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Abstract—Training over sparse multipath noisy channels is
explored. The energy allocation and the optimal shape of training
signals that enable communications over unknown channels
are characterized as a function of the channels’ statistics. The
performance of training is evaluated by the reduction of the
mean square error of the channel estimate and by the decrease
in the penalty term- the mutual information reduction due
to the uncertainty of the channel. The performance of low
dimensional training signal is compared to the performance of
a full dimensional one. Especially, The trade-off between the
number of required measurements (signal dimensions) and the
energy allocation is calculated, and it is proven that if the signal
to noise ratio of the received training signal is low, reducing the
number of channel measurements using compressed sensing is
efficient in the sense of energy consumption.

I. INTRODUCTION

Channel statistics determine the incoherent achievable
rate [1], [2], [3]. If we transmit x over a noisy random LTI
channel denoted by the random impulse response h, and white
Gaussian noise z is added such that the received signal is
y = h ∗ x+ z, where ∗ denotes convolution, then the mutual
information between y and x obeys

I(y;x) = I(y;x,h)− I(y;h|x) (1)
≥ I(y;x|h)− I(y;h|x)

The second form term of (1) I(y;h|x) is the penalty term due
to the uncertainty of the channel h. The mutual information
between y and x is lower bounded by coherent rate minus the
penalty term. The penalty term is a function of the statistics of
h, the ’richer’ is the statistics of h i.e. the bigger the entropy
of h, the higher the penalty term.
The statistics of the channel affect its entropy, but what
is their effect on the best way to train the system? This
paper is concentrated on training over the sparse multipath
channel. This channel can be considered as a collection of
narrowband eigenchannels, with no interference between them.
Each eigenchannel amplifies the transmitted data by a gain and
as a result of channel sparsity, there is a dependence between
the gains of the eigenchannels, dependence that causes the low
uncertainty of the channel.
The performance of training can be evaluated from two
perspectives: the minimum mean square error (MMSE) in
estimating the channel and the reduction in the penalty term.

By compressed sensing, one can divide the signal in the
frequency domain to a data part and a training part.
Recovering sparse vectors in noisy environments using thresh-
olding is discussed in [4]. The idea of recovering sparse
vectors after compressing them is introduced in [5], [6] and
this ability was extended to the noisy case [7]. Recent works
are concentrated on the ability of exact pattern recovery [8],
[9], [10], i.e. the ability to detect almost always all the non-
zero entries of the vector h which represents the channel.
[11] discusses compressed sensing of vectors and [12] discuss
compressed sensing of channels in the finite SNR regime.
A connection between information theory and compressed
sensing is introduced in [13]. This work bounds the number of
required measurements (the rows’ rank of the the compressing
matrix) needed to reduce the mean square error of the com-
pressed random vector v to a value of η ∈ R+ in a noisy
environment:

m ≥ Rv(η)
1
2 log(1 + SNR)

(2)

where Rv(η) is the rate distortion function of v at the point
η and 1

2 log(1 + SNR) is the capacity of an AWGN channel.
From (2) the total energy of compressing/training is lower
bounded by

mSNR ≥ 2Rv(η) (3)

However, it is not clear whether the bounds (2) and (3) are
achievable.
Our Contribution: In accordance with the physical char-
acteristics of multipath channels in the wideband limit we
assume that the sparsity of the channel tends to zero and that
the channel remains constant during short coherence periods.
Unlike papers that discuss finite or high SNR [11], [8], this
paper is concentrated in training in the low SNR regime, where
sparsity enables recovery of the channel. We design a signal
composed of a data part and a training part such that the
output can be separated into two parts that do not interfere,
and training uses as small a subspace as possible so the data
space is maximized.
[9], [10] look for exact pattern recovery, and their results
do not achieve the lower bounds (2) (3). We show that in
the low SNR regime, if one is satisfied with almost perfect
channel recovery then using techniques of compressed sensing
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TABLE I

