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Abstract

We study the joint source-channel coding problem of transmitting a discrete-time analog source over an additive

white Gaussian noise (AWGN) channel with interference known at transmitter. We consider the case when the source

and the interference are correlated. We first derive an outerbound on the achievable distortion and then, we propose

two joint source-channel coding schemes. The first scheme isthe superposition of the uncoded signal and a digital

part which is the concatenation of a Wyner-Ziv encoder and a dirty paper encoder. In the second scheme, the digital

part is replaced by the hybrid digital and analog scheme proposed by Wilsonet al. When the channel signal-to-

noise ratio (SNR) is perfectly known at the transmitter, both proposed schemes are shown to provide identical

performance which is substantially better than that of existing schemes. In the presence of an SNR mismatch,

both proposed schemes are shown to be capable of graceful enhancement and graceful degradation. Interestingly,

unlike the case when the source and interference are independent, neither of the two schemes outperforms the other

universally. As an application of the proposed schemes, we provide both inner and outer bounds on the distortion

region for the generalized cognitive radio channel.

Index Terms

Distortion region, joint source-channel coding, cognitive radios.

I. INTRODUCTION AND PROBLEM STATEMENT

In this paper, we consider transmitting a length-n i.i.d. zero-mean Gaussian sourceV n = (V (1), V (2), . . . , V (n))

over n uses of an additive white Gaussian noise (AWGN) channel withnoiseZn ∼ N (0, N · I) in the
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presence of Gaussian interferenceSn which is known at the transmitter as shown in Fig. 1. Throughout

the paper, we only focus on the bandwidth-matched case, i.e., the signalling rate over the channel is equal

to the sampling rate of the source. The transmitted signalXn = (X(1), X(2), . . . , X(n)) is subject to a

power constraint
1

n

n∑

i=1

E[X(i)2] ≤ P, (1)

whereE[·] represents the expectation operation. The received signalY n is given by

Y n = Xn + Sn + Zn. (2)

We are interested in the expected distortion between the source and the estimatêV n at the output of

the decoder given by

d = E[d(V n, g(f(V n, Sn) + Sn + Zn))], (3)

wheref and g are a pair of source-channel coding encoder and decoder, respectively, andd(., .) is the

mean squared error (MSE) distortion measure given by

d(v, v̂) =
1

n

n∑

i=1

(v(i)− v̂(i))2. (4)

Here the lower case letters represent realizations of random variables denoted by upper case letters. As in

[1], a distortionD is achievable under power constraintP if for any ε > 0, there exists a source-channel

code and a sufficiently largen such thatd ≤ D + ε.

When V and S are uncorrelated, it is known that an optimal quantizer followed by a Costa’s dirty

paper coding (DPC) [2] is optimal and the corresponding joint source-channel coding problem is fully

discussed in [3]. However, different from the typical writing on dirty paper problem, in this paper, we

consider the case where the source and the interference are correlated with a covariance matrix given by

ΛV S =


 σ2

V ρσV σS

ρσV σS σ2
S


 . (5)

Under this assumption, separate source and channel coding using DPC naively may not be a good

candidate for encodingV n in general. It is due to the fact that in Costa’s DPC scheme, the transmitted

signal is designed to be orthogonal to the interference and,hence, the DPC scheme cannot exploit the

correlation between the source and the interference. Also,the purely uncoded scheme fails to avoid
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the interference and is suboptimal in general. In this paper, we first derive an outer bound on the

achievable distortion region and then, we propose two jointsource-channel coding schemes which exploit

the correlation betweenV n andSn, thereby outperforming the naive DPC scheme. The first scheme is a

superposition of the uncoded scheme and a digital part formed by a Wyner-Ziv coding [4] followed by

a DPC, which we refer to as a digital DPC based scheme (or just the digital DPC scheme). The second

scheme is obtained by replacing the digital part by a hybrid digital and analog (HDA) scheme given in

[3] that has been shown to provide graceful improvement whenthe actual SNR (SNRa) is better than

the design SNR (SNRd). We then analyze the performance of these two proposed schemes when there

is an SNR mismatch. It is shown that both the HDA scheme and thedigital DPC scheme benefit from

a higher channel SNR and provide graceful enhancement; however, interestingly, for this case neither of

schemes dominate the other universally and which one performs better depends on the designed SNR.

Whenρ is small, the HDA scheme outperforms the digital DPC scheme and whenρ is large, the digital

DPC scheme outperforms the HDA scheme. When the channel deteriorates, both the proposed schemes

perform identically and are able to provide graceful degradation.

One interesting application of this problem is to derive an achievable distortion region for the generalized

cognitive radio channel with correlated sources. This channel can be modeled as a typical two-user

interference channel except that one of them knows exactly what the other plans to transmit. Moreover,

two users’ sources are assumed to be correlated. One can regard the informed user’s channel as the setup

we consider here and then directly apply the schemes we propose as the coding scheme for the informed

user. For the generalized cognitive radio channel with correlated sources, we provide inner and outer

bounds on the distortion region where the inner bound largely relies on the coding schemes proposed in

this paper.

The rest of the paper is organized as follows. In Section II, we present some prior work which is

closely related to ours. The outer bound is given in Section III and two proposed schemes are given in

Section IV. In Section V, we analyze the performance of the proposed schemes under SNR mismatch.

These proposed schemes are then extended to the generalizedcognitive radio channel in Section VI. Some

conclusions are given in Section VII.

