈RK−1:‖h̃‖≤1

1B(h̃)(1− ‖h̃‖2)−1/2dh̃ds.

Now,
∫

h̃∈RK−1:‖h̃‖≤1

1B(h̃)(1− ‖h̃‖2)−1/2dh̃

≤
∫

h̃∈RK−1:‖h̃‖≤
√
1−ε2

1B(h̃)ε
−1dh̃+

∫

h̃∈RK−1:
√
1−ε2<‖h̃‖≤1

(1− ‖h̃‖2)−1/2dh̃

≤ ε−1µK−1(B) + 2
π(K−1)/2

Γ((K − 1)/2)

∫

√
1−ε2<s̃≤1

(1− s̃2)−1/2ds̃

= 2
π(K−1)/2

Γ((K − 1)/2)

(

π/2− arcsin
(
√
1− ε2

)

)

for everyε > 0, and whereΓ(·) denotes the Gamma function. Lettingε→ 0, we obtain
∫

h̃∈RK−1:‖h̃‖≤1

1B(h̃)(1− ‖h̃‖2)−1/2dh̃ = 0,

and hence
µK(D) = 0.

This shows that (21) holds also for almost everyH ∈ RK×K .
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