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Abstract—Ensembles of (J, K)-regular low-density parity- codes[[9], [10]. By comparing and evaluating these bounds we
check convolutional (LDPCC) codes are known to beasymp-  find that, for a sufficiently large period, the bounds coiegid
totically good, in the sense that the minimum free distance grows giving us exact values for the convolutional code free dista

linearly with the constraint length. In this paper, we use a . ] .
protograph-based analysis of terminated LDPCC codes to opin  9rOWth rates. This approach is then extended to obtain ound

an upper bound on the free distance growth rate of ensemblesfo 0N the trapping set numbers, which define the size of the
periodically time-varying LDPCC codes. This bound is compaed smallest, non-empty trapping sets, for these asymptbtical

to a lower bound and evaluated numerically. It is found that, for good, periodically time-varying LDPCC code ensembles. We
a sufficiently large period, the bounds coincide. This apprach 3150 show that the trapping set numbers grow linearly with

is then extended to obtain bounds on the trapping set numbers . . .
which define the size of the smallest, non_eﬂf’pt}g trapping set constraint length. For all the ensembles considered, we find

for these asymptotically good, periodically time-varyingLDPCC  that the distance and trapping set growth rates exceed those
code ensembles. of corresponding block code ensembles.

|. INTRODUCTION Il. BACKGROUND

[Low-density parity-check convolutional (LDPCC) codes A protograph[[1l] is a small bipartite graph that is used to
[1] have been shown to be capable of achieving capacifi€rive a larger graph by taking ai-fold graph cover([12], or
approaching performance with iterative message-passing ( iting”, of the protograph. It is an important feature dfis
coding [2]. The excellent iterative decoding thresholdf [3cOnstruction that gach lifted code inherits the degreeiblist
[] that these codes display has recently been attributéleto tion and graph neigbourhood structure of the protograple. Th
threshold saturatioreffect [5]. In addition to good threshold Protograph can be represented by@sebiadjacency matrix
performance, it can also be shown that the minimum frdd whereB; , is taken to be the number of edges connecting
distance typical of most members of these LDPCC cod@riable nodev, to check node,. The parity-check matrix
ensembles grows linearly with the constraint length as th& of @ protograph-based LDPC block code can be created
constraint length tends to infinity, i.e., they asymptotically PY replacing each non-zero entry B8 by a sum of B, ,
good[6]. A large free distance growth rate indicates that cod@§rmutation matrices of siz& x N and each zero entry by
randomly drawn from the ensemble should have a low erfble V x IV all-zero matrix. The ensemble of protograph-based
floor under maximum likelihood (ML) decoding. LDPC block codes with block length = Nn, is defined

When sub-optimal decoding methods are employed, thété the set of matriced that can be derived from a given
are other factors that affect the performance of a code. F¥Ptograph by choosing all possible combinations\of N
example, it has been shown that so-called ‘trapping sets’ &€rmutation matrices.

a significant factor affecting _deqoding failures of LDPC_esd A. Convolutional protographs

over the AWGN channel with iterative message-passing de-
coding. Trapping sets, graphical sub-structures existirtipe
Tanner graph of LDPC codes, were first studied’in [7]. Kno

An ensemble of unterminated LDPCC codes can be de-
W§]cribed by aconvolutional protograpi4] with base matrix

initially as near-codewordsthey were used to analyse the By

performance of LDPC codes in the error floor, or high signal- B, B

to-noise ratio (SNR) region, of the bit error rate (BER) @irv : B;

In [8], Richardson developed these concepts and proposed a Bo,oo] = B,, : ) 1)
two-stage technique to predict the error floor performarfce o : B,..

LDPC codes based on trapping sets.