II. RELATED WORK ON JSCCWITH INTERFERENCEKNOWN AT TRANSMITTER

In [5], Sutivonget al. consider the problem of sending a digital source in the presence of interference

(or, channel state) which is known at the transmitter and is assumed to be independent of the source.
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The optimal tradeoff between the achievable rate for transmitting the digital source and the distortion in

estimating the interference is then studied. A coding scheme that is able to achieve the optimal tradeoff

is also provided in [5]. This coding scheme uses a portion of the power to amplify the interference and

uses the remaining power to transmit the digital source via DPC. This coding scheme can be extended

to the problem we consider as follows. Since the source and the interference are jointly Gaussian, we

can first rewrite the source asV = ρσV

σS
S + N ′

ρ with S and the innovationN ′
ρ being independent of

each other. Now if one quantizesN ′
ρ into digital data, the setup becomes the one considered by Sutivong

et al. and their proposed scheme can be applied directly. For any power allocation between the analog

part and digital part, using this scheme to operate on the boundary of the optimal tradeoff, the optimal

distortion in estimatingρσV

σS
S and that in estimatingN ′

ρ is achieved. The distortion in estimatingV for

this power allocation strategy is the sum of the above two distortions. One can then optimize the power

allocation strategy to get the minimum distortion for this coding scheme. It is worth pointing out that

this coding scheme is in general suboptimal for our problem although it achieves the optimal tradeoff

between estimatingS andN ′
ρ individually. This is because, our interest is in estimating V directly and it

is importantly to carefully take advantage of the correlation in the estimation error in estimatingS and

N ′
ρ. The coding scheme in [5] is not naturally suited to take advantage of this correlation. One numerical

example is shown in Fig. 2 where we can see that the union of theuncoded scheme and the naive DPC

scheme outperforms the extension of Sutivonget al.’s scheme.

In [6], Lapidoth et al. consider the2 × 1 multiple access channel in which two transmitters wish to

communicate their sources, which are drawn from a bi-variate Gaussian distribution, to a receiver which

is interested in reconstructing both sources. There are some similarities between the proposed work and

the work in [6] if we regard one of the users’, say the user 2’s,signal as interference. However, an

important difference is that in [6], the transmitters are not allowed to cooperate with each other, i.e., for

the transmitter 1, the interference (user 2’s signal) is notknown. Moreover, this interference now depends

on the signalling scheme adopted at user 2 and may not be correlated to the source anymore.

In [7]-[10], transmitting a bi-variate Gaussian source over a 1 × 2 Gaussian Broadcast Channel is

considered. In their setup, the source consists of two componentsV n
1 and V n

2 which are memoryless

and stationary bi-variate Gaussian random variables and each receiver is only interested in one part of

the sources. In [10], Tianet al. propose a HDA scheme that achieves the outer bound given in [7] and

therefore leads to a complete characterization of the distortion region. This problem is similar to ours if
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we only focus on one receiver, say the first receiver. However, a crucial difference is that the interference

now is a function ofV n
2 which depends on the broadcast encoding scheme and may not becorrelated

to V n
1 . The joint source-channel coding problem for broadcastinga single memoryless Gaussian source

under bandwidth mismatch is considered in [11]-[13]. However, different from its bandwidth matched

counterpart [24], only approximation characterizations of the achievable distortion region are available

for this problem. Broadcasting a colored Gaussian source over a colored Gaussian broadcast channel to

a digital receiver and a analogy receiver is considered in [14] where Prabhakaranet al. propose a HDA

scheme that achieves the entire distortion region for the problem they consider.

Joint source-channel coding for point to point communications over Gaussian channels has also been

widely discussed. See e.g. [3],[15]-[17]. However, they either don’t consider interference ([15]-[17]) or

assume independence of source and interference ([3]). In [3], Wilson et al. proposed a HDA coding scheme

for the typical writing on dirty paper problem in which the source is independent of the interference. This

HDA scheme was originally proposed to perform well in the case of a SNR mismatch. In [3], the authors

showed that their HDA scheme not only achieves the optimal distortion in the absence of SNR mismatch

but also provides gracefully degradation in the presence ofSNR mismatch. In the following sections, we

will discuss this scheme in detail and then propose a coding scheme based on this one.

III. OUTER BOUNDS

A. Outer Bound 1

For comparison, we first present a genie-aided outer bound. This outer bound is derived in a similar

way to the one in [9] in which we assume thatSn is revealed to the decoder by a genie. Thus, we have

n

2
log

σ2
V (1− ρ2)

Dob

(a)

≤ I(V n; V̂ n|Sn)

(b)

≤ I(V n; Y n|Sn)

= h(Y n|Sn)− h(Y n|Sn, V n)

= h(Xn + Zn|Sn)− h(Zn)

(c)

≤ h(Xn + Zn)− h(Zn)

(d)

≤ n

2
log

(
1 +

P

N

)
, (6)
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where (a) follows from the rate-distortion theorem [1], (b)is from the data processing inequality, (c) is

due from that conditioning reduces differential entropy and (d) comes from the fact that Gaussian density

maximizes the differential entropy and all random variables involved are i.i.d. Therefore, we have the

outer bound as

Dob,1 =
σ2
V (1− ρ2)

1 + P/N
. (7)

Note that this outer bound in general may not be tight for our setup since in the presence of correlation,

giving Sn to the decoder also offers a correlated version of the sourcethat we wish to estimate. For

example, in the case ofρ = 1, giving Sn to the decoder implies that the outer bound isDob = 0 no

matter what the received signalY n was. On the other hand, ifρ = 0, the setup reduces to the one with

uncorrelated interference and we know that this outer boundis tight. Now, we present another outer bound

that improves this outer bound for some values ofρ.

B. Outer Bound 2

SinceS(i) andV (i) are jointly Gaussian distributed with covariance matrix given in (5), we can write

S(i) = ρ
σS

σV
V (i) +Nρ(i), (8)

whereNρ(i) ∼ N (0, (1− ρ2)σ2
S) representing the innovation and is independent toV (i). Now, suppose

a genie reveals only then-letter collection of innovationNn
ρ to the decoder, we have

n

2
log

σ2
V

Dob,2

=
n

2
log

var(V |Nρ)

Dob

(a)

≤ I(V n; V̂ n|Nn
ρ )

(b)

≤ I(V n; Y n|Nn
ρ )

= h(Y n|Nn
ρ )− h(Y n|Nn

ρ , V
n)

= h(Xn + ρ
σS

σV
V n + Zn|Nn

ρ )− h(Zn)

(c)

≤ h(Xn + ρ
σS

σV
V n + Zn)− h(Zn)

(d)

≤ n

2
log



var

(
X + ρ σS

σV

V + Z
)

N




(e)

≤ n

2
log

(
1 +

(
√
P + ρ

√
σ2
S)

2

N

)
, (9)
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where (a)-(d) follow from the same reasons with those in the previous outer bound and (e) is due from

the Cauchy-Schwartz inequality that states that the maximum occurs whenX andV are collinear. Thus,

we have

Dob,2 =
σ2
V

1 + (
√
P + ρ

√
σ2
S)

2/N
. (10)

Note that although the encoder knows the interferenceSn exactly instead of justNn
ρ , the inequality in

step (a) does not decrease the knowledge aboutSn at the transmitter sinceSn is a deterministic function

of V n andNn
ρ .