A COMPARISON BETWEEN THE NUMBER OF REQUIRED MEASUREMENTS
AND TOTAL TRAINING/COMPRESSING ENERGY IN ORDER TO REDUCE THE

MEAN SQUARE ERROR FROM FLETCHER ET AL. [9] AND FROM THIS
PAPER. THE RANDOM CHANNEL h IS UNIT NORM, ITS LENGTH IS kc AND

THE NUMBER OF NON-ZERO ENTRIES IS L. UNLIKE [9] THAT SEARCH
FOR PERFECT RECOVERY, WE ALLOW NEGLIGIBLE MEAN SQUARE ERROR
THAT ENABLES THE REDUCTION OF THE TRAINING ENERGY BY A FACTOR

OF AT LEAST FOUR.

the lower bound on the number of require measurements (2) is
achievable while using minimum training energy (3), as long
as the training signal is composed of enough harmonic vectors
and channel measurements are done in the frequency domain.
In addition we evaluate the effect of training on the penalty
term.
A comparison of the required training energy and number of
channel measurements between this paper and [9] is presented
in Table I.

II. CHANNEL MODEL AND TRAINING SIGNALS

The model assumes that the channel remains constant during
a period of tc, and the maximal delay is td, where td is sig-
nificantly smaller than tc and both are constants independent
of the bandwidth. As the bandwidth increases the number
of delayed reflections of the transmitted signal also grows,
however the growth is sublinearly with the bandwidth. The
receiver gets the signal with additive white Gaussian noise
independent of the transmitted signal and the channel. After
discretizing, the channel can be represented by the vector h
of length kc = w × tc, where w is the bandwidth, the last
w(tc − td) entries are zero and only the first kd = w × td
entries may differ from zero.

A. Channel model

The statistics of each path delay are as follows: each of
the first kd entries of h is an active path in probability L(w)

kd

independent of the other entries, and limw→∞
L(w)
kd

= 0 so
the channel becomes sparser as the bandwidth increases. The
statistics of the amplitudes are also independent and denoted
by the probability density function P(·). We assume that
E [h] = 0 and E ‖h‖22 = 1 such that each amplitude of an
active path has a zero mean and variance 1

L(w) . Since kd is
significantly smaller than kc, we approximate the result of
the LTI channel by a cyclic convolution and get the received
training signal ytrain =

√
SNRxtrain ∗ h + ztrain where

∗ denotes the cyclic convolution, ztrain is additive white
Gaussian noise and SNR is the signal to noise ratio.
Let xdata be the data part of the transmitted signal. If we trans-
mit and train concurrently then y =

(√
SNRxtrain + xdata

)
∗

h+z. The realization of the channel depends on the pdf of the
path gains P . We pay special attention to the following cases:
(1) the statistics of the path gains are Gaussian and (2) the
active path gains equal 1√

L(w)
in probability 1

2 and − 1√
L(w)

in probability 1
2 so the absolute value of the gains is constant.

In the Gaussian case we replace h by hgaussian and in the
constant (absolute value) case we replace h by hconstant.
Hence, in each general formula contains h, a subscript may be
used to denote the type of che channel (constant or gaussian).

B. Training signals
We introduce two training signals:
• ximpulse that uses all the transmission space (i.e. all the

eigenchannels get training energy).
• xfrequency that uses only part of the transmission space.
1) Impulse probing: Impulse probing means sending a

pulse over the channel h to get its noisy impulse response.
The impulse training signal is:

(ximpulse)i =

{ √
kc i = 1
0 otherwise

Training with xtrain = ximpulse we get the received training
signal:

yimpulse =
√
SNR

√
kch+ ztrain (4)

2) Training in the frequency domain: This type of training
uses fewer measurements and enables to divide the band to a
data and training band. The eigenvectors of the LTI channel
are the harmonic vectors. The i’th kc-length harmonic vector
f (i) at the k’th position obeys:

f
(i)
k =

1√
kc
e

2πji(k−1)
kc i = 1, 2, ..., kc

The training signal is chosen randomly in the following way:
Let Q be a m-random subset of {1, 2, ..., kc}. The training
signal xfrequency is:

xfrequency =

√
kc
m

∑
i∈Q

f (i) (5)