In this paper, we use a protograph-based analysis of ter-
minated LDPCC codes to form an upper bound on the freéere m, denotes the syndrome former memory of the
distance growth rate of ensembles of periodically timegvay  convolutional codes and thie x b, component base matrices
LDPCC codes. The free distance growth rate can also Be, i = 0,...,mg, represent the edge connections from

bounded below by using ensembles of tail-biting LDPCthe b, variable nodes at timeg to the b. check nodes
at time ¢t + i. An ensemble of (in general) time-varying
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protograph construction method described above, reguitin V. FREE DISTANCE ANALYSIS OF PROTOGRAPHBASED

the associated parity-check matrix LDPCCCODES
H[O""ﬂjo) From a convoluti_onal prot(_)graph with base matBy) ),
Hi (1) Ho(1) we can form a periodically time-varyinfy-fold graph cover
: : ' with period T' by choosing, for theb. x b, submatrices

H,, (ms) H,, 1(ms)

e Ho(ms)
H,,,(ms+1) Hp,_1(ms+1) e

Bo,B1,...,Bp, in the firstT columns of By, ), a set of
N x N permutation matrices randomly and independently to
: : ) o form Nb. x Nb, submatriceH(¢), Hi(t+1),...,H,,_ (t+

Arate R =1— Nb./Nb, =1 —bc/b, time-varying LDPCC 1, y respectively, fort = 0,1,...,7 — 1. These submatrices

code with parity-check matrixHy ) is periodically are then repeated periodically (indefinitely) to foiy .|

time-varying with period 7' if H,(¢) is periodic, ie., gych thatH;(t + T) = H,(t), Vi,t. An ensemble of pe-

H;(t) =H;(t+T),V it and ifH;(t) = H;,V i,¢, the code rjodically time-varying LDPCC codes with period, rate

is time-invariant We call v, = N(ms 4 1)b, the decoding p — 1—Nb,/Nb, = 1—b,/b,, and decoding constraint length

constraint length v = N(ms+1)b, can then be derived by letting the permuta-
Starting from the base matri® of a block code ensemble, tion matrices used to fordl,(t), Hy (t+1), . .., H,,_ (t+ms),

one can construct LDPCC code ensembles with the safag: — ,1,...,7—1, vary over theV! choices of permutation
computation trees. This is achieved by adge spreading matrix.

procedure (se€ [4] for details) that divides the edges fraohe

variable node in the base matfk amongm, +1 component A Free distance bounds for LDPCC code ensembles

base matriceB;, ¢ = 0,...,mg, such that the condition ) o _ )

Bo + B1 +--- + B,,. = B is satisfied. For example, a (3,6)- Consider an ensemble of periodically time-varying LDPCC
regular LDPCC ensemble with, = 2 can be formed from codes with rateR = 1 — b./b, and periodT" constructed
the block base matriB = [ 3 3] by defining the component from a convolutional protograph with base mati,; as

Ho(ms + 1)

base matrice, = [1 1] =B; = B,. described above. It is known that the average free distafhce o
this ensemble can be bounded below by the average minimum
I1l. TERMINATION OF LDPCC CODES distance of an ensemble of tail-biting LDPCC codes derived

from the base matri>B§2) with termination factorA = T

, [10]. Here, we show that the average free distance of
}Ee convolutional ensemble can also be bounded above by

e average minimum distance of the ensemble of terminated
protograph-based LDPCC codes derived from the base matrix
By Bo,,—1) with termination factor = 7.

Theorem 1:Consider a rate? = 1 — b./b, unterminated,
periodically time-varying LDPCC code ensemble with mem-
ory mg, decoding constraint length, = N(m, + 1)b,, and

: periodT" derived fromByg ). Let Eifl)n be the average mini-
B,.. (L )b x L mum distance of the terminated convolutional code ensemble
A ) dered ° Ch t: with block lengthn = LNb, and tern;ination factol.. Then
The matrixByy, ;1) can be considered as the base matri e ensemble average free dista_T of the unterminated
of a terminated protograph-based LDPCC code ensemble. 9 ﬂéﬁee

. . —tL)
Termination in this fashion results in a rate loss. The desigonvolutional code ensemble is bounded abOVeden for

Suppose that we start the convolutional code with parit
check matrix defined i) at time¢ = 0 and terminate it
after L time instants. The resulting finite-length base matri
is then given by

