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Abstract—Ensembles of (J,K)-regular low-density parity-
check convolutional (LDPCC) codes are known to beasymp-
totically good, in the sense that the minimum free distance grows
linearly with the constraint length. In this paper, we use a
protograph-based analysis of terminated LDPCC codes to obtain
an upper bound on the free distance growth rate of ensembles of
periodically time-varying LDPCC codes. This bound is compared
to a lower bound and evaluated numerically. It is found that,for
a sufficiently large period, the bounds coincide. This approach
is then extended to obtain bounds on the trapping set numbers,
which define the size of the smallest, non-empty trapping sets,
for these asymptotically good, periodically time-varyingLDPCC
code ensembles.

I. I NTRODUCTION

Low-density parity-check convolutional (LDPCC) codes
[1] have been shown to be capable of achieving capacity-
approaching performance with iterative message-passing de-
coding [2]. The excellent iterative decoding thresholds [3],
[4] that these codes display has recently been attributed tothe
threshold saturationeffect [5]. In addition to good threshold
performance, it can also be shown that the minimum free
distance typical of most members of these LDPCC code
ensembles grows linearly with the constraint length as the
constraint length tends to infinity, i.e., they areasymptotically
good[6]. A large free distance growth rate indicates that codes
randomly drawn from the ensemble should have a low error
floor under maximum likelihood (ML) decoding.

When sub-optimal decoding methods are employed, there
are other factors that affect the performance of a code. For
example, it has been shown that so-called ‘trapping sets’ are
a significant factor affecting decoding failures of LDPC codes
over the AWGN channel with iterative message-passing de-
coding. Trapping sets, graphical sub-structures existingin the
Tanner graph of LDPC codes, were first studied in [7]. Known
initially as near-codewords, they were used to analyse the
performance of LDPC codes in the error floor, or high signal-
to-noise ratio (SNR) region, of the bit error rate (BER) curve.
In [8], Richardson developed these concepts and proposed a
two-stage technique to predict the error floor performance of
LDPC codes based on trapping sets.

In this paper, we use a protograph-based analysis of ter-
minated LDPCC codes to form an upper bound on the free
distance growth rate of ensembles of periodically time-varying
LDPCC codes. The free distance growth rate can also be
bounded below by using ensembles of tail-biting LDPCC
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codes [9], [10]. By comparing and evaluating these bounds we
find that, for a sufficiently large period, the bounds coincide,
giving us exact values for the convolutional code free distance
growth rates. This approach is then extended to obtain bounds
on the trapping set numbers, which define the size of the
smallest, non-empty trapping sets, for these asymptotically
good, periodically time-varying LDPCC code ensembles. We
also show that the trapping set numbers grow linearly with
constraint length. For all the ensembles considered, we find
that the distance and trapping set growth rates exceed those
of corresponding block code ensembles.

II. BACKGROUND

A protograph [11] is a small bipartite graph that is used to
derive a larger graph by taking anN -fold graph cover [12], or
“lifting”, of the protograph. It is an important feature of this
construction that each lifted code inherits the degree distribu-
tion and graph neigbourhood structure of the protograph. The
protograph can be represented by abasebiadjacency matrix
B, whereBx,y is taken to be the number of edges connecting
variable nodevy to check nodecx. The parity-check matrix
H of a protograph-based LDPC block code can be created
by replacing each non-zero entry inB by a sum ofBx,y

permutation matrices of sizeN × N and each zero entry by
theN×N all-zero matrix. The ensemble of protograph-based
LDPC block codes with block lengthn = Nnv is defined
by the set of matricesH that can be derived from a given
protograph by choosing all possible combinations ofN ×N
permutation matrices.