Training using xfrequency we get:

ytrain =
√
SNRxfrequency ∗ h+ ztrain (6)

Let i1, i2, ..., im be the elements of Q and let λi, i =
1, 2, .., im be the eigenvalues of the cyclic convolution rep-
resented by h, i.e. h ∗ f (i) = λif

(i). Obviously:

ytrain =
√
SNRxfrequency ∗ h+ ztrain (7)

=
∑
ij∈Q

√
SNR

√
kc
m
λij f

(ij) + ztrain (8)

Let F be a matrix whose rows are the harmonic vectors
corresponding to Q. Projecting ytrain onto F and using the
orthogonality of harmonic vectors we get the vector yfrequency:

yfrequency = Fytrain =
√
SNR

√
kc
m


λi1
λi2
· · ·
λim

+ z∗train (9)



where z∗train is white Gaussian noise with unit norm. The con-
volution (6) is equivalent to projecting h onto the compressing
matrix F . Since E

[
λ2i
]
= 1, SNRfrequency, the signal to noise

ratio of yfrequency is

SNRfrequency =
kc
m

SNR (10)

We can now compare training by impulse probing to com-
pressed training in the frequency domain: in both cases (4)
and (6) the total energy of training is SNR ‖ximpulse‖22 =

SNR ‖xfrequency‖22 = SNRkc However, yimpulse, the received
training signal of ximpulse is kc-length with signal to noise
ration SNR while yfrequency is m-length with signal to noise
ratio kc

mSNR.

III. PERFORMANCE OF TTRAINING

A. Minimum mean square error

The minimum mean square error of h given ytrain is
E
[
‖h− E [h|ytrain]‖22

]
. Let ytrain(SNR) =

√
SNRxtrain ∗

h+ztrain. The minimum mean square error of h given ytrain

as a function of SNR is

mmse(SNR) = E
[
‖h− E [h|ytrain(SNR)]‖22

]
(11)

Obviously, the higher the SNR the smaller the minimum
mean square error so (11) monotonically decreases. Later (in
Theorem 1) we see that the curve of the function behaves as
a decreasing step function.

B. Penalty term and rate distortion function

An alternative way to quantify the performance of training
is to evaluate the uncertainty of the channel after training.
We introduce two such similar criterias: penalty term and rate
distortion function. Section IV shows that using a low training
energy, minimum mean square error is not reduced although
the penalty term and the rate distortion function are strongly
affected.

1) Rate distortion function: Let η0 be a small (negligible)
positive number. The rate distortion function Rh(η0) quan-
tifies the amount of information required to almost perfectly
recover the channel. If we have already trained the system,
the remaining amount of information required to recover
the channel is reduced Rh|ytrain

(η0) < Rh(η0). The rate
distortion function without training can be approximated by

Rh(η0) ≈ (1 + o(1))kd ×Hb
(
L(w)
kd

)
(12)

when Hb(·) is the binary entropy function. (12) is justified be-
cause the information required for an approximate recovery of
h is a discrete kd-length vector which contains the information
on the path delays plus L(w) variables that contain data about
the path gains. However, the required information on the path
gains is negligible relative to the required information on the

path delays (see [2]). Let R(η0)
h (SNR) be the rate distortion

function after training as a function of SNR.

R(η0)
h (SNR) = Rh|ytrain(SNR)(η0)

≤ (1 + o(1))kd ×Hb
(
L(w)
kd

)
(13)

− I (ytrain(SNR);h)

A comparison between the rate distortion function and the
minimum mean square error after training is possible by
comparing Figure (a) to Figure (b).