Remark 1: If ρ = 0, this outer bound reduces to the previous one and is tight. Ifρ = 1, the genie

actually reveals nothing to the decoder and the setup reduces to the one considered in [5], i.e., the encoder

is interested in revealing the interference to the decoder.For this case, we know that this outer bound

is tight. However, this outer bound is in general optimisticexcept for two extremes. It is due to the fact

that in derivations, we assume that we can simultaneously ignore theNn
ρ and use all the power to take

advantage of the coherent part. Despite this, the outer bound still provides an insight that in order to build

a good coding scheme that one should try to use a portion of power to make use of the correlation and

then use the remaining power to avoidNn
ρ . Further, it is natural to combine these two outer bounds as

Dob = max{Dob,1, Dob,2}.

From now on, since the channel we consider is discrete memoryless and all the random variables we

consider are i.i.d. in time, i.e.V (i) is independent ofV (j) for i 6= j, we will drop the indexi for the

sake of convenience.

IV. PROPOSEDSCHEMES

A. Digital DPC Based Scheme

We now propose a digital DPC scheme which retains the advantages of the above two schemes. This

scheme can be regarded as an extended version of the coding scheme in [16] to the setup we consider.

As shown in Fig. 3, the transmitted signal of this scheme is the superposition of the analog partXa with

powerPa and the digital partXd with powerP − Pa. The motivation here is to allocate some power for

the analog part to make use of the interference which is somewhat coherent to the source for largeρ’s

and to assign more power to the digital part to avoid the interference whenρ is small. The analog part is
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the scaled version of linear combination of source and interference as

Xa =
√
a (γV + (1− γ)S) , (11)

wherePa ∈ [0, P ], a = Pa/σ
2
a, γ ∈ [0, 1] and

σ2
a = γ2σ2

V + (1− γ)2σ2
S + 2γ(1− γ)ρσV σS. (12)

The received signal is given by

Y = Xd +Xa + S + Z

= Xd +
√
aγV +

(
1 +

√
a(1− γ)

)
S + Z

= Xd + S ′ + Z, (13)

whereXd is chosen to be orthogonal toS andV andS ′ =
√
aγV + (1 +

√
a(1− γ))S is the effective

interference. The receiver first makes an estimate fromY only asV ′ = βY with

β =
E[V Y ]

E[Y 2]
=

√
a(γσ2

V + (1− γ)ρσV σS) + ρσV σS

P +N + σ2
S ++2

√
a ((1− γ)σ2

S + γρσV σS)
. (14)

The corresponding MSE is

D∗ = σ2
V − βE[V Y ]

= σ2
V

[
1− β

(√
a(γ + (1− γ)ρ

σS

σV
) + ρ

σS

σV

)]
. (15)

Thus, we can writeV = V ′ +W with W ∼ N (0, D∗).

We now refine the estimate through the digital part, which is the concatenation of a Wyner-Ziv coding

and a DPC. Since the DPC achieves the rate equal to that when there is no interference at all, the encoder

can use the remaining powerP − Pa to reliably transmit the refining bitsT with a rate arbitrarily close

to

R =
1

2
log

(
1 +

P − Pa

N

)
. (16)

The resulting distortion after refinement is then given as

Dsep = inf
γ, Pa

D∗

1 + P−Pa

N

. (17)
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In Appendix B, for self-containedness, we briefly summarizethe digital Wyner-Ziv scheme to illustrate

how to achieve the above distortion.

It is worth noting that settingγ = 1 gives us the lowest distortion always. i.e., super-imposing S onto

the transmitted signal is completely unnecessary. However, it is in general not true for the cognitive radio

setup. We will discuss this in detail in section VI.

Remark 2: Different from the setup considered in [16] that the optimaldistortion can be achieved by

any power allocation between coded and uncoded transmissions, in our setup the optimal distortion is in

general achieved by a particular power allocation which is afunction of ρ.

B. HDA Scheme

Now, let us focus on the HDA scheme obtained by replacing the digital part in Fig. 3 by the HDA

scheme given in [3]. The analog signal remains the same as in (11) and the HDA output is referred to

asXh. Therefore, we haveY = Xh + S ′ + Z. Again, the HDA scheme regardsS ′ as interference and

V ′ described previously as side-information. The encoding and decoding procedures are similar to that in

[3] but the coefficients need to be re-derived to fit our setup (the reader is referred to [3] for details).

Let the auxiliary random variableU be

U = Xh + αS ′ + κV, (18)

whereXh ∼ N (0, Ph) independent toS ′ andV andPh = P − Pa. The covariance matrix ofS ′ andV

can be computed by (5).

Codebook Generation: Generate a random i.i.d. codebookU with 2nR1 codewords, reveal the codebook

to both transmitter and receiver.

Encoding: Given realizationss′ andv, find au ∈ U such that (s′,v,u) is jointly typical. If such au

can be found, transmitxh = u− αs′ − κv. Otherwise, an encoding failure is declared.

Decoding: The decoder looks for âu such that(y,v′, û) is jointly typical. A decoding failure is declared

if none or more than one sucĥu are found. It is shown in [3] that ifn → ∞ and the condition given in

(21) is satisfied, the probability of̂u 6= u → 0.

Estimation: After decodingu, the receiver forms a linear MMSE estimate ofv from y and u. The

distortion is then obtained as

Dhda = inf
γ, Pa

[
σ2
V − ΓTΛ−1

UY Γ
]
, (19)
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whereΛUY is the covariance matrix ofU andY , andΓ = [E[V U ],E[V Y ]]T .

In the encoding step, to make sure the probability of encoding failure vanishes with increasingn, we

require

R1 > I(U ;S ′, V )

= h(U)− h(Xh + αS ′ + κV |S ′, V )

(a)
= h(U)− h(Xh)

=
1

2
log

E[U2]

Ph

, (20)

where (a) follows becauseXh is independent ofS ′ andV .

