
k-nearest neighbor estimation

of entropies with confidence

Kumar Sricharan∗, Raviv Raich+, Alfred O. Hero III∗

∗Department of EECS, University of Michigan, Ann Arbor 48109-2122
+School of EECS, Oregon State University, Corvallis, Orgon 97331-5501

Email: {kksreddy, hero}@umich.edu, raich@eecs.oregonstate.edu

Abstract—We analyze a k-nearest neighbor (k-NN) class
of plug-in estimators for estimating Shannon entropy and
Rényi entropy. Based on the statistical properties of k-
NN balls, we derive explicit rates for the bias and vari-
ance of these plug-in estimators in terms of the sample
size, the dimension of the samples and the underlying
probability distribution. In addition, we establish a central
limit theorem for the plug-in estimator that allows us to
specify confidence intervals on the entropy functionals. As
an application, we use our theory in anomaly detection
problems to specify thresholds for achieving desired false
alarm rates.

Index Terms—entropy estimation, k-NN density estima-
tion, plug-in estimation, central limit theorem, confidence
intervals

I. INTRODUCTION

Shannon entropy (−
∫

log f(x)f(x)dx) and Rényi en-

tropy ( 1
1−α log

∫

fα(x)dx, α ∈ (0, 1)) arise in applica-

tions of machine learning, signal processing and statis-

tical estimation. Entropy based applications for image

matching, image registration and texture classification

are developed in [1, 2]. Entropy functional estimation is

fundamental to independent component analysis in signal

processing [3]. Entropy has also been used in Internet

anomaly detection [4] and data and image compression

applications [5]. Several entropy based nonparametric

statistical tests have been developed for testing statistical

models including uniformity and normality [6, 7]. Pa-

rameter estimation methods based on entropy have been

developed in [8].

In these applications, the entropy must be estimated

empirically from sample realizations of the underlying

densities. This problem has received significant atten-

tion in the mathematical statistics community. Several

estimators of Shannon entropy and Rényi entropy have

been proposed for general multivariate densities f . These
include consistent estimators based on entropic graphs

[9, 10], gap estimators [11], nearest neighbor distances

[12, 13, 14, 15], Edgeworth approximations [16], convex

risk minimization [17] and kernel density estimates [18].

However, general results on rates of convergence of

estimators are unavailable. Since the rate of convergence

relates the number of samples to the performance of

the estimator, convergence rates have great practical

utility. In this paper we derive convergence rates for

data-split versions of k-nearest neighbor (k-NN) esti-

mators of Shannon and Rényi entropies proposed by

Goria et.al. [12] and Leonenko et.al. [13] respectively.

The results in this paper improve upon existing re-

sults on k-NN estimators available in literature. Go-

ria et.al. [12] and Leonenko et.al. [13] show that the

estimators they propose are asymptotically unbiased

and consistent. Liitiäinen et.al. [14] provide rates of

convergence of the bias of these k-NN estimators.

Evans et.al. [19] establish an upper bound on the rates

of decay of the variance, while the authors of [9, 10]

provide upper bounds on the ℓ1 rate of convergence.

Our analysis improves on this work by establishing

exact rates of decay of the bias and variance of data-

split versions of the estimators proposed by Goria et.al.

and Leonenko et.al.. Our analysis exploits a close re-

lation between density estimation and the geometry of

proximity neighborhoods in the data sample. Finally,

while experimental evidence was provided supporting a

Gaussian limit for k-NN estimators of Rényi entropy in

Leonenko et.al. [13], our theory establishes a CLT for k-
NN estimators of arbitrary functionals, including Rényi

entropy. We apply these results to derive confidence

intervals for Shannon and Rényi entropy.

The reminder of the paper is organized as follows.

Section II formulates the problem and introduces the

data-split plug-in estimator. The main results concerning

the bias, variance and asymptotic distribution of these

estimators are stated in Section III and the consequences

of these results are discussed. We validate our theory

with simulations in Section IV. In Section V, we use our

theory to detect anomalies in wireless sensor networks

at specified false alarm rate. Conclusions are given in

Section VI. Additional details on proofs and results are



given in our technical report [20].

II. PRELIMINARIES

Notation: We will use bold face type to indicate

random variables and random vectors and regular type

face for constants. We denote the expectation operator

by the symbol E and the variance operator as V[X] =
E[(X− E[X])2]. We denote the bias of an estimator by

B.

A. Plug-in estimators

We are interested in estimating entropy functionals

G(f) of d-dimensional multi-variate densities f with

bounded support S, where G(f) has the form

G(f) =

∫

g(f(x))f(x)dµ(x) = E[g(f(x))].