2) Penalty term: The penalty term, the reduction in mutual
information due to the uncertainty of channel, is the mutual
information between the received data signal ydata and the
channel h. Under resonable assumptions on the data and train-
ing signals, the penalty term equals I(ydata;h|ytrain(SNR))
and is upper bounded by (13):

I (ydata;h|xdata,ytrain(SNR)) (14)

≤ (1 + o(1))kd ×Hb
(
L(w)
kd

)
− I (ytrain;h)

C. Optimization

Optimization of the training is done over the number of
required measurements and the energy consumption, so we
want to minimize the energy of xtrain and when training in
the frequency domain also the number of harmonic vectors
composing xfrequency. From [13] we know that the number
of required measurements m for negligible minimum mean
square error η0 is lower bounded by m ≥ Rh(η0)

1
2 log(1+SNR)

so the required energy is lower bounded by mSNR ≥
SNR Rh(η0)

1
2 log(1+SNR)

≥ 2Rh(η0). The following section show
that these bounds are achievable.

IV. TRAINING BY IMPULSE PROBING

A. Minimum Mmean square error and rate distortion function
of hconstant

1) Minimum mean square error: Let ε be a positive number
as small as we wish and let

SNR0 =
2kdHb

(
L(w)
kd

)
kc

(15)

The following theorem shows the effect of the training energy
on the mean square error of channel recovery:

Theorem 1: If the total training energy is at least

(1 + ε)kcSNR0 (16)

then the minimum mean square error of hconstant is o(1) in the
wideband limit. On the other hand, if the total training energy
is less than (16) then the asymptotic mean square error of
hconstant is 1− o(1).
Sketch of proof: Let Tthreshold =

√
kc
L(w)SNR0. The proof is

based on he fact that only o (L(w)) noise terms are high such
that |(ztrain)i| ≥ Tthreshold but as long as the training energy
is higher than (16), almost every (ytrain)i corresponding to
an active path obeys |(ytrain)i| ≥ Tthreshold so recovery is



almost perfect and negligible minimum mean square error is
achievable.
On the other hand, if we use a little less training energy
than (16), then the |(ytrain)i|’s corresponding to active paths
do not achieve the threshold Tthreshold, and there are much
more than L(w) noise terms that are bigger than most of the
|(ytrain)i|’s whose origins are active paths so random noise
terms are more likely to look like active paths than the actual
ones. As a result, any estimator cannot decide whether the
origin of (ytrain)i is an active path or a noise term and the
estimation completely fails.
Interpertation of Theorem 1: This theorem in fact shows
that the required training energy for almost perfect channel
recovery asymptotically achieves the lower bound (3). To see
this remember from (3) and (12) that the required training
energy to recover the channel is lower bounded by

2Rh(η0) = 2(1 + o(1))kd ×Hb
(
L(w)
kd

)
(17)

Combining (15), (16) and (17), the training energy of Theo-
rem 1 achieves the lower bound on training energy (3), because
ε in (16) is as small as we wish.

The mean square error as a function of SNR behaves ap-
proximately as a step function, because the mean square error
of h is 1− o(1) if SNR ≤ (1− ε)SNR0 and o(1) if SNR ≥
(1+ε)SNR0. The reduction in the minimum mean square error
occurs in the interval [(1− ε)SNR0, (1 + ε)SNR0], which is
as small as we wish.

B. Mean square error, penalty term and rate distortion func-
tion of hconstant

Although training with limited energy may be inefficient
in the sense that it does not reduce the mean square error, it
does affect the penalty term. Using the I-MMSE connection
we conclude from Theorem 1:

Corollary 2: The penalty term of hconstant after train-
ing (14) is upper bounded by:

I (ydata;hconstant|xdata,ytrain(SNR))

≤ (1 + o(1))kd ×Hb
(
L(w)
kd

)
− I (ytrain;h)

= (1 + o(1))kdHb
(
L(w)
kd

)
− 1

2

∫ s=SNR

s=0

mmse(s)ds

= (1 + o(1))kdHb
(
L(w)
kd

)
−{

1
2kcSNR SNR ≤ (1− ε)SNR0

(1− o(1))kdHb
(
L(w)
kd

)
SNR ≥ (1 + ε)SNR0

(18)

Interpretation: Since the mean square error is a step function
of SNR, the mutual information between ytrain and hconstant

increases linearly when recovery fails and remain constant
when recovery is almost perfect. As a result the penalty term
decreases linearly to a negligible value.

