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Abstract—In distributed storage systems that employ era-
sure coding, the issue of minimizing the total repair bandwidth
required to exactly regenerate a storage node after a failure
arises. This repair bandwidth depends on the structure of
the storage code and the repair strategies used to restore the
lost data. Minimizing it requires that undesired data during a
repair align in the smallest possible spaces, using the concept
of interference alignment (IA). Here, a points-on-a-lattice
representation of the symbol extension IA of Cadambe et al.
provides cues to perfect IA instances which we combine with
fundamental properties of Hadamard matrices to construct
a new storage code with favorable repair properties. Specifi-
cally, we build an explicit (k+2, k) storage code over GF(3),
whose single systematic node failures can be repaired with
bandwidth that matches exactly the theoretical minimum.
Moreover, the repair of single parity node failures generates
at most the same repair bandwidth as any systematic node
failure. Our code can tolerate any single node failure and any
pair of failures that involves at most one systematic failure.

I. INTRODUCTION

The demand for large scale data storage has increased
significantly in recent years with applications demanding
seamless storage, access, and security for massive amounts
of data. When the deployed nodes of a storage network
are individually unreliable, as is the case in modern
data centers, or peer-to-peer networks, redundancy through
erasure coding can be introduced to offer reliability against
node failures. However, increased reliability does not come
for free: the encoded representation needs to be main-
tained posterior to node erasures. To maintain the same
redundancy when a storage node leaves the system, a new
node has to join the array, access some existing nodes, and
regenerate the contents of the departed node. This problem
is known as the Code Repair Problem [3], [1].

The interest in the code repair problem, and specifically
in designing repair optimal (n, k) erasure codes, stems
from the fact that there exists a fundamental minimum
repair bandwidth needed to regenerate a lost node that
is substantially less than the size of the encoded data
object. MDS erasure storage codes have generated par-
ticular interest since they offer maximum reliability for a
given storage capacity; such an example is the EvenOdd
construction [2]. However, most practical solutions for

storage use existing off-the-shelf erasure codes that are
repair inefficient: a single node repair generates network
traffic equal to the size of the entire stored information.

Designing repair optimal MDS codes, i.e., ones achiev-
ing the minimum repair bandwidth bound that was derived
in [3], seems to be challenging especially for high rates
k
n ≥ 1

2 . Recent works by Cadambe et al. [11] and Suh
et al. [12] used the symbol extension IA technique of
Cadambe et al. [4] to establish the existence, for all n, k, of
asymptotically optimal MDS storage codes, that come ar-
bitrarily close to the theoretic minimum repair bandwidth.
However, these asymptotic schemes are impractical due
to the arbitrarily large file size and field size that they
require. Explicit and practical designs for optimal MDS
storage codes are constructed roughly for rates k

n ≤ 1
2 [5]-

[10], [13], and most of them are based upon the concept of
interference alignment. Interestingly, as of now no explicit
MDS storage code constructions exist with optimal repair
properties for the high data rate regime.1

Our Contribution: In this work we introduce a new
high-rate, explicit, (k+2, k) storage code over GF(3). Our
storage code exploits fundamental properties of Hadamard
designs and perfect IA instances pronounced by the use
of a lattice representation for the symbol extension IA of
Cadambe et al. [4]. This representation gives hints for
coding structures that allow exact instead of asymptotic
alignment. Our code exploits these structures and achieves
perfect IA without requiring the file size or field size to
scale to infinity. Any single systematic node failure can be
repaired with bandwidth matching the theoretic minimum
and any single parity node failure generates (at most)
the same repair bandwidth as any systematic node repair.
Our code has two parities but cannot tolerate any two
failures: the form presented here can tolerate any single
failure and any pair of failures that involves at most one

1During the submission of this manuscript, two independent works
appeared that constructed MDS codes of arbitrary rate that can optimally
repair their systematic nodes, see [14], [15].
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systematic node systematic data
1 f1
...

...
k fk

parity node parity data
a AT

1 f1 + . . .+ AT
k fk

b BT
1 f1 + . . .+ BT

k fk

Fig. 1. A (k + 2, k) CODED STORAGE ARRAY.

systematic node failure2. Here, in contrast to MDS codes,
slightly more than k, that is, k

(
1 + 1

2k

)
, encoded pieces

are required to reconstruct the file object.