Further, to guarantee the decodability ofU in the decoding step, one requires

R1

(a)
< I(U ; Y, V ′)

= h(U)− h(U |Y, V ′)

= h(U)− h(U − αY − κV ′|Y, V ′)

(b)
= h(U)− h(κW + (1− α)Xh − αZ|Y ), (21)

where (a) follows from the error analysis ofE3 in Section III of [18] and (b) is due to the fact that

V ′ = βY . By choosing

α =
Ph

Ph +N
, κ2 =

P 2
h

(Ph +N)D∗
, (22)

one can verify that (20) and (21) are satisfied. Note that in (20) what we really need isR1 ≥ I(U ;S ′, V )+ε

and in (21) it isR1 ≤ I(U ; Y, V ′) − δ. However, sinceε and δ can be made arbitrarily small, these are

omitted for the sake of convenience and to maintain clarity.

Remark 3: It is shown in Appendix A that the distortions in (17) and (19)are exactly the same.

However, as we will see in the next section, two schemes perform differently when SNRa > SNRd.

C. Numerical Results

In Fig. 4, we plot the distortion (in−10 log10(D)) for coding schemes and outer bounds described

above as a function of SNR. In this figure, we setσ2
V = σ2

S = 1 andρ = 0.3. Note that for this choice of

σ2
V , what we plot is actually the signal-to-distortion ratio. As expected, the two proposed schemes have
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exactly the same performance. Moreover, for this case, these two schemes not only outperform others but

also approach the outer bound (maximum of two) very well.

We then fix the SNR and plot the distortion as a function ofρ in Fig. 5. The parameters are set to be

σ2
V = σ2

S = 1, P = 10, andN = 1. It can be seen that both the proposed schemes perform exactly the

same and that the achievable distortion region with the proposed scheme is larger than what is achievable

with a separation based scheme using DPC and a uncoded scheme. Further, although the proposed schemes

perform close to the outer bound over a wide range ofρs, the outer bound and the inner bound do not

coincide however, leaving room for improvement either of the outer bound or the schemes.

V. PERFORMANCE ANALYSIS IN THE PRESENCE OFSNR MISMATCH

In this section, we study the distortions for the proposed schemes in the presence of SNR mismatch

i.e., we consider the scenario where instead of knowing the exact channel SNR, the transmitter only

knows a lower bound on the channel SNR. Specifically, we assume that the actual channel noise to be

Za ∼ N (0, Na) but the transmitter only knows thatNa ≤ N so that it designs the coefficients assuming

the noise variance isN . In what follows, we analyze the performance for both proposed schemes under

the above assumption.

A. Digital DPC Based Scheme

Since the transmitter designs its coefficients forN , it aims to achieve the distortionDsep given in (17).

It first quantizes the source toT by a Wyner-Ziv coding with side-informationD∗ given in (15) and then

encodes the quantization output by a DPC with a rate

R =
1

2
log

(
1 +

P − P̃a

N

)
, (23)

whereP̃a is the power allotted toXa such that the distortion in the absence of SNR mismatch is minimized.

i.e.,

P̃a = arg inf
Pa

D∗

1 + P−Pa

N

. (24)

At receiver, sinceNa ≤ N , the DPC decoder can correctly decodeT with high probability. Moreover,

the receiver forms the MMSE estimate ofV from Y asV ′
a = βaY with βa and the corresponding MSE

D∗
a derived by substitutingNa for N in (14) and (15), respectively. After that, the problem reduces to the
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Wyner-Ziv problem with mismatched side-information. In Appendix C, we show that for this problem,

one can achieve

Dsep,mis =
D∗D∗

a

D∗D∗
a + (D∗ −D∗

a)Dsep
Dsep. (25)

Unlike the typical separation-based scheme that we have seen in [3], the proposed digital DPC scheme

(whose digital part can be regarded as a separation-based scheme) can still take advantage of better

channels through mismatched side-information.

B. HDA Scheme

Different from the digital DPC scheme, in the presence of SNRmismatch, the performance analysis of

the HDA scheme cannot be converted to the Wyner-Ziv problem with mismatched side-information. It is

because that in the HDA scheme, we jointly form an estimate ofV from U andY . Fortunately, as shown

in [3], the HDA scheme is capable of making use of an SNR mismatch.

Similar to the digital DPC scheme, we design the coefficientsfor noise varianceN . The HDA scheme

regardsD∗ as side-information andS ′ as interference. It generates the auxiliary random variable U given

by (18) with coefficients described by (22). SinceNa ≤ N , the receiver can correctly decodeU with high

probability. The receiver then forms the MMSE as described in (19). Note thatE[Y 2] in ΛUY should be

modified appropriately to address the fact that the actual noise variance isNa in this case.

Remark 4: In [3], the authors compare the distortions of the digital scheme and the HDA scheme in

estimating the sourceV and the interferenceS as we move away from the designed SNR. One important

observation is that the HDA scheme outperforms the separation-based scheme in estimating the source;

however, the separation-based scheme is better than the HDAscheme if one is interested in estimating

the interference. Here, since theeffective interferenceS ′ includes the uncoded signal
√
aV in part and

the source is correlated to the interference, estimating the sourceV is equivalent to estimating a part of

S ′. Thus, one can expect that ifPa andρ are large enough, the digital DPC scheme may outperform the

HDA scheme in the presence of SNR mismatch. One the other hand, if Pa andρ are relatively small, one

can expect the reverse.

Remark 5: Note that we have only discussed the case when the actual channel turns out to be better

than that expected by the transmitter. On the other hand, when the channel deteriorates, the digital DPC

scheme and the HDA scheme are not able to decode the digital part and the HDA part, respectively.

For the digital DPC scheme, this is due to the fact that a capacity-approaching code is used so that the
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decoding will fail if the channel is no longer being able to support this rate. For the HDA scheme, this

inability to decodeU is because the constraint (21) is no longer satisfied if the channel is worse than

that expected. However, both schemes can still form the MMSEestimate of the source from the received

signalY . Therefore, for a same choice ofPa, the resulting distortion of two proposed schemes would be

the same and is equal toD∗
a. This implies that both the proposed schemes are able to provide graceful

degradation when channel deteriorates.