C. Mean square error, penalty term and rate distortion func-
tion of hgaussian

The ability to detect a path delay depends on its gain’s
impulsivity. Like in Theorem 1, training can detect with high
probability the delays of active paths of hgaussian as long
as |(ytrain)i| =

∣∣∣√SNR
√
kchi + (ztrain)i

∣∣∣ ≥ Tthreshold We
begin with a theorem summarizing the results of estimating
hgaussian and then compare them to the hconstant case.

Theorem 3: Let Q(·) be the cummultive density function
of normal random variable. The minimum mean square error
of hgaussian as a function of SNR obeys:

mmse(SNR) ≈
∫ s=

√
SNR0
SNR

s=−
√

SNR0
SNR

s2Q(s)ds (19)

The proof is omitted.
Using the I-MMSE connection, we get the following corol-

lary regarding the penalty term of the estimate of hgaussian

Corollary 4: The penalty term (14) of hgaussian is upper
bounded by:

I (ydata;hgaussian|xdata,ytrain(SNR)) (20)

= (1 + o(1))kd ×Hb
(
L(w)
kd

)
− 1

2

∫ s=SNR

s=0

mmse(s)ds

The penalty term (4) does not decrease linearly as in the
hconstant case, but in a strictly convex manner, see Figure (b).
Interpretation of Theorem 3 and Corollary 4

1) The performance of training in terms of minimum mean
square error of hgaussian as SNR ≤ (1 − ε)SNR0 is
better than training over hconstant (compare Theorem 1
to Theorem 3). However, as SNR ≥ (1 + ε)SNR0

training hconstant yields better results. Anyway, in terms
of penalty term training over hconstant is more efficient
at any SNR, see Figure (a) and Figure (b).

2) The performance of training hgaussian depends on the
impulsivity of the path gains, and is not due to their
uncertainty. If the path gains where Gaussian and known,
the asymptotic results where identical to results over
hgaussian although in the hgaussian model the amplitudes
are not known.

3) The mean square error, unlike the penalty term, is very
sensitive to the extreme noise values. Since modeling
physical noise as white Gaussian relates to the average
case, it is interesting to measure the behavior of the
extreme case of the physical noise in multipath chan-
nels. Note that the extreme case ’captures’ a very low
percentage of the probability mass and the power of the
noise.

V. TRAINING IN THE FREQUENCY DOMAIN

When training in the frequency domain (with the training
signal xfrequency) we use only part of the available band
for training and leave the rest of the band to transmit data.
This section shows the conditions where the lower bound
on training energy for almost perfect channel recovery (3)



is achievable despite the reduction in the band allocated for
training.
The main theorem of this section is based on the ’restricted
isometry property’ of matrices defined in [5], [6] and on the
fact that the compressing matrix F (see Section II-A) whose
rows are the m harmonic vectors composing xfrequency obeys
with very high probability [14] [15] the restricted isometry
property for 2L(w)-sparse vectors with as small parameter as
we wish, if the number of rows of F obeys:

m ≥ O
(
L(w) log kc log4 L(w)

)
= O

(
Rhconstant

(η0) log
3 L(w)

)
(21)

where the equality (21) is based on explicit evaluation of
Rhconstant

(η0) in (12).
Recall that SNRfrequency is the signal to noise ratio of

the m channel measurements. The following theorem shows
when the channel measurements and the training energy can
be minimized together.

Theorem 5: If the total training energy is at least (1 +
ε)kcSNR0 (i.e. SNRfrequency ≥ (1 + ε)kcmSNR0) and m,
the number of harmonic vectors composing the training sig-
nal xfrequency obeys (21), then the mean square error of
hconstant is o(1) in the wideband limit. On the other hand,
if the total training energy is less than (1 − ε)kcSNR0