II. DISTRIBUTED STORAGE CODES WITH 2 PARITY
NODES

In this section, we consider the code repair problem
for storage codes with 2 parity nodes. Let a file of size
M = kN denoted by the vector f ∈ FkN be partitioned
in k parts f =

[
fT1 . . . fTk

]T
, each of size N .3 We wish

to store this file with rate k
k+2 across k systematic and 2

parity storage units each having storage capacity M
k = N .

To achieve this level of redundancy, the file is encoded
using a (k + 2, k) distributed storage code. The structure
of the storage array is given in Fig. 1, where Ai and Bi are
N ×N matrices of coding coefficients used by the parity
nodes a and b, respectively, to “mix” the contents of the
ith file piece fi. Observe that the code is in systematic
form: k nodes store the k parts of the file and each of the
2 parity nodes stores a linear combination of the k file
pieces.

To maintain the same level of redundancy when a node
fails or leaves the system, the code repair process has to
take place to exactly restore the lost data in a newcomer
storage component. Let for example a systematic node
i ∈ {1, . . . , k} fail. Then, a newcomer joins the storage
network, connects to the remaining k+1 nodes, and has to
download sufficient data to reconstruct fi. Observe that the
missing piece fi exists as a term of a linear combination
only at each parity node, as seen in Fig. 1. To regenerate
it, the newcomer has to download from the parity nodes at
least the size of what was lost, i.e., N linearly independent
data elements. The downloaded contents from the parity
nodes can be represented as a stack of N equations[

p
(a)
i

p
(b)
i

]
4
=

(AiV
(a)
i

)T(
BiV

(b)
i

)T
fi

︸ ︷︷ ︸
useful data

+
k∑

j=1,j 6=i

(AjV
(a)
i

)T(
BjV

(b)
i

)T
fj

︸ ︷︷ ︸
interference by fj

(1)

2Our latest work expands Hadamard designs to construct 2-parity MDS
codes that can optimally repair any systematic or parity node failure
and m-parity MDS codes that can optimally repair any systematic node
failure [16].

3F denotes the finite field over which all operations are performed.
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Fig. 2. Repair of a (4, 2) code.

where p
(a)
i ,p

(b)
i ∈ FN

2 are the equations downloaded from
parity nodes a and b respectively. Here, V

(a)
i ,V

(b)
i ∈

FN×N
2 denote the repair matrices used to mix the parity

contents.4 Retrieving fi from (II) is equivalent to solving
an underdetermined set of N equations in the kN un-
knowns of f , with respect to only the N desired unknowns
of fi. However, this is not possible due to the additive in-
terference components that corrupt the desired information
in the received equations. These terms are generated by the
undesired unknowns fj , j 6= i, as noted in (II). Additional
data need to be downloaded from the systematic nodes,
which will “replicate” the interference terms and will
be subtracted from the downloaded equations. To erase
a single interference term, a download of a basis of
equations that generates the corresponding interference

term, say

[ (
AsV

(a)
i

)T(
BsV

(b)
i

)T

]
fj , suffices. Eventually, when all

undesired terms are subtracted, a full rank system of

N equations in N unknowns

[ (
AiV

(a)
i

)T(
BiV

(b)
i

)T

]
fi has to be

formed. Thus, it can be proven that the repair bandwidth
to exactly regenerate systematic node i is given by

γi = N +

k∑
j=1,j 6=i

rank
([

AjV
(a)
i BjV

(b)
i

])
,

where the sum rank term is the aggregate of interference
dimensions. Interference alignment plays a key role since
the lower the interference dimensions are, the less repair
data need to be downloaded. We would like to note that
the theoretical minimum repair bandwidth of any node for
optimal (k + 2, k) MDS codes is exactly (k + 1)N

2 , i.e.
half of the remaining contents; this corresponds to each
interference spaces having rank N

2 . This is also true for
the systematic parts of non-MDS codes, as long as they
have the same problem parameters that were discussed in
the beginning of this section, and all the coding matrices
have full rank N . An abstract example of a code repair
instance for a (4, 2) storage code is given in Fig. 2, where
interference terms are marked in red.