C. Numerical Results

Now, we compare the performance of the above two schemes and the scheme that knows the actual

SNR. The parameters are set to beσ2
V = σ2

S = 1. We plot −10 log10(D) as we move away from the

designed SNR for both small (ρ = 0.1) and large (ρ = 0.5) correlations. Two examples for designed SNR

= 0 dB and 10 dB are given in Fig. 6 and Fig. 7, respectively.

In Fig. 6, we consider the case that the designed SNR is 0 dB which is relatively small compared to

the variance of interference. For this case, we can see that which scheme performs better in the presence

of SNR mismatch really depends onρ. It can be explained by the observations made inRemark 4 and the

power allocation strategy. For this case the optimal power allocation P̃a is proportional toρ. For ρ = 0.1

case, since the correlation is small and the assignedP̃a is also small, the HDA scheme is better than the

digital DPC scheme. On the other hand, forρ = 0.5 case, we allot a relatively large power tõPa so that

one may get a better estimate if we try to use the digital DPC scheme to estimate a part ofS ′. This

property is further discussed in the Appendix D.

In Fig. 7, we design the coefficients for SNR= 10 dB which can be regarded as relatively large SNR

compared to the variance of interference. For this case, theoptimal power allocatioñPa for both ρ = 0.1

andρ = 0.5 are relatively small. Therefore, the performance improvement provided by the HDA scheme

is larger than that provided by the digital DPC scheme for both cases.

In Fig. 8, we plot the performance of the proposed schemes with different choices ofPa for the same

channel parameters with those in the previous figure forρ = 0.1. We observe that for both schemes, if

we compromise the optimality at the designed SNR, it is possible to get better slopes of distortion than

that obtained by settingPa = P̃a. In other words, we can obtain a family of achievable distortion under

SNR mismatch by choosingPa ∈ [0, P ].
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VI. JSCCFOR THE GENERALIZED COGNITIVE RADIO CHANNEL

An interesting application of the joint source-channel coding problem considered in this paper is in

the transmission of analog sources over a cognitive radio channel. In this section, we will first formally

state the problem, derive an outer bound on the achievable distortion region, and then propose a coding

scheme based on the schemes given in Section IV.

A. Problem Statement

Recently, there has been a lot of interest in cognitive radiosince it was proposed in [19] for flexible

communication devices and higher spectral efficiency. In a conventional cognitive radio setup, the lower

priority user (usually referred to as the secondary user) listens to the wireless channel and transmits the

signal only through the spectrum not used by the higher priority user (referred to as the primary user).

In a generalized cognitive radio channel, simultaneous transmission over the same time and frequency is

allowed. As shown in Fig. 9, the problem can be modeled as an interference channel with direct channel

gain1 and cross channelsh1 andh2 representing the real-valued channel gains from user1 to user2 and

vice versa, respectively. The average power constraints imposed on the outputs of user 1 and 2 areP1

andP2, respectively. Different from interference channels, in cognitive radio channels, we further assume

that the secondary user knowsV1 non-causally. Here, we also assume that the channel coefficient h1 is

known by the secondary user. The received signals are given by


 Y1

Y2


 =


 1 h1

h2 1




 X1

X2


+


 Z1

Z2


 . (26)

whereZi ∼ N (0, 1) for i ∈ {1, 2}. The capacity region of this channel has been studied and is known

for some special cases, e.g., the weak interference case [20] [21], the very-strong interference case [22],

and the primary-decode-cognitive case [23].

In this section, we consider the same generalized cognitiveradio channel but our focus is on the case

when both users haveanalog informationV1 andV2, respectively. We are interested in the distortion region

which describes how much distortion two users can achieve simultaneously. In particular, we consider the

case when the two sources are correlated with a covariance matrix given by

ΛV1V2
=


 σ2

V1
ρσV1

σV2

ρσV1
σV2

σ2
V2


 . (27)
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The distortion measure is the MSE distortion measure definedin (4). An achievable distortion region

can be obtained by first enforcing the primary user to use the uncoded scheme and using the proposed

schemes given in section IV for the secondary user. In fact, since the primary user does not have any

side-information, analog transmission is an optimal choice [24] [25] in terms of the distortion achieved

at the primary receiver. Further notice that since we do not consider SNR mismatch here, it makes no

difference which proposed scheme we use.

B. Outer Bound

In this subsection, we derive an outer bound on the distortion region for the generalized cognitive radio

channel withR1 = I(Xn
1 ; Y

n
1 ) andR2 = I(Xn

2 ; Y
n
2 |Xn

1 ). Then, for the primary user, we have

n

2
log

σ2
V1

D1

(a)

≤ I(V n
1 ; V̂

n
1 )

(b)

≤ I(Xn
1 ; Y

n
1 )

= nR1, (28)

where (a) follows from rate distortion theory and (b) follows from the data processing inequality. Also,

for the secondary user, we have

n

2
log

σV2
(1− ρ2)

D2
≤ I(V n

2 ; V̂
n
2 |V n

1 )

(a)
= I(V n

2 ; V̂
n
2 |V n

1 , X
n
1 )

(b)
= I(V n

2 ; V̂
n
2 |Xn

1 )

(c)

≤ I(Xn
2 ; Y

n
2 |Xn

1 )

= nR2, (29)

where (a) is due to the fact thatXn
1 is a deterministic function ofV n

1 , (b) follows from the Markov chain

V n
1 ↔ (Xn

1 , X
n
2 ) ↔ (Y n

1 , Y
n
2 ), and (c) follows from the data processing inequality. Thus,we have

Dob1 =
σ2
V1

R1
, (30)

Dob2 =
σ2
V2
(1− ρ2)

R2
, (31)

where(R1, R2) must lie inside the capacity region of the generalized cognitive radio channel.
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As mentioned earlier, the capacity region of this channel setup is only known for some special cases.

Fortunately, for those cases whose capacity regions remainunknown, outer bounds on(R1, R2) are

available (see e.g. [23] wherein the authors give an unified view of outer bounds for different cases)

and therefore we can still obtain the outer bound given in (30) and (31).

C. Proposed Coding Scheme

Let the primary user simply transmit the scaled version of the uncoded sourceX1 =
√
P1/σ2

V1
V1.