Bior-1=| Bm, Bo . ()

rate of the terminated code ensemble is given as termination factorL =T', i.e.,
L S bc L s _(T) _(T‘)

Sketch of proof There is a one-to-one relationship be-

where R = 1 — Nb./Nb, = 1 — b./b, is the rate of o . .
the unterminated convolutional code ensemble. Note trmt,t\éveen members of the periodically time-varying LDPCC

the termination factor L increases, the rate increases an(r:g?de ensemble and members of the corresponding ter-
’ inated LDPCC code ensemble with termination factor

approaches the rate of the unterminated convolutional coge — 7. For any such pair of codes, every code-

ensemble. : ;
. . oword x = [z9 ®1 -+ ZLnb,—1 ] in the terminated
The co_nvolgho_n_al base matriB) .| can also be termi- code can immediately be seen as a codewefg.; —
nated usingtail-biting [13], [14]. Here, for anyA > mg, ; o0,
. . | xo =1 -+ xrnb,—1 O ---] in the unterminated
the lastb.m, rows of the terminated parity-check matrix v ) T )
By, 1 are removed and added to the firtm, rows code. It follows that the free distandg, . of the unterminated

to form the Ab, x Ab, tail-biting parity-check matrixB(;) ~code can not be larger than the minimum d'Staj@i‘% of the
with tail-biting termination factor\. TerminatingBy ) in terminated code. The ensemble average reé#lie < dfm)n
such a way preserves the design rate of the ensemble, tieen follows directly. ' O

Ry =1—Xb./Mb, =1—10./b, = R, and we see tha‘Bgi) Since there is no danger of ambiguity, we will henceforth
has exactly the same degree distribution as the originakblodrop the overline notation when discussing ensemble agerag

base matrixB. distances.



B. Free distance growth rates of LDPCC code ensembles Terminated minimum

In [15], Divsalar presented a technique to calculate tre 8 distance growth rat&in:i)n
average weight enumerator for protograph-based block cc 2
ensembles. This weight enumerator can be used to test if . Hpper bound gr”of{,‘t?] ratd?)
ensemble imsymptotically googdi.e., if the minimum distance £ o1} / , , ree |
typical of most members of the ensemble is at least as laig =
as d,minn, Whered,,;, its the minimum distance growth rate °
of the ensemble and is the block length.

For LDPC convolutional codes, conventionally defined ¢
the null space of a sparse parity-check mafiy) ., it is
natural to define the free distance growth rate with respe
to the decoding constraint length, i.e., as the ratio of the

free distancel;,.. to the decoding constraint length[1 By N Tail-biting minimum \__‘__‘

bounol_ingd(frfie using [4), we obtain an upper bound on thi . distance growth rat rﬁl)n ‘ ‘ ‘
free distance growth rate as 3 6 9 12 15 18 21

Termination factor (L ok) and period T

5,

o

Lower bound on the )
free distance growth raféree

Distance growth rat
o
&

(T) A(T)
5(T) _ dfT€€ < 5minT (5)
free = 7 - (m + 1)’ Fig. 1: Minimum distance growth rates of terminated andtiihg LDPCC
s s code ensembles with calculated upper and lower bounds oftebalistance
where 57(51)71 _ dgz)n/” _ dfffi)n/(NTbv) is the minimum glrg\sls./th rate of the associated periodically time-varyingR@C code ensem-

distance growth rate of the terminated LDPCC code ensemble
with termination factorL, = T and base matridB, - |8 calculated fos!")_ levels off at5§ffie > 0.086. The calculated

Similarly, it was shown in[[9] that terminated convolutional code minimum distance growtesat
57(751)71 are large for small values of. (where the rate loss

5(T)
PICORES M (6) s larger) and decrease monotonically to zerolas— ooc.

free = (mg 4 1)’ Using [B) to obtain an upper bound on the free distance
rowth rate we observe that, f@r > 12, the upper and lower

where ") is the minimum distance growth rate of th o
0 9 ounds ondgie coincide, indicating that, for these values

min

tail-biting LDPCC code ensemble with tail-biting termirat

factor A = 7 and base matriB\;’. of the periodT, 55,26 = 0.086, significantly larger than the
. (3,6)-regular LDPC block code minimum distance growth rate
C. Numerical results dmin = 0.023. In addition, we note that at the point where