Here, µ denotes the Lebesgue measure and E denotes

statistical expectation w.r.t density f . We require that

the density f be uniformly bounded away from 0 and

finite on the support S, i.e., there exist constants ǫ0,
ǫ∞ such that 0 < ǫ0 < ǫ∞ < ∞ such that ǫ0 ≤
f(x) ≤ ǫ∞ ∀x ∈ S. We assume that i.i.d realizations

{X1, . . . ,XN ,XN+1, . . . ,XN+M} are available from

the density f .
The plug-in estimator is constructed using a data

splitting approach as follows. The data sample is ran-

domly subdivided into two parts {X1, . . . ,XN} and

{XN+1, . . . ,XN+M} of N and M points respectively.

In the first stage, we estimate the k-NN density estimator

f̂ at the N points {X1, . . . ,XN} using the M realiza-

tions {XN+1, . . . ,XN+M}. Subsequently, we use the N
samples {X1, . . . ,XN} to approximate the functional

G(f) to obtain the plug-in estimator:

Ĝ(f) =
1

N

N
∑

i=1

g(f̂(Xi)).

Let d(X,Y ) denote the Euclidean distance between

points X and Y and d
(k)
X denote the Euclidean distance

between a point X and its k-th nearest neighbor amongst

XN+1, ..,XN+M . The k-NN region is Sk(X) = {Y :

d(X,Y ) ≤ d
(k)
X } and the volume of the k-NN region

is Vk(X) =
∫

Sk(X)
dZ . The standard k-NN density

estimator [21] is defined as f̂(X) = k−1
MVk(X) .

Let Ĥ be the Shannon entropy estimate Ĝ(f) with

the choice of functional g(x) = − log(x). Let Îα

be the estimate of the Rényi α-integral estimate Ĝ(f)
with the choice of functional g(x) = xα−1. Define

H̃ = Ĥ + [log(k − 1) − Ψ(k − 1)] and Ĩα = [(Γ(k +
(1− α))/Γ(k))(k − 1)α−1]−1

Îα. Also define the Rényi

entropy estimator to be H̃α = (1−α)−1 log(Ĩα). We note

that the estimators H̃ and H̃α correspond to data-split

versions of the Shannon and Rényi entropy estimators of

Goria et.al. [12] and Leonenko et.al. [13] respectively.

III. MAIN RESULTS AND CONSEQUENCES

The bias of H̃ and H̃α was previously derived by

Liitiäinen et.al. [14]. Because [(Γ(k+(1−α))/Γ(k))(k−
1)α−1] → 1 and Ψ(k− 1)− log(k− 1) → 0 as k → ∞,

the estimators H̃ and H̃α will have identical variance up

to leading terms as Ĥ and Ĥα respectively. Likewise,

H̃ and H̃α, when suitably normalized, will converge

to the same distribution as the estimators Ĥ and Ĥα

respectively.

We now state the main theorems corresponding to the

bias, variance and asymptotic distribution of Ĥ (g(x) =
− log(x)) and Ĥα (g(x) = xα−1) and sketch the proofs

for these theorems. We assume that k grows logarithmi-

cally inM , i.e. k = Θ(log(M)). We assume that the den-

sity f has continuous partial derivatives of the third order.

Let Y denote a random variable with density f and de-

fine c(X) = Γ(2/d)((d + 2)/2)f−2/d(X)tr[∇2(f(X))].

A. Bias and Variance

This theorem on the bias of the estimator is due to

Liitiäinen et.al. [14]

Theorem III.1. The bias of the plug-in estimator Ĝ(f)
is given by

B(Ĝ(f)) = c1

(

k

M

)1/d

+ c2

(

1

k

)

+o

(

1

k
+

(

k

M

)1/d
)

,

where c1 and c2 are constants which depend on the

underlying density f and the choice of functional g only.

Proof: From the work done by Liitiäinen et.al. [14],

it follows that

E[H̃] = H + c1(k/M)1/d + o((k/M)1/d)

E[Ĩα] = Iα + c1(k/M)1/d + o((k/M)1/d).

We conclude the proof by observing that [(Γ(k + (1 −
α))/Γ(k))(k − 1)α−1] = 1 + (α(α − 1)/2k) +O(1/k2)
and Ψ(k−1) = log(k−1)−1/2k+O(1/k2) as k → ∞.

It follows that c2 = E[f2(Y)g′′(f(Y),Y)/2].