Therefore, the bottom channel in Fig. 9 reduces to the situation we considered in the previous section

with sourceV = V2 and interferenceS = h1X1. The covariance matrix becomes (5) with

σ2
V = σ2

V2
, (32)

σ2
S = h2

1P1. (33)

The secondary user then encodes its source toX2 by the HDA scheme described previously in section IV-B

with powerP2 = Ph + Pa and coefficients according to (22). With these coefficients,the corresponding

distortionD2 is computed by (19). At the receiver 1, the received signal is

Y1 = X1 + h2X2 + Z1

=
(
1 + (1− γ)

√
ah1h2

)
X1 + h2Xh + h2

√
aγV2 + Z1. (34)

Decoder 1 then forms a linear MMSE estimate fromY1 given by V̂1 = β1Y1, whereβ1 = E[V1Y1]/E[Y
2
1 ]

and

E[V1Y1] =
(
1 + (1− γ)

√
ah1h2

)√
P1σ2

V1
+ h2

√
aγρσV1

σV2
(35)

E[Y 2
1 ] =

(
1 + (1− γ)

√
ah1h2

)2
P1 + ah2

2γ
2σ2

V2
+

h2
2Ph + 2

√
ah2γρ

√
P1σ2

V2

(
1 + (1− γ)

√
ah1h2

)
+N1. (36)

Therefore, the corresponding distortion isD1 = σ2
V1

− β1E[V1Y1].

It can be verified that assigningγ = 1 may lead to a suboptimalD1 in general. Thus, as we mentioned in

Section IV-A, one may want to assign a non-zero power to transmit S in order to achieve a larger distortion

region. We can then optimize the power allocation for particular performance criteria. For instance, if one

desires achieving the minimum distortion for the secondaryuser,γ should be set to be1. However, if
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the aim is to obtain the largest achievable distortion region, one should optimize overPa ∈ [0, P1] and

γ ∈ [0, 1].

D. Discussions and Numerical Results

Here, we give examples to compare the performance of the outer bound and the proposed coding

scheme for two cases whose capacity region is known, namely the weak interference case and very-strong

interference case. Also, similar to [21], we also present the distortion for the secondary user under the

coexistence conditions.

1. Weak interference case: When the interference is weak, i.e.,|h2| ≤ 1, the capacity region is given

by [20] [21]

R1 ≤
1

2
log

(
1 +

P1(1 + h2ρx
√

P2/P1)
2

1 + (1− ρ2x)h
2
2P2

)

R2 ≤
1

2
log
(
1 + (1− ρ2x)P2

)
, (37)

whereρx ∈ [0, 1]. One can see that the capacity region of this case is a rectangle; therefore, increasing

R2 will not affect R1. For this case, the outer bounds in (30) and (31) become

Dob1 =
σ2
V1

1 +
P1(1+h2ρx

√
P2/P1)2

1+(1−ρ2x)h
2
2
P2

, (38)

Dob2 =
σ2
V2
(1− ρ2)

1 + (1− ρ2x)P2
. (39)

One example of the distortion region for this case is shown inFig. 10 in which we plot the outer bound

and the boundary of the distortion region achieved by the proposed coding scheme. The parameters are

set to beσ2
V1

= σ2
V2

= 1, h1 = h2 = 0.5, and the power constraints areP1 = P2 = 1. In this figure,

One can observe that whenρ = 0, the outer bound is tight and the proposed coding scheme is optimal.

However, the inner and outer bound do not coincide for otherρs and one can see that the gap increases

asρ increases.

2. Very-strong interference case: The channel is said to be in the very-strong interference regime if the

following conditions are satisfied,

|h2| ≥ 1, (40)

|h1

√
P1/P2 + 1| ≥ |

√
P1/P2 + h2|, (41)
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|h1

√
P1/P2 − 1| ≥ |

√
P1/P2 − h2|. (42)

The capacity region of this case is the union of(R1, R2) satisfying [22]

R2 ≤
1

2
log
(
1 + (1− ρ2x)P2

)

R1 + R2 ≤
1

2
log
(
1 + P1 + h2

2P2 + 2ρxh2

√
P1P2)

2
)
, (43)

whereρx ∈ [0, 1]. For this case, different choices ofR2 may lead to different upper bounds forR1. Thus,

the outer bound can be obtained by collecting all the Pareto minimal points of(D1, D2) among all choices

of (R1, R2) andρx.

In Fig. 11, the outer bound and the boundary of the distortionregion achieved by the proposed scheme

are plotted. All the parameters are set to be the same as thosein the previous figure except forh1 = h2 =

1.5 now. It is easy to see that (40)-(42) are satisfied under theseparameters. One can see that for this case

the inner and outer bound do not coincide even forρ = 0 case. This may be due to the fact that in the

proposed coding scheme, the primary decoder treats the signal from the secondary user as extra noise.

This violates the insight of the very-strong interference regime that one should first decode interfering

signal and then cancel it out since the interference is “very-strong” and is regarded as easier to decode.

However, for the proposed scheme, the primary decoder is notable to obtain an improvement from this

decoding strategy. This is because the digital part (or the HDA part, depends on which scheme is used)

of the interfering signal is a function ofV1 and the bin index (orU). Therefore, decoding the bin index

(or U) only is not enough to reconstructXd (or Xh).

On the other hand, if one simply ignores the correlation and uses an optimal separate source-channel

code at the secondary user, this coding scheme is guaranteedto achieve the outer bound forρ = 0 but

this scheme is unable to adapt withρ, i.e., the performance is fixed for allρs. Therefore, whenρ is large,

one may obtain a lower distortion by using the proposed scheme although it fails to achieve the outer

bound for anyρ. One example is given in Fig. 11 that whenρ = 0.5, the distortion region achieved by the

proposed scheme is larger than that achieved by an optimal separate coding scheme (whose performance

is the same as the outer bound forρ = 0). It is interesting to build a coding scheme that achieves the

outer bound forρ = 0 and is capable of adapting withρ for the very-strong interference case; however,

this is beyond the scope of this paper.

3. Coexistence Conditions: In [21], the coexistence conditions are introduced to understand the system-
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wise benefits of cognitive radio. The authors study the largest rate that the cognitive radio can achieve

under these coexistence conditions described as follows.