As an example, we consider tii&, 6)-regular LDPCC code the bounds coincide, the growth rates for both termination
ensemble defined in Sectidn_II-A. Since the unterminatédethods also coincide. Recall that the tail-biting ensesbl
convolutional code has ratg = 1/2, we calculate the upper all have ratel /2, wheras the rate of the terminated ensembles
bound on the free distance of the periodically time-varyinig a function of the termination factdt given by [3).

LDPCC code ensemble a'), < 4,") T/3 using [3) for ~ Lower bounds on the free distance growth rates were
termination factorsL = 7' > 3. Figure[1 displays the mini- calculated for a wide variety ofJ, K)-regular and irregular

mum distance growth rates”). of the terminated ensemblestDPCC code ensembles in [17]. Using the technique detailed
defined byB, ;1 for L = 3,4,...,21 that were calculated here, we can form upper bounds on the free distance growth

using the technique proposed in [15] and the associated upfge that coincide numerically for sufficiently largé giving
bounds on the convolutional growth rad ) < 5D T/3 us exact free distance growth rates. For example, we cardboun

ree — man

for L, — T. Also shown are the minimum distance growtﬁhe convolutional free distance growth rate of tHes)-regular

< o . ; (T) ;

ratess”) of the tail-biting ensembles defined by base matrignSemble a8.1908 < o, < 0.1908 and the free distance
ng\) for A = 3,4,...,21 and the associated lower bounds oﬂrOWth rate f(g;)the rateR = 2/3, (_3,_9)-regular ensemple
the convolutional growth rate™ > §) T/3for A\ =T as 0.0186 < 0free < 0.0186 for suff|C|e_ntIy largeT (again
calculated using{6) free = “min significantly larger than the corresponding block growtiesa

We observe that the calculated ensemble tail-biting co c€ [dl.ﬁ])' This genr(]eral tectr;mque %ag Fe ufsed to bour;d the
volutional code minimum distance growth raﬁé%.) remain o stance growth rate anove ana below for any reguiar or
constant for\ = 3,...,11 and then start to decrease as th

irregular periodically time-varying protograph-based RCC
termination factorA grows, tending to zero aa tends to

€ode ensemble.
infinity. Correspondingly, as\ exceedsl1, the lower bound V. TRAPPING SET ANALYSIS OFL DPCC CODES

1 H .
enczg?nge:or?.lc,st:ginnielegr:grk\;t: \r/\?tg(iecrrp?(;r?éss?)obnedgﬂgljtlﬁéeﬁﬁ;v;meﬁnizJ?neber In [7], MacKay and Postol discovered a “weakness” in
of transmitted symbols that can be affected by a single monbtock of the structure of the Margulis construction of(& 6)-regular
information digits. For further details, sele [16]. Gallager code. Described asear-codewords these small
. zghf‘? f_;_ee distance _gftOWth rfﬁéf)l thatt;Ne b(;’undﬁf]foT ;t;f;‘_’e Usf"@ (53’ graphical sub-structures existing in the Tanner graph dPCD

eriniton, 1s an existence- e lower pound on the Tr ICE O MOS . . . . .
myembers of the ensemble, i.e.),/?/vith high probability a ramgtachosen code codes cause the iterative deCOdmg algomhm to get trappe_d
from the ensemble has minimum free distance at least asdw@gleys as €rror patterns. These weaknesses were shown to contribute