To minimize the repair bandwidth γi, we need to care-
fully design both the storage code and the repair matrices.

4Here, we consider that the newcomer downloads the same amount of
information from both parities. In general this does not need to be the
case.



In the following, we provide a 2-parity code that achieves
optimal systematic and near optimal parity repair.

III. A NEW STORAGE CODE

We introduce a (k + 2, k) storage storage code over
GF(3), for file sizes M = k2k, with coding matrices

Ai = IN , Bi = Xi, (2)

where N = 2k, Xi = I2i−1 ⊗ blkdiag
(
IN

2i
,−IN

2i

)
, and

i ∈ {1, . . . , k}. In Fig. 3, we give the coding matrices of
the (5, 3) version of the code.

Theorem 1: The code in (2) has optimally repairable
systematic nodes and its parity nodes can be repaired by
generating as much repair bandwidth as a systematic repair
does. It can tolerate any single node failure, and any pair
of failures that contains at most one systematic failure.
Moreover, to reconstruct the file at most k+ 1

2 coded blocks
are required.

In the following, we present the tools that we use in our
derivations. Then, in Sections V and VI we prove Theorem
1.

IV. DOTS-ON-A-LATTICE AND HADAMARD DESIGNS

Optimality during a systematic repair, requires inter-
ference spaces collapsing down to the minimum of N

2 ,
out of the total N , dimensions. At the same time, useful
data equations have to span N dimensions. For the con-
structions presented here, we consider that the same repair
matrix is used by both parities, i.e., V(1)

i = V
(2)
i = Vi.

Hence, for the repair of systematic node i ∈ {1, . . . , k}
we optimally require

rank ([Vi XjVi]) =
N

2
, (3)

for all j ∈ {1, . . . , k}\i, and at the same time

rank ([Vi XiVi]) = N. (4)

The key ingredient of our approach that eventually pro-
vides the above is Hadamard matrices.

To motivate our construction, we start by briefly dis-
cussing the repair properties of the asymptotic coding
schemes of [11], [12]. Consider a 2-parity MDS storage
code that requires file sizes M = k2∆k−1, i.e., N =
2∆k−1. Its N × N diagonal coding matrices {Xs}ks=1
have i.i.d. elements drawn uniformly at random from some
arbitrarily large finite field F. During the repair of a
systematic node i ∈ {1, . . . , k}, the repair matrix Vi that
is used by both parity nodes to mix their contents, has as
columns the N

2 = ∆k−1 elements of the set

Vi =


k∏

s=1,s6=i

Xxs
s w : xs ∈ {0, . . . ,∆− 1}

 . (5)

Then, we define a map L from vectors in the set{∏k
s=1 X

xs
s w : xs ∈ Z

}
to points on the integer lattice

0
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x1

x2

x1 x1

x1

x2

x2 x2

L (X1V3) ∪ L (X2V3)

L (X2V3)

L (X1V3)

L (V3)

Fig. 4. Here we have k = 3, N
2

= 4, and ∆ = 2.
Moreover, L(V3) = {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0)},
L(X1V3) = {(1, 0, 0), (1, 1, 0), (2, 0, 0), (2, 1, 0)}, and
L(X2V3) = {(0, 1, 0), (0, 2, 0), (1, 1, 0), (1, 2, 0)}.

Zk:
∏k

s=1 X
xs
s w

L→ ∑k
s=1 xses, where es is the s-

th column of Ik+1. Now, consider the induced lattice
representation of Vi

L(Vi)
4
=


k∑

s=1,s 6=i

xses; xs ∈ {0, . . . ,∆− 1}

 . (6)

Observe that the i-th dimension of the lattice where L(Vi)
lies on, indicates all possible exponents xi of Xi. Then,
the products XjVi, j 6= i, and XiVi map to

L(XjVi) =

{
(xj + 1)ej+

k∑
s=1,s6=j

xses; xs ∈ {0, . . . ,∆− 1}

}

and L(XiVi) =

{
ei +

k∑
i=1,s6=i

xiei; xs ∈ {0, . . . ,∆− 1}

}
,

respectively. In Fig. 2, we give an illustrative example for
k = 3, and ∆ = 2.