1. the presence of cognitive radio should not create rate degradation for the primary user, and

2. the primary user does not need to use a more sophisticated decoder than it would use in the absence

of the cognitive radio. i.e, a single-user decoder is enough.

Similar to this idea, we study the distortion of the secondary user under the following conditions

1. the presence of cognitive radio should not create distortion increment for the primary user, and

2. the primary user uses a single-user decoder.

We present the outer bound and the signal-to-distortion ratio for the secondary user obtained by the

proposed scheme under coexistence conditions. Here the outer bound is given by

Dob2,coexist = inf

Dob1≤
σ2
V1

1+P1

Dob2, (44)

whereDob1 and Dob2 are given in (30) and (31), respectively, andR1 and R2 therein can be further

bounded by the capacity region or upper bounds on the capacity region as mentioned. Note that when

taking the infimum, we simply constrain the distortion of theprimary user to be at most the one achieved

when there is no interference at all and ignore the second coexistence condition. i.e., this outer bound

allows the primary decoder to be any possible decoder, not necessary a single-user decoder.

In Fig. 12 and Fig. 13, the achievable distortion for the secondary user is plotted for the same set

of parameters as in Fig. 10 and Fig. 11, respectively. As shown in these figures, the proposed scheme

is able to increase the secondary user’s signal-to-distortion ratio without degrading the performance of

the primary user. Moreover, one can observe that atρ = 0 the proposed coding is optimal for the weak

interference case but not for the very-strong interferencecase. This may be due to the fact that in the

proposed coding scheme the interfering signal is not fully decoded. This may also be the consequence of

ignoring the second condition when deriving the outer bound. Another interesting observation is that in

Fig. 13, the signal-to-distortion ratio increases more rapidly than that in Fig. 12. This is because in the

very-strong interference case, the channel would amplify the secondary user’s signal much more than that

in the weak interference case. So the secondary user could use less power to boost the primary signal

such that the coexistence conditions are satisfied and then use the remaining power to decrease its own

distortion.
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VII. CONCLUSIONS

In this paper, we have discussed the joint source-channel coding problem with interference known at the

transmitter. In particular, we considered the case that thesource and the interference are correlated with

each other. We proposed a digital DPC scheme and a HDA scheme and showed that both two schemes can

adapt withρ. The performance of these two schemes under SNR mismatch arealso discussed. Different

from typical separation-based schemes which are not able totake advantage of a better channel SNR and

suffer from abrupt degradation when the channel deteriorates, both the proposed schemes can benefit from

a better side-information acquired at the decoder and also provide a graceful degradation and improvement

under SNR mismatch. However, there is a difference between the performance of the two proposed schemes

when SNRa > SNRd and which scheme is better depends on the designed SNR andρ.

These two schemes are then applied to the generalized cognitive radio channel for deriving an achievable

distortion region. Outer bounds on distortion region for this channel are also provided. To the best of our

knowledge, this is the first joint source-channel coding scheme that has been proposed for the generalized

cognitive radio channel. Numerical results suggest that, in the weak interference regime, the gap between

the inner and outer bound is reasonably small for small and medium ρ and increases asρ increases.

Moreover, in the very-strong interference regime, there exist ρs such that the proposed joint source-channel

coding scheme outperforms optimal separate coding scheme.The system-wise benefits of cognitive radio

in terms of distortion are also studied via imposing the coexistence conditions.

APPENDIX A

EQUIVALENCE OF (17) AND (19)

In this appendix, we verify that with the knowledge of actualchannel SNR, two proposed schemes

perform exactly the same. For fixedγ andPh = P − Pa, the second term in (19) becomes

ΓTΛ−1
UY Γ =

E[V U ]2E[Y 2]− 2E[V U ]E[V Y ]E[UY ] + E[V Y ]2E[U2]

E[U2]E[Y 2]− E[UY ]2
, (45)

where

E[V U ] = αE[S ′V ] + κσ2
V , (46)

E[V Y ] = E[S ′V ], (47)

E[U2] = Ph + α2
E[S ′2] + κ2σ2

V + 2ακE[S ′V ], (48)
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E[Y 2] = Ph + E[S ′2] +N, (49)

E[UY ] = Ph + αE[S ′2] + κE[S ′V ], (50)

with α andκ2 determined by (22) and

E[S ′2] = aγ2σ2
V + [1 +

√
a(1− γ)]2σ2

S + 2
√
aγ[1 +

√
a(1− γ)]ρσV σS, (51)

E[S ′V ] =
√
aγσ2

V + [1 +
√
a(1− γ)]ρσV σS. (52)

After some algebra, we can rewrite the numerator and denominator in (45) as, respectively,

Ph {E[S ′V ]2ND∗ + σ2
V Ph(σ

2
V E[Y

2]− E[S ′V ]2)}
(Ph +N)D∗

, (53)

and
Ph {(ND∗ + Phσ

2
V )E[Y

2]− PhE[S
′V ]2}

(Ph +N)D∗
. (54)

Thus, we can rewrite (19) as

Dhda = σ2
V − ΓTΛ−1

UY Γ = σ2
V − (53)

(54)

= D∗ N(σ2
V E[Y

2]− E[S ′V ]2)

(ND∗ + Phσ2
V )E[Y

2]− PhE[S ′V ]2

(a)
=

ND∗(σ2
V E[Y

2]− E[S ′V ]2)

(Ph +N)(σ2
V E[Y

2]− E[S ′V ]2)

=
D∗

1 + Ph

N

, (55)

where (a) follows from thatD∗ = σ2
V − E[V Y ]2/E[Y 2] andE[V Y ] = E[S ′V ]. This completes the proof.

APPENDIX B

DIGITAL WYNER-ZIV SCHEME

In this appendix, we summarize the digital Wyner-Ziv schemefor lossy source coding with side-

informationV ′ (V = V ′ +W with W ∼ N (0, D∗)) at receiver. Similar to the previous sections, we omit

all the ε and/orδ intentionally for the sake of convenience and to maintain clarity.