Vs — 00. significantly to the performance of the code in the error floor



region of the BER curve. Richardson developed this concepere is a bijective mapping from the set of &dl, b)-general

in [8] and defined these structurestaspping sets trapping sets in the original code to the set of all codewords
Definition 1: An (a,b) general trapping set, , of a bipar- in the modified code, and we can use a minimum distance-

tite graph is a set of variable nodes of sizevhich induce type argument to prove the result for the modified code. The

a subgraph with exactly odd-degree check nodes (and aBnsemble average resuf..(A) < d.. (A) for all A > 0

arbitrary number of even-degree check nodes). then follows directly. O

In order to calculate ensemble average general trapping seAgain, we will henceforth drop the overline notation when
enumerators for protograph-based LDPC block code ensegliscussing ensemble averagetrapping set enumerators. Us-
bles, we use the combinatorial arguments previously ptedening (7) and a similar sequence of arguments to those prasente
in [18]. The technique involves considering a two-part efin Section[IV:B, we can form an upper bound on the

semble average weight enumerator for a modified protogralpgpping set growth rate' ") (A) of the periodically time-
with the property that anya,b) trapping set in the original varying LDPCC code enscétr;ble as
protograph is a codeword in the modified protograph. A

T dD(a) ST
5( ) (A) — ccts < ts

ccts Vs — (ms 4 1)’

A. Trapping set growth rates

Let A = b/a = B/a, wherea = a/n, 8 = b/n, and A
A € [0,00). As proposed in[[18], we classify the trappingvhere 5§ST)(A) is the A-trapping set growth rate of the
sets asra = {74.5|b = Aa}. For eachA, we defined;;(A) terminated LDPCC code ensemble with termination factor
to be the A-trapping set numberwhich is the size of the L = T and base matriB ,_; for any A > 0. Similarly,

smallest, non-empty trapping setn. The two-part average g Jower bound ors'’).(A) was calculated in[19] using tail-

ccts

ensemble average weight distribution can be used to tespjfing LDPCC code ensembles as

the ensemble has the desirable property thatAhk&apping (1)

set number increases linearly with block lengtifl8]. If this 5D (A) > 05 (AT @)
is the case, we can say that, with high probability, a rangtoml cets ~ (ms+1)°

chosen code from the ensemble haA-#rapping set number <«(T) , , ,
that is at least as large as,,(A), wheres,,(A) is called the Whereo,, "(A) is the A-trapping set growth rate of the tail-
A-trapping set growth ratef the ensemble. If this is true for Piting LDPCC CO‘?% ensemble with termination factor= 7'
all A > 0, this implies that, for sufficiently large, a typical and base matriB;,* for any A > 0.

member of the ensemble has no small trapping sets. C. Numerical results

(8)

B. Trapping set bounds for protograph-based LDPCC codeWe continue our analysis of thé3,6)-regular LDPCC
ensembles code ensemble described in SectlonJI-A. Since the unter-

Consider once more the ensemble of periodically tim&inated convolutional code has rafe = 1/2, we cal-
varying of LDPCC codes with rat& = 1 — b /b, and period culate the_ upper bqund on _thﬁ-trapplng set growth rate
T derived from a convolutional base matrB, .; and the ofT'ghe perloq(lg?"y time-varying LDPCC code ensemble as
associated terminated LDPCC code ensemble with base madtixs(2) < 0,5 (A)T/(ms + 1) using [8) for termination
B, —yandL =T. factorsL. =T > 3. For A = 0,0.01,0.05, Figure[2 displays

Theorem 2:Consider a rateR = 1 — b./b, unterminated, the A-trapping set growth rateégsT)(A) of the terminated
periodically time-varying convolutional code ensemblehwi ensembles defined g, ;_,; for L = 3,..., 18 (calculated
memorym,, decoding constraint length, = N(mg + 1)b,, using techniques fro 8]) and the associated upper bounds
and periodl” derived fromBy; .. Letd,")(A) be the average On the convolutionalA-trapping set growth raté!’), (A) for
A-trapping set number of the terminated convolutional code = 7. Also shown are theA-trapping set growth rates
ensemble with block length = LNb,, and termination factor §tST)(A) of the tail-biting ensembles defined tﬁgg) for

L. Then the ensemble averagetrapping set numbét..,.(A) A = 3.6,...,18 and the associated lower bounds on the

ccts

. : ; - T :
of the unterminated convolutional code is bounded above Bgnvolutional growth rates!.,.(A) calculated using({9) that