A. Convolutional protographs

An ensemble of unterminated LDPCC codes can be de-
scribed by aconvolutional protograph[4] with base matrix

B[0,∞] =
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



, (1)

where ms denotes the syndrome former memory of the
convolutional codes and thebc × bv component base matrices
Bi, i = 0, . . . ,ms, represent the edge connections from
the bv variable nodes at timet to the bc check nodes
at time t + i. An ensemble of (in general) time-varying
LDPCC codes can then be formed fromB[0,∞] using the
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protograph construction method described above, resulting in
the associated parity-check matrix
H[0,∞] =

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A rateR = 1−Nbc/Nbv = 1− bc/bv time-varying LDPCC
code with parity-check matrixH[0,∞] is periodically
time-varying with period T if Hi(t) is periodic, i.e.,
Hi(t) = Hi(t+ T ), ∀ i, t, and if Hi(t) = Hi, ∀ i, t, the code
is time-invariant. We call νs = N(ms + 1)bv the decoding
constraint length.

Starting from the base matrixB of a block code ensemble,
one can construct LDPCC code ensembles with the same
computation trees. This is achieved by anedge spreading
procedure (see [4] for details) that divides the edges from each
variable node in the base matrixB amongms+1 component
base matricesBi, i = 0, . . . ,ms, such that the condition
B0 +B1 + · · ·+Bms

= B is satisfied. For example, a (3,6)-
regular LDPCC ensemble withms = 2 can be formed from
the block base matrixB = [ 3 3 ] by defining the component
base matricesB0 = [ 1 1 ] = B1 = B2 .

III. T ERMINATION OF LDPCC CODES

Suppose that we start the convolutional code with parity-
check matrix defined in(1) at time t = 0 and terminate it
after L time instants. The resulting finite-length base matrix
is then given by

B[0,L−1] =















B0

...
. . .

Bms
B0

. . .
...

Bms















(L+ms)bc×Lbv

. (2)

The matrix B[0,L−1] can be considered as the base matrix
of a terminated protograph-based LDPCC code ensemble.
Termination in this fashion results in a rate loss. The design
rate of the terminated code ensemble is given as

RL = 1−

(

L+ms

L

)

bc
bv

= 1−

(

L+ms

L

)

(1−R) , (3)

where R = 1 − Nbc/Nbv = 1 − bc/bv is the rate of
the unterminated convolutional code ensemble. Note that, as
the termination factorL increases, the rate increases and
approaches the rate of the unterminated convolutional code
ensemble.

The convolutional base matrixB[0,∞] can also be termi-
nated usingtail-biting [13], [14]. Here, for anyλ ≥ ms,
the last bcms rows of the terminated parity-check matrix
B[0,λ−1] are removed and added to the firstbcms rows

to form the λbc × λbv tail-biting parity-check matrixB(λ)
tb

with tail-biting termination factorλ. TerminatingB[0,∞] in
such a way preserves the design rate of the ensemble, i.e.,
Rλ = 1 − λbc/λbv = 1 − bc/bv = R, and we see thatB(λ)

tb

has exactly the same degree distribution as the original block
base matrixB.

IV. FREE DISTANCE ANALYSIS OF PROTOGRAPH-BASED

LDPCC CODES

From a convolutional protograph with base matrixB[0,∞],
we can form a periodically time-varyingN -fold graph cover
with period T by choosing, for thebc × bv submatrices
B0,B1, . . . ,Bms

in the first T columns ofB[0,∞], a set of
N ×N permutation matrices randomly and independently to
form Nbc×Nbv submatricesH0(t),H1(t+1), . . . ,Hms

(t+
ms), respectively, fort = 0, 1, . . . , T − 1. These submatrices
are then repeated periodically (indefinitely) to formH[0,∞]

such thatHi(t + T ) = Hi(t), ∀i, t. An ensemble of pe-
riodically time-varying LDPCC codes with periodT , rate
R = 1−Nbc/Nbv = 1−bc/bv, and decoding constraint length
νs = N(ms+1)bv can then be derived by letting the permuta-
tion matrices used to formH0(t),H1(t+1), . . . ,Hms

(t+ms),
for t = 0, 1, . . . , T−1, vary over theN ! choices of permutation
matrix.