Suppose the side-information is available at both sides, the least required rateRWZ for achieving a

desired distortionD is [3]

RWZ =
1

2
log

D∗

D
. (56)
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Let us set this rate to be arbitrarily close to the rate given in (16), the rate that the channel can support

with arbitrarily small error probability. The best possible distortion one can achieve for this setup is then

given as

D =
D∗

1 + P−Pa

N

. (57)

This distortion can be achieved as follows [3],

1. Let T be the auxiliary random variable given by

T = αsepV +B, (58)

where

αsep =

√
D∗ −D

D∗
(59)

andB ∼ N (0, D). Generate a lengthn i.i.d. Gaussian codebookT of size2nI(T ;V ) and randomly assign

the codewords into2nR bins with R chosen from (16). For each source realizationv, find a codeword

t ∈ T such that(v, t) is jointly typical. If none or more than one are found, an encoding failure is

declared.

2. For each chosen codeword, the encoder transmit the bin index of this codeword by the DPC with

rate given in (16).

3. The decoder first decodes the bin index (the decodability isguaranteed by the rate we chose) and

then looks for a codeword̂t in this bin such that(t̂,v′) is jointly typical. If this is not found, a dummy

codeword is selected. Note that asn → ∞, the probability that̂t 6= t vanishes. Therefore, we can assume

that t̂ = t from now on.

4. Finally, the decoder forms the MMSE fromt andv′ as v̂ = v′ + ŵ with

ŵ =
αsepD

∗

α2
sepD

∗ +D
(t− αsepv

′). (60)

It can be verified that for the choice ofα the required rate is equal to (56) and the corresponding distortion

is

E[(V − V̂ )2] = E[(W − Ŵ )2]

= D∗

(
1− α2

sepD
∗

α2
sepD

∗ +D

)
= D. (61)
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APPENDIX C

WYNER-ZIV WITH M ISMATCHED SIDE-INFORMATION

In this appendix, we calculate the expected distortion of the digital Wyner-Ziv scheme in the presence

of side-information mismatch. Specifically, we consider the Wyner-Ziv problem with an i.i.d. Gaussian

source and the MSE distortion measure. Let us assume that thebest achievable distortion in the absence of

side-information mismatch to beD. The encoder believes that the side-information isV ′, andV = V ′+W

with W ∼ N(0, D∗). However, the side-information turns out to beV ′
a and has the relationV = V ′

a +Wa

with Wa ∼ N(0, D∗
a). Under the same rate, we want to calculate the actual distortion Da suffered by the

decoder.

Since the encoder has been fixed to deal with the side-information, V ′, at decoder, the auxiliary random

variable is as in (58) with the coefficient given in (59). Since the decoder knows the actual side-information,

V ′
a, perfectly, it only has to estimateWa. By the orthogonality principle, the MMSE estimatêWa can be

obtained as

Ŵa =
αsepD

∗
a

α2
sepD

∗
a +D

(T − αsepV
′
a) (62)

Therefore, the estimate of the source isV̂ = V ′
a + Ŵa. The corresponding distortion is given as

Da = E[(V − V̂ )2] = E[(Wa − Ŵa)
2]

=
D∗D∗

a

D∗D∗
a + (D∗ −D∗

a)D
D (63)

Here, we give an example in Fig. 14 to see the performance improvement through having the access of

a better side-information. In this figure, we plot the−10 log10Da as−10 log10D
∗
a increases, i.e., as the

actual side-information improves. The outer bound is obtained by assuming the transmitter always knows

the distribution of actual side-information at decoder andthe distortion of the HDA scheme is computed

through derivations in section IV-B. The parameters are setto beP = N = 1 andD∗ = 0.1. One can

observe in the figure that both the schemes benefit from a better side-information at decoder. Moreover,

it can be seen that these two schemes provide the same performance under side-information mismatch.

APPENDIX D

DISCUSSIONS FORSNR MISMATCH CASES

As discussed previously, both the digital DPC scheme and theHDA scheme benefit from a better SNR.

Here, we wish to analyze and compare the performance for these two schemes under SNR mismatch.
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Since the digital DPC scheme makes estimate fromT (see Appendix B) andV ′ (which is a function ofY )

and the HDA scheme makes estimate fromU andY , it suffices to compareI(V ;T, Y ) with I(V ;U, Y ).

By the chain rule of mutual information, we have

I(V ;T, Y ) = I(V ; Y ) + I(V ;T |Y ), (64)

and

I(V ;U, Y ) = I(V ; Y ) + I(V ;U |Y ). (65)

Thus, we only have to compareI(V ;T |Y ) to I(V ;U |Y ). Let us considerρ = 0 case for example,

I(V ;T |Y ) = h(T |Y )− h(T |V, Y )

= h(αsepV +B|Y )− h(αsepV +B|V, Y )

= h(αsepV − αsepβaY +B|Y )− h(αsepB|V, Y )

= h(αsepWa +B|Y )− h(B)

(a)
= h(αsepWa +B)− h(B)

=
1

2
log

α2
sepD

∗
a +D

D
, (66)

whereαsep andWa are defined in Appendix C and (a) follows from the orthogonality principle.

I(V ;U |Y ) = h(U |Y )− h(U |V, Y )

= h(U |Y )− h(Xh + αS ′ + κV |V, Y )

= h(U |Y )− h ((1− α)Xh − αZa|V, Y )

(a)

≥ h(U |Y )− h ((1− α)Xh − αZa)

=
1

2
log

E[U2]− E[UY ]2/E[Y 2]

(1− α)2Ph + α2Na
. (67)

where (a) follows from that conditioning reduces entropy and the equality occurs if there is no SNR

mismatch.

Two examples are given in Fig. 15 to compare these two quantities with and without SNR mismatch for

a small and a large designed SNR, respectively. One can observe that without SNR mismatch, these two

quantities coincide with each other for all choices ofPa. This implies the result in section IV that without
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mismatch the digital DPC scheme and the HDA scheme provide exactly the same distortion. However,

with SNR mismatch, we can observe that which quantity is larger really depends onPa for the small

designed SNR case. On the other hand for designed SNR = 10 dB case, we haveI(V ;U |Y ) > I(V ;T |Y )

for a wide range ofPa (except for somePa close to 1). This explains the results in section V that, for

large designed SNRs, the HDA scheme has better results than the digital DPC scheme does while for

small designed SNRs we cannot make this conclusion easily.
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Fig. 1. Joint source-channel coding with interference known at transmitter.
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