Remark 1: Observe how matrix multiplication of Xi

and elements of Vi manifests itself through the dots-on-a-
lattice representation: the product of Xi with the elements
of Vi shifts the corresponding arrangement of dots along
the xi-axis, i.e., the xi-coordinate of the initial points gets
increased by one.

Asymptotically optimal repair of node i is possible due
to the fact that interference spaces asymptotically align

rank ([Vi XjVi])
N
2

=
|L(Vi) ∪ L(XjVi)|

∆k−1

=
|L(Vi)|+ o(∆k−1)

∆k−1

∆→∞−→ 1, (7)

and useful spaces span N dimensions, that is,
rank ([Vi XiVi]) = |L(Vi) ∪ L(XiVi)| = 2∆k−1,
with arbitrarily high probability for sufficiently large field
sizes.

The question that we answer here is the following: How
can we design the coding and the repair matrices such that
i) exact interference alignment is possible and ii) the full



X1 = diag
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Fig. 3. The coding matrices of a repair optimal (5, 3) code over GF(3).

rank property is satisfied, for fixed in k file size and field
size? We first address the first part. We want to design the
code such that the space of the repair matrix is invariant
to any transformation by matrices generating its columns,
i.e., L(XjVi) = L(Vi). This is possible when

L(XjVi) =

{
(xj + 1)ej+

k∑
s=1,s6=j

xses; xs ∈ {0, . . . ,∆− 1}
}

=

{
xjej+

k∑
s=1,s6=j

xses; xs ∈ {0, . . . ,∆− 1}
}

= L(Vi),

that is, when the matrix powers “wrap around” upon
reaching their modulus ∆. This wrap-around property is
obtained when the diagonal coding matrices have elements
that are roots of unity.

Lemma 1: For diagonal matrices, X1, . . . ,Xk, whose
elements are ∆-th roots of unity, i.e., X∆

s = X0
s, for all

s ∈ {1, . . . , k}, we have that L(XjVi) = L(Vi), for all
i ∈ {1, . . . , k}\j.

However, arbitrary diagonal matrices whose elements
are roots of unity are not sufficient to ensure the full rank
property of the useful data repair space [Vi XiVi]. In
the following we prove that the full rank property along
with perfect IA is guaranteed when we set N = 2k, Xi =

I2i−1 ⊗ blkdiag
(
IN

2i
,−IN

2i

)
, and consider the set

HN =

{
k∏

i=1

Xxi
i w : xi ∈ {0, 1}

}
. (8)

Interestingly, there is a one-to-one correspondence be-
tween the elements ofHN and the columns of a Hadamard
matrix.

Lemma 2: Let an N × N Hadamard matrix of the
Sylvester’s construction

HN
4
=

[
HN

2
HN

2

HN
2
−HN

2

]
, (9)

with H1 = 1. Then, HN is full-rank with mutually
orthogonal columns, that are the N elements of HN .
Moreover, any two columns of HN differ in N

2 positions.

The proof is omitted due to lack of space. To illustrate the
connection between HN and HN we “decompose” the
Hadamard matrix of order 4

H4 =

[
1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

]
= [w X2w X1w X2X1w] , (10)

X1 X3X2 X4

I16

I16

I16

I16

I16 I16 I16 I16

V1
X1 X3X2 X4

I16 I16 I16 I16

β

2β

interference

useful data

X1V1

X2V1
X3V1
X4V1

V1

Fig. 5. The coding matrices of our (6, 4) code are given. We illustrate
the “absorbing” properties of the repair matrix for systematic node 1. The
column space of the repair matrices is invariant to the corresponding blue
blocks. This results in interference spaces aligning in exactly half of the
dimensions available.

where X1 = diag
(

1
1
−1
−1

)
and X2 = diag

(
1
−1
1
−1

)
. Due to

the commutativity of X1 and X2, the columns of H4 are
also the elements of H4 = {w,X1w,X2w,X1X2w}.

By using HN as our “base” set, we are able to ob-
tain perfect alignment condition due to the wrap around
property of it elements; the full rank condition will be also
satisfied due to the mutual orthogonality of these elements.