A. Free distance bounds for LDPCC code ensembles

Consider an ensemble of periodically time-varying LDPCC
codes with rateR = 1 − bc/bv and periodT constructed
from a convolutional protograph with base matrixB[0,∞] as
described above. It is known that the average free distance of
this ensemble can be bounded below by the average minimum
distance of an ensemble of tail-biting LDPCC codes derived
from the base matrixB(λ)

tb with termination factorλ = T
[9], [10]. Here, we show that the average free distance of
the convolutional ensemble can also be bounded above by
the average minimum distance of the ensemble of terminated
protograph-based LDPCC codes derived from the base matrix
B[0,L−1] with termination factorL = T .

Theorem 1:Consider a rateR = 1 − bc/bv unterminated,
periodically time-varying LDPCC code ensemble with mem-
ory ms, decoding constraint lengthνs = N(ms + 1)bv, and

periodT derived fromB[0,∞]. Let d
(L)

min be the average mini-
mum distance of the terminated convolutional code ensemble
with block lengthn = LNbv and termination factorL. Then

the ensemble average free distanced
(T )

free of the unterminated

convolutional code ensemble is bounded above byd
(L)

min for
termination factorL = T , i.e.,

d
(T )

free ≤ d
(T )

min. (4)

Sketch of proof. There is a one-to-one relationship be-
tween members of the periodically time-varying LDPCC
code ensemble and members of the corresponding ter-
minated LDPCC code ensemble with termination factor
L = T . For any such pair of codes, every code-
word x = [ x0 x1 · · · xLNbv−1 ] in the terminated
code can immediately be seen as a codewordx[0,∞] =
[ x0 x1 · · · xLNbv−1 0 · · · ] in the unterminated
code. It follows that the free distanced(T )

free of the unterminated

code can not be larger than the minimum distanced
(T )
min of the

terminated code. The ensemble average resultd
(T )

free ≤ d
(T )

min

then follows directly. ✷

Since there is no danger of ambiguity, we will henceforth
drop the overline notation when discussing ensemble average
distances.



B. Free distance growth rates of LDPCC code ensembles

In [15], Divsalar presented a technique to calculate the
average weight enumerator for protograph-based block code
ensembles. This weight enumerator can be used to test if the
ensemble isasymptotically good, i.e., if the minimum distance
typical of most members of the ensemble is at least as large
as δminn, whereδmin its the minimum distance growth rate
of the ensemble andn is the block length.

For LDPC convolutional codes, conventionally defined as
the null space of a sparse parity-check matrixH[0,∞], it is
natural to define the free distance growth rate with respect
to the decoding constraint lengthνs, i.e., as the ratio of the
free distancedfree to the decoding constraint lengthνs.1 By
boundingd(T )

free using (4), we obtain an upper bound on the
free distance growth rate as

δ
(T )
free =

d
(T )
free

νs
≤

δ̂
(T )
minT

(ms + 1)
, (5)

where δ̂
(T )
min = d

(T )
min/n = d

(T )
min/(NTbv) is the minimum

distance growth rate of the terminated LDPCC code ensemble
with termination factorL = T and base matrixB[0,T−1].2

Similarly, it was shown in [9] that

δ
(T )
free ≥

δ̌
(T )
minT

(ms + 1)
, (6)

where δ̌
(T )
min is the minimum distance growth rate of the

tail-biting LDPCC code ensemble with tail-biting termination
factorλ = T and base matrixB(λ)

tb .

C. Numerical results

As an example, we consider the(3, 6)-regular LDPCC code
ensemble defined in Section II-A. Since the unterminated
convolutional code has rateR = 1/2, we calculate the upper
bound on the free distance of the periodically time-varying
LDPCC code ensemble asδ(T )

free ≤ δ̂
(T )
minT/3 using (5) for

termination factorsL = T ≥ 3. Figure 1 displays the mini-
mum distance growth rateŝδ(L)

min of the terminated ensembles
defined byB[0,L−1] for L = 3, 4, . . . , 21 that were calculated
using the technique proposed in [15] and the associated upper
bounds on the convolutional growth rateδ(T )

free ≤ δ̂
(T )
minT/3

for L = T . Also shown are the minimum distance growth
ratesδ̌(λ)min of the tail-biting ensembles defined by base matrix
B

(λ)
tb for λ = 3, 4, . . . , 21 and the associated lower bounds on

the convolutional growth rateδ(T )
free ≥ δ̌

(T )
minT/3 for λ = T

calculated using (6).
We observe that the calculated ensemble tail-biting con-

volutional code minimum distance growth ratesδ̌(λ)min remain
constant forλ = 3, . . . , 11 and then start to decrease as the
termination factorλ grows, tending to zero asλ tends to
infinity. Correspondingly, asλ exceeds11, the lower bound

1The free distance growth rate may also be calculated with respect to the
encoding constraint lengthνe, which corresponds to the maximum number
of transmitted symbols that can be affected by a single nonzero block of
information digits. For further details, see [16].