(i.e. SNRfrequency ≤ (1 − ε)kcmSNR0) then the mean square
error of hconstant is 1− o(1).
Interpretation: As long as the training signal xfrequency (5)
is composed of enough harmonic vectors, such that the cor-
responding matrix F obeys the restricted isometry property
with a very low parameter, the performance of training is
asymptotically the same as training by impulse probing with
the same total amount of energy. Equation (21) shows that if
the number of channel measurements is in order of magnitude
of the rate distortion function Rhconstant(η0) multiplied by
log3 L(w), then recovery is possible using minimum training
energy (3). Can we reduce the number of measurements further
and still achieve minimum training energy? By [15] it is
known that if the compressing matrix was i.i.d. Gaussian, the
condition on m is

m >> Rhconstant(η0) (22)

so for an i.i.d. gaussian matrix the only condition required to
achieve minimum training energy is that m is a superlinear
function in Rhconstant

(η0). In the case of F , where the rows
of h are harmonic vectors, we don’t know whether the
condition (21) can be improved.
Using Theorem 5, training in the frequency domain yields a
corollary similar to Corollary 2 and a theorem and corollary
similar to Theorem 3 and Corollary 4 while using the same
total amount of training energy over hgaussian.

VI. SUMMARY

This paper evaluated the performance of training over
hgaussian and hconstant in the low SNR regime. Training over
hconstant achieves the lower bound on training energy for
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almost perfect recovery. Moreover, recovery using minimal
training energy is possible even using much fewer measure-
ments that the length of the sparse vector. While training with
an energy even slightly below kcSNR0, the minimum mean
square error does not decrease at all, but the penalty term and
the rate distortion function are strongly affected.
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[2] D. Porrat, D. Tse, and Şerban Nacu, “Channel uncertainty in ultra
wideband communication systems,” IEEE Transactions on Information
Theory, vol. 53, no. 1, pp. 194–108, Jan. 2007.

[3] E. Zwecher and D. Porrat, “Spreading signals in the wideband limit,”
in Annual Allerton Conference on Communication, Sep. 2008.

[4] david L. Donoho and I. M. Johnstone, “Ideal spatial adaptation by
wavelet shrinkage,” Biometrika, vol. 81, no. 3, pp. 425–455, 1994.

[5] E. Candes and T. Tao, “Decoding by linear programming,” IEEE
Transactions on Information Theory, vol. 51, pp. 4203–4215, 2004.

[6] E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact
signal reconstruction from highly incomplete frequency information,”
IEEE Transactions on Information Theory, vol. 52, no. 2, pp. 489–509,
Feb. 2004.

[7] E. Candes and T. Tao, “The dantzig selector: Statistical estimation when
p is much larger than n,” Annals of Statistics, vol. 35, pp. 2313–2351,
2005.

[8] V. S. Shuchin Aeron, Manqi Zhao, “Title: Information theoretic bounds
to performance of compressed sensing and sensor networks,” found at
http://arxiv.org/abs/0804.3439v4, Apr. 2009, submitted.

[9] A. K. Fletcher, S. Rangan, and V. K. Goyal, “Necessary and sufficient
conditions on sparsity pattern recovery,” IEEE Transaction On Informa-
tion Theory, vol. 55, no. 12, pp. 5758–5772, 2009.

[10] M. J. W. wei wang and K. Ramchandran, “Information-theoretic limits
on sparse signal recovery: Dense versus sparse measurement matrices,”
IEEE Transactions on Info Theory, vol. 56, no. 6, june 2010.

[11] D. Guo, D. ;Baron and S. Shamai, “A single-letter characterization of
optimal noisy compressed sensing,” in 47th Annual Allerton Conference,
Sep . 2009, pp. 52–59.

[12] W. U. Bajwa, A. Sayeed, and R. Nowak, “Sparse multipth channels:
Modeling and estimation,” Digital Signal Processing Workshop, jan.
2009.

[13] D. B. S. Sarvotham and R. G. Baraniuk, “Measurements vs. bits:
Compressed sensing meets information theory,” in 44th Ann. Allerton
Conf. on Commun., Control and Comp, Sep. 2006.

[14] M. Rudelson and R. Vershinin, “On sparse reconstruction from fourier
and gaussian measurements,” Communications on Pure and Applied
Mathematics, vol. 61, pp. 1025–1045, 2008.

[15] R. Vershinin, “Introduction to the non-asymptotic analysis of random
matrices,” 2010.