Theorem III.2. The variance of the plug-in estimator

Ĝ(f) is given by

V(Ĝ(f)) = c4

(

1

N

)

+ c5

(

1

M

)

+ o

(

1

M
+

1

N

)

,



where c4 = V[g(f(Y),Y)] and c5 =
V[f(Y)g′(f(Y),Y)].

Proof: Define the set S′ to be the set of points X ∈
S whose 2k-NN ball S2k(X) lies in the interior of the

density. Define

G̃(f) =
1

N

N
∑

i=1

1{Xi∈S′}g(f̂(Xi)).

We have shown in Appendices B and D, [20] that

V(G̃(f)) = c4

(

1

N

)

+ c5

(

1

M

)

+ o

(

1

M
+

1

N

)

.

The principal idea in establishing this result involves

Taylor series expansions of the functional g(f̂(X), X)
about the true value g(f(X), X), and subsequently using

the moment properties of k-NN density estimates.

Observe that Pr(Y ∈ S
′) = O((k/M)1/d). From

the work done by Evans et.al. [19], we can state

that V(Ĝ(f) − G̃(f)) = O(k5/M). Because k =
Θ(log(M)), we have O(k5/M) × O((k/M)1/d) =
o(1/M). The theorem follows by using the Cauchy-

Schwartz inequality.

Our result is an improvement on the results of

Evans et.al. in that we are able to provide the exact

leading terms for the variance.

B. Central limit theorem

In addition to the results on bias and variance shown in

the previous section, we show that our plug-in estimator,

appropriately normalized, weakly converges to the nor-

mal distribution. We study the asymptotic behavior of the

plug-in estimates under the following limiting conditions:

(a) k/M → 0, (b) k → ∞, and (c) N → ∞. As

shorthand, we will collectively denote the above limiting

assumptions by ∆ → 0.

Theorem III.3. The asymptotic distribution of the nor-

malized plug-in estimator Ĝ(f) is given by

lim
∆→0

Pr





Ĝ(f)− E[Ĝ(f)]
√

V[Ĝ(f)]
≤ α



 = Pr(Z ≤ α),

where Z is a standard normal random variable.

Proof: Define the random variables {YM,i; i =
1, . . . , N} for any fixed M as

YM,i =
g(̂f(Xi))− E[g(̂f(Xi))]

V[g(̂f(Xi)]
.

The key idea here is to recognize that YM,i are

exchangeable random variables. Blum et.al. [22] showed

that for exchangeable 0 mean, unit variance random
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Fig. 1. q-q comparing independent realizations of the normalized
Shannon estimator (L.H.S. of Theorem III.3) on the vertical axis to a
standard normal population on the horizontal axis. The linearity of the
points validates the central limit theorem.

variables Zi, the sum SN = 1√
N

∑N
i=1 Zi converges in

distribution to N(0, 1) if and only if Cov(Z1,Z2) = 0
and Cov(Z2

1,Z
2
2) = 0. In our case,

Cov(YM,i,YM,j) = O(1/M),

Cov(Y2
M,i,Y

2
M,j) = O(1/M).

AsM gets large, we then have that Cov(YM,i,YM,j) →
0 and Cov(Y2

M,i,Y
2
M,j) → 0. We then extend the work

by Blum et.al. to show that convergence in distribution

to N(0, 1) holds in our case as both N and M get large.

These ideas are rigorously treated in Appendix E, [20].

The CLT for k-NN estimators of Rényi entropy was

alluded to by Leonenko et.al. [13] by inferring from

experimental results. Theorem III.3 formally establishes

the CLT for k-NN estimators of Rényi and Shannon

entropy.

IV. SIMULATIONS

We validate our theory using using the 2 dimensional

mixture density fm = pfβ +(1− p)fu; fβ : Beta density

with parameters a=4,b=4; fu: Uniform density; Mixing

ratio p = 0.8. Constants ci; i = 1, 2..5 are estimated using

Monte-Carlo methods [23].

We show the Q-Q plot of the normalized Shannon

entropy estimate and the standard normal distribution

in Fig. 1. The linear Q-Q plot validates Theorem III.3

on asymptotic normality of the plug-in estimator. Using

the CLT, we plot the 95% confidence intervals for the

entropy functional as a function of sample size in Fig. 2.