2The free distance growth rateδ(T )
free

that we bound from above using (5),
by definition, is an existence-type lower bound on the free distance of most
members of the ensemble, i.e., with high probability a randomly chosen code
from the ensemble has minimum free distance at least as largeasδ(T )

free
νs as

νs → ∞.
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Fig. 1: Minimum distance growth rates of terminated and tail-biting LDPCC
code ensembles with calculated upper and lower bounds on thefree distance
growth rate of the associated periodically time-varying LDPCC code ensem-
bles.

calculated forδ(T )
free levels off atδ(T )

free ≥ 0.086. The calculated
terminated convolutional code minimum distance growth rates
δ̂
(L)
min are large for small values ofL (where the rate loss

is larger) and decrease monotonically to zero asL → ∞.
Using (5) to obtain an upper bound on the free distance
growth rate we observe that, forT ≥ 12, the upper and lower
bounds onδ(T )

free coincide, indicating that, for these values

of the periodT , δ(T )
free = 0.086, significantly larger than the

(3, 6)-regular LDPC block code minimum distance growth rate
δmin = 0.023. In addition, we note that at the point where
the bounds coincide, the growth rates for both termination
methods also coincide. Recall that the tail-biting ensembles
all have rate1/2, wheras the rate of the terminated ensembles
is a function of the termination factorL given by (3).

Lower bounds on the free distance growth rates were
calculated for a wide variety of(J,K)-regular and irregular
LDPCC code ensembles in [17]. Using the technique detailed
here, we can form upper bounds on the free distance growth
rate that coincide numerically for sufficiently largeT , giving
us exact free distance growth rates. For example, we can bound
the convolutional free distance growth rate of the(4, 8)-regular
ensemble as0.1908 ≤ δ

(T )
free ≤ 0.1908 and the free distance

growth rate for the rateR = 2/3, (3, 9)-regular ensemble
as 0.0186 ≤ δ

(T )
free ≤ 0.0186 for sufficiently largeT (again

significantly larger than the corresponding block growth rates,
see [16]). This general technique can be used to bound the
free distance growth rate above and below for any regular or
irregular periodically time-varying protograph-based LDPCC
code ensemble.

V. TRAPPING SET ANALYSIS OFLDPCC CODES

In [7], MacKay and Postol discovered a “weakness” in
the structure of the Margulis construction of a(3, 6)-regular
Gallager code. Described asnear-codewords, these small
graphical sub-structures existing in the Tanner graph of LDPC
codes cause the iterative decoding algorithm to get trappedin
error patterns. These weaknesses were shown to contribute
significantly to the performance of the code in the error floor



region of the BER curve. Richardson developed this concept
in [8] and defined these structures astrapping sets.

Definition 1: An (a, b) general trapping setτa,b of a bipar-
tite graph is a set of variable nodes of sizea which induce
a subgraph with exactlyb odd-degree check nodes (and an
arbitrary number of even-degree check nodes).

In order to calculate ensemble average general trapping set
enumerators for protograph-based LDPC block code ensem-
bles, we use the combinatorial arguments previously presented
in [18]. The technique involves considering a two-part en-
semble average weight enumerator for a modified protograph
with the property that any(a, b) trapping set in the original
protograph is a codeword in the modified protograph.