=(L) o ; were obtained in[[19].
= > . . .
d,, (A) for termination factorL = T" and anyA > 0, i.e., Note that settingA — B/a — 0 corresponds to the

a"a)y<d ) vaxo. (7) minimum distance growth rate problem discussed in Section
[V] and as a result, the curves corresponding\te- 0 match

Sketch of proof The proof is a straightforward generalisathose displayed in Figuriel 1. Fak = 0.01 and A = 0.05
tion of the proof of Theoreml. We first show that, for we observe the same behaviour: thetrapping set growth
any periodically time-varying LDPCC code and associategdtes of the LDPC block code ensembles definedly )
terminated LDPCC code with termination factdr = T, and B!’ are positive and decrease monotonically to zero
and anyA > 0, any (a,Aa) general trapping set in theas the termination factors tend to infinity. For eadh the
terminated code is also afu,Aa) general trapping set in ¢orresponding upper and lower bounds calculated fgt (A)
the convolutional code,TLe., thé-trapping set number of ,sing [8) and[{) (respectively) coincide faf > 12 and
the convolutional code.,(A) is bounded above by thA- decrease as increases. The empirical data suggests that the
trapping set number of the terminated cmtﬂ?(A) for L=T bounds will remain equal and constant fBr> 18.
and anyA > 0. This can be shown by considering a pair of As A ranges from0 to oo, the points(d:s(A), Adis(A))
modified code ensembles where each check node is connettade out the so-calledero-contour curvdor a protograph-
once to a distincauxiliary variable node (se€[18]). Crucially,based block code ensemble ][18]. The zero-contour curves
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Fig. 3: Zero-contour curves of th@, 6)-regular LDPC block code ensemble

d
Fig. 2: A-trapping set growth rates of terminated and tail-biting R@C an

code ensembles with calculated upper and lower bounds or\ttrapping
set growth rate of the associated periodically time-varyllDPCC code
ensembles.

(1]

for the (3,6)-regular LDPC block code ensemble and the
periodically time-varing LDPCC code ensemble with= 12
are shown in FigurglB.The A-trapping set growth rates are
highlighted forA = 0.01.

For all A > 0, 6&2@) > 0, indicating that, for each
class of (a,b) general trapping set, the size of the small-[4]
est non-empty trapping set typical of most members of the

ensemble is growing linearly with constraint length. Code[5
ensembles with largA-trapping set number CQS(A) are the
most interesting, since small trapping sets dominatetitera
decoding performance in the error floor [8]. Thus we wan
the A-trapping set growth ratééifs)(A) to exist and to be as

large as possible, thus guaranteeing good iterative dlegodi[
performance in the error floor. Finally, we note that the

convolutional growth rate§(12)(A) exceeds the associated (6]

ccts
block growth ratej,;(A) for all A > 0. 9]

(3]

g

VI. CONCLUSIONS
[10]

In this paper we showed, using a protograph-based analysis
of terminated LDPCC codes, that we can obtain an uppgy
bound on the free distance growth rate of an ensemble of]
periodically time-varying LDPCC codes. We found that th&2]
bounds we obtain coincide with lower bounds previousl[)i3
obtained by analysing the minimum distance of ensembles o
tail-biting LDPCC codes. This approach was then extended to
obtain upper and lower bounds on thetrapping set growth (14]
rates of ensembles of periodically time-varying LDPCC &de15]
Further, it was shown that the distance afétrapping set
growth rates of the LDPCC code ensembles exceed the grom
rates of the corresponding LDPC block code ensembles on
which they are based. The large minimum distance and trdp4
ping set growth rates obtained suggest that LDPCC codes will
exhibit good iterative decoding performance in the erraorflo [18]

[19]

SFor T = 12, the upper and lower bounds coincide for all calculatedeglu
of A. This enables us to plot an exact zero-contour curve, inrasnto the
lower-bound zero-contour curve reported [in][19].

the(3, 6)-regular LDPCC code ensemble.
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