V. ANOMALY DETECTION IN NETWORKS

We apply our theory to the problem of anomaly

detection in wireless sensor networks. The experiment
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Fig. 2. Predicted confidence intervals on Shannon entropy for varying
sample size T using the central limit theorem III.3. The confidence
intervals decrease with sample size as expected.

was set up on a Mica2 platform, which consists of 14

sensor nodes randomly deployed inside and outside a

lab room. Wireless sensors communicate with each other

by broadcasting and the received signal strength (RSS),

defined as the voltage measured by a receiver’s received

signal strength indicator circuit (RSSI), was recorded

for each pair of transmitting and receiving nodes. There

were 14 × 13 = 182 pairs of RSSI measurements over a

30 minute period, and each sample was acquired every

0.5 sec. During the measuring period, students walked

into and out of lab at random times, which caused

anomaly patterns in the RSSI measurements. Finally, a

web camera was employed to record activity for ground

truth.

The mission of this experiment is to use the 182 RSS

sequences to detect any intruders (anomalies). To remove

the temperature drifts of receivers we pre-process the

data by removing their local mean values. Let yi[n] be the
pre-processed n-th sample of the i-th signal and denote

y[n] = (y1[n], . . . , y182[n])
′.

We now estimate the Shannon entropy for each 1-
dimensional, 182 sample sequence y[n] using the es-

timator H̃. We detect anomalies by thresholding the

entropy estimate H̃ [n]. A time sample n is regarded

to be anomalous if the entropy estimate H̃ [n] exceeds
a specified threshold. We seek to choose the threshold

appropriately for achieving a desired false alarm rate.

To this end, we estimate the entropies H̃[n] for the

time instants n = 1, . . . , 50 when no anomalies were

known to have occurred and subsequently estimate the

mean µ and variance σ2 of the entropy estimates for

this nominal time interval n ∈ [1, 50]. Using these

estimates of the mean and variance, we use the central

limit theorem III.3 to set the threshold tα for a given

false alarm rate α as tα = µ+zα/2σ where zα/2 is the z-
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Fig. 3. Entropy estimator H̃ implemented as a scan statistic over time
for anomaly detection in wireless ad hoc sensor network experiment.
Ground truth indicator function (in blue) indicates when anomalous
activity occurred. The entropy estimator detects these anomalies when-
ever the entropy estimate crosses the level α = 0.05 threshold t0.05

analytically determined by the CLT in Theorem III.3.

score corresponding to coverage 1−α. This threshold tα
is then used to detect anomalies at time instants n > 50.

Desired and observed false alarm rates

Desired .20 .10 .05 .02 .01 .005

Observed .269 .111 .062 .026 .015 .009

The desired and corresponding observed false alarm

rates are shown in the table above. The slightly higher

observed false alarm rates can be attributed to the tempo-

ral dependence between the RSS sequences at successive

time samples. This dependence results in marginally

higher entropy estimates at non-anomalous time instants

immediately preceding and succeeding anomalous time

intervals as compared to entropy estimates at nominal

time instants farther away from anomalous activity. This

is corroborated by Fig. 3, which shows the ground truth

and the normalized entropy estimator response (H̃[n]−tα
with false alarm rate α = 0.05) as a function of time.

ROC curves corresponding to the entropy estimator are

shown in Fig. 4 in addition to the ROC curves using the

subspace method of Lakhina et.al. [4] and the covariance

based estimator of Chen et.al. [24]. It is clear that the

detection performance using the entropy estimator is

marginally better than the subspace and covariance based

methods of Lakhina et.al. and Chen et.al. respectively.

The Area under the ROC curves were found to be 0.9784,

0.9722 and 0.9645 for the entropy, covariance and sub-

space based anomaly detection methods respectively.

VI. CONCLUSION

We proposed a class of data-split k-NN density plug-

in estimators for estimating Shannon and Rényi entropies

of densities that are bounded strictly away from 0. We
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Fig. 4. ROC curves for entropy, covariance and subspace based
anomaly detection. The performance of the entropy based method is
the best as measured by area under the curve (0.9784 and compared
to 0.9722 and 0.9645).

derived the bias, variance and mean square error of the

estimator in terms of the sample size, the dimension

of the samples and the underlying probability distribu-

tion. In addition, we developed a central limit theorem

for these estimators and used our theory to specify

confidence intervals on the entropy. Finally, we used

our entropy estimator to perform anomaly detection in

wireless sensor networks and used our asymptotic theory

to set thresholds appropriately to achieve specified false

alarm rates.

Using the theory presented in the paper, one can

specify the minimum necessary sample size required to

obtain requisite accuracy in entropy estimates. This in

turn can be used to predict and optimize performance in

applications like structure discovery in graphical models

and dimension estimation for support sets of low intrinsic

dimension. See [20] for more details on these applica-

tions.
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