A. Trapping set growth rates

Let ∆ = b/a = β/α, whereα = a/n, β = b/n, and
∆ ∈ [0,∞). As proposed in [18], we classify the trapping
sets asτ∆ = {τa,b|b = ∆a}. For each∆, we definedts(∆)
to be the∆-trapping set number, which is the size of the
smallest, non-empty trapping set inτ∆. The two-part average
ensemble average weight distribution can be used to test if
the ensemble has the desirable property that the∆-trapping
set number increases linearly with block lengthn [18]. If this
is the case, we can say that, with high probability, a randomly
chosen code from the ensemble has a∆-trapping set number
that is at least as large asnδts(∆), whereδts(∆) is called the
∆-trapping set growth rateof the ensemble. If this is true for
all ∆ ≥ 0, this implies that, for sufficiently largen, a typical
member of the ensemble has no small trapping sets.

B. Trapping set bounds for protograph-based LDPCC code
ensembles

Consider once more the ensemble of periodically time-
varying of LDPCC codes with rateR = 1− bc/bv and period
T derived from a convolutional base matrixB[0,∞] and the
associated terminated LDPCC code ensemble with base matrix
B[0,L−1] andL = T .

Theorem 2:Consider a rateR = 1 − bc/bv unterminated,
periodically time-varying convolutional code ensemble with
memoryms, decoding constraint lengthνs = N(ms + 1)bv,

and periodT derived fromB[0,∞]. Let d
(L)

ts (∆) be the average
∆-trapping set number of the terminated convolutional code
ensemble with block lengthn = LNbv and termination factor

L. Then the ensemble average∆-trapping set numberd
(T )

ccts(∆)
of the unterminated convolutional code is bounded above by

d
(L)

ts (∆) for termination factorL = T and any∆ ≥ 0, i.e.,

d
(T )

ccts(∆) ≤ d
(T )

ts (∆) ∀∆ ≥ 0. (7)

Sketch of proof. The proof is a straightforward generalisa-
tion of the proof of Theorem1. We first show that, for
any periodically time-varying LDPCC code and associated
terminated LDPCC code with termination factorL = T ,
and any∆ ≥ 0, any (a,∆a) general trapping set in the
terminated code is also an(a,∆a) general trapping set in
the convolutional code, i.e., the∆-trapping set number of
the convolutional coded(T )

ccts(∆) is bounded above by the∆-
trapping set number of the terminated coded

(L)
ts (∆) for L = T

and any∆ ≥ 0. This can be shown by considering a pair of
modified code ensembles where each check node is connected
once to a distinctauxiliary variable node (see [18]). Crucially,

there is a bijective mapping from the set of all(a, b)-general
trapping sets in the original code to the set of all codewords
in the modified code, and we can use a minimum distance-
type argument to prove the result for the modified code. The
ensemble average resultd

(T )

ccts(∆) ≤ d
(T )

ts (∆) for all ∆ ≥ 0
then follows directly. ✷

Again, we will henceforth drop the overline notation when
discussing ensemble average∆-trapping set enumerators. Us-
ing (7) and a similar sequence of arguments to those presented
in Section IV-B, we can form an upper bound on the∆-
trapping set growth rateδ(T )

ccts(∆) of the periodically time-
varying LDPCC code ensemble as

δ
(T )
ccts(∆) =

d
(T )
ccts(∆)

νs
≤

δ̂
(T )
ts (∆)T

(ms + 1)
, (8)

where δ̂
(T )
ts (∆) is the ∆-trapping set growth rate of the

terminated LDPCC code ensemble with termination factor
L = T and base matrixB[0,T−1] for any ∆ ≥ 0. Similarly,

a lower bound onδ(T )
ccts(∆) was calculated in [19] using tail-

biting LDPCC code ensembles as

δ
(T )
ccts(∆) ≥

δ̌
(T )
ts (∆)T

(ms + 1)
, (9)

where δ̌(T )
ts (∆) is the∆-trapping set growth rate of the tail-

biting LDPCC code ensemble with termination factorλ = T

and base matrixB(T )
tb for any∆ ≥ 0.