V. REPAIRING SINGLE NODE FAILURES

A. Systematic Repairs
Let systematic node i ∈ {1, . . . , k} fail. Then, we pick

the columns of the repair matrix as a set of N
2 vectors

whose lattice representation is invariant to all Xjs but to
one key matrix Xi. We specifically construct the N ×
N
2 repair matrix Vi whose columns have a one-to-one

correspondence with the elements of the set

Vi =





k∏

s=1,s6=i

Xxs
s w : xs ∈ {0, 1}



 . (11)

First, observe that Vi is full column rank since it is a
collection of N

2 distinct columns from HN . Then, we have
the following lemma.

Lemma 3: For any i, j ∈ {1, 2, . . . , k}, we have that

rank([Vi XjVi]) = |L(Vi) ∪ L (XjVi)|

=

{
N, i = j
N
2 , i 6= j

. (12)



The above holds due to each element of HN being
associated with a unique power tuple. Then, the columns
of [Vi XiVi] are exactly the elements of HN , since

L (Vi) ∪ L (XiVi) =


k∑

s=1,s6=i

xiei; xi ∈ {0, 1}


⋃ei +

k∑
s=1,s6=i

xiei; xi ∈ {0, 1}


= L (HN ) .

(13)

Moreover, the set of columns in Vi are identical to the set
of columns of XjVi, i.e., L(Vi) = L(XjVi), for j 6= i,
due to Lemmata 1 and 2. Therefore, the interference spaces
span N

2 dimensions, which is the theoretic minimum, and
the desired data space during any systematic node repair
is full-rank, since it has as columns all columns of HN .

Hence, we conclude that a single systematic node of the
code can be repaired with bandwidth (k+ 1)N

2 = k+1
2k M .

In Fig. 4, we depict a (6, 4) code of our construction, along
with the illustration of the repair spaces.

B. Parity repairs

Here, we prove that a single parity node repair gener-
ates at most the repair bandwidth of a single systematic
repair. Let parity node a fail. Then, observe that if the
newcomer uses the N × N repair matrix V

(b)
a = X1 to

multiply the contents of parity node b, then it downloads
X1

(∑k
i=1 X1fi

)
= f1 +

∑k
i=2 X1Xifi. Observe, that the

component corresponding to systematic part f1 appears the
same in the linear combination stored at the lost parity. By
Lemma 2, each of the remaining blocks, X1Xifi share
exactly N

2 indices with equal elements to the same N
2

indices of Xifi which was lost, for any i ∈ {2, . . . , k}.
This is due to the fact that the diagonal elements of
matrices X1Xi and Xi are the elements of some two
columns of HN . Therefore, the newcomer has to download
from systematic node j ∈ {2, . . . , k}, the N

2 entries
that parity a’s component Xjfj differs from the term
X1Xjfj of the downloaded linear combination. Hence,
the first parity can be repaired with bandwidth at most
N + (k − 1)N

2 = (k + 1)N
2 .5 The repair of parity node b

can be performed in the same manner.

VI. ERASURE RESILIENCY

Our code can tolerate any single node failure and any
two failures with at most one of them being a systematic
one. A double systematic and parity node failure can be
treated by first reconstructing the lost systematic node
from the remaining parity, and then reconstructing the
lost parity from all the systematic nodes. However, two
simultaneous systematic node failures cannot be tolerated.
Consider for example the corresponding matrix when we

5By “at most” we mean that this result is proved using an achievable
scheme, however, we do not prove that it is optimal.

connect to nodes {1, . . . , k − 2} and both parities:
IN . . . 0N×N 0N×N 0N×N

...
...

...
0N×N . . . IN 0N×N 0N×N

IN . . . IN IN IN
X1 . . . Xk−2 Xk−1 Xk

 f . (14)

The rank of this kN × kN matrix is (k − 1)N + N
2 due

to the submatrix
[

IN IN
Xk−1 Xk

]
having rank 3N

2 . For these

cases, an extra download of N
2 equations is required to

decode the file, i.e., an aggregate download of kN + N
2

equations, or k + 1
2 encoded pieces.
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