C. Numerical results

We continue our analysis of the(3, 6)-regular LDPCC
code ensemble described in Section II-A. Since the unter-
minated convolutional code has rateR = 1/2, we cal-
culate the upper bound on the∆-trapping set growth rate
of the periodically time-varying LDPCC code ensemble as
δ
(T )
ccts(∆) ≤ δ̂

(T )
ts (∆)T/(ms + 1) using (8) for termination

factorsL = T ≥ 3. For ∆ = 0, 0.01, 0.05, Figure 2 displays
the ∆-trapping set growth rateŝδ(T )

ts (∆) of the terminated
ensembles defined byB[0,L−1] for L = 3, . . . , 18 (calculated
using techniques from [18]) and the associated upper bounds
on the convolutional∆-trapping set growth rateδ(T )

ccts(∆) for
L = T . Also shown are the∆-trapping set growth rates
δ̌
(T )
ts (∆) of the tail-biting ensembles defined byB(λ)

tb for
λ = 3, 6, . . . , 18 and the associated lower bounds on the
convolutional growth ratesδ(T )

ccts(∆) calculated using (9) that
were obtained in [19].

Note that setting∆ = β/α = 0 corresponds to the
minimum distance growth rate problem discussed in Section
IV, and as a result, the curves corresponding to∆ = 0 match
those displayed in Figure 1. For∆ = 0.01 and ∆ = 0.05
we observe the same behaviour: the∆-trapping set growth
rates of the LDPC block code ensembles defined byB[0,T−1]

and B
(T )
tb are positive and decrease monotonically to zero

as the termination factors tend to infinity. For each∆, the
corresponding upper and lower bounds calculated forδ

(T )
ccts(∆)

using (8) and (9) (respectively) coincide forT ≥ 12 and
decrease as∆ increases. The empirical data suggests that the
bounds will remain equal and constant forT > 18.

As ∆ ranges from0 to ∞, the points(δts(∆),∆δts(∆))
trace out the so-calledzero-contour curvefor a protograph-
based block code ensemble [18]. The zero-contour curves
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Fig. 2: ∆-trapping set growth rates of terminated and tail-biting LDPCC
code ensembles with calculated upper and lower bounds on the∆-trapping
set growth rate of the associated periodically time-varying LDPCC code
ensembles.

for the (3, 6)-regular LDPC block code ensemble and the
periodically time-varing LDPCC code ensemble withT = 12
are shown in Figure 3.3 The ∆-trapping set growth rates are
highlighted for∆ = 0.01.

For all ∆ ≥ 0, δ
(12)
ccts(∆) > 0, indicating that, for each

class of (a, b) general trapping set, the size of the small-
est non-empty trapping set typical of most members of the
ensemble is growing linearly with constraint length. Code
ensembles with large∆-trapping set numbersd(T )

ccts(∆) are the
most interesting, since small trapping sets dominate iterative
decoding performance in the error floor [8]. Thus we want
the∆-trapping set growth rateδ(12)ccts(∆) to exist and to be as
large as possible, thus guaranteeing good iterative decoding
performance in the error floor. Finally, we note that the
convolutional growth rateδ(12)ccts(∆) exceeds the associated
block growth rateδts(∆) for all ∆ ≥ 0.

VI. CONCLUSIONS

In this paper we showed, using a protograph-based analysis
of terminated LDPCC codes, that we can obtain an upper
bound on the free distance growth rate of an ensemble of
periodically time-varying LDPCC codes. We found that the
bounds we obtain coincide with lower bounds previously
obtained by analysing the minimum distance of ensembles of
tail-biting LDPCC codes. This approach was then extended to
obtain upper and lower bounds on the∆-trapping set growth
rates of ensembles of periodically time-varying LDPCC codes.
Further, it was shown that the distance and∆-trapping set
growth rates of the LDPCC code ensembles exceed the growth
rates of the corresponding LDPC block code ensembles on
which they are based. The large minimum distance and trap-
ping set growth rates obtained suggest that LDPCC codes will
exhibit good iterative decoding performance in the error floor.

3ForT = 12, the upper and lower bounds coincide for all calculated values
of ∆. This enables us to plot an exact zero-contour curve, in contrast to the
lower-bound zero-contour curve reported in [19].
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Fig. 3: Zero-contour curves of the(3, 6)-regular LDPC block code ensemble
and the(3, 6)-regular LDPCC code ensemble.
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