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Abstract

In the online channel coding model, a sender wishes to communicate a message to a receiver by
transmitting a codeword x = (x1, . . . , xn) ∈ {0, 1}n bit by bit via a channel limited to at most pn
corruptions. The channel is online in the sense that at the ith step the channel decides whether to flip
the ith bit or not and its decision is based only on the bits transmitted so far, i.e., (x1, . . . , xi). This is
in contrast to the classical adversarial channel in which the corruption is chosen by a channel that has
full knowledge on the sent codeword x. The best known lower bound on the capacity of both the online
channel and the classical adversarial channel is the well-known Gilbert-Varshamov bound. In this paper
we prove a lower bound on the capacity of the online channel which beats the Gilbert-Varshamov bound
for any positive p such that H(2p) < 1

2 (where H is the binary entropy function). To do so, we prove
that for any such p, a code chosen at random combined with the nearest neighbor decoder achieves with
high probability a rate strictly higher than the Gilbert-Varshamov bound (for the online channel).

1 Introduction

The classical scenario in coding theory is that of a sender Alice who wants to transmit a message u to a
receiver Bob via a binary communication channel. To do so, Alice encodes her message u into a codeword
x = (x1, . . . , xn) ∈ {0, 1}n and sends it to Bob, who is expected to recover the message u. However, the
channel is allowed to corrupt (possibly probabilistically) at most a p-fraction of the codeword, i.e., to flip
at most pn bits in x, for some p ∈ [0, 1]. The goal is to find a coding scheme by which Alice can send
as many distinct messages as possible while ensuring correct decoding by Bob with high probability (over
the encoding, decoding and the channel). Roughly speaking, we say that a code achieves rate R if 2Rn

distinct messages can be sent using codewords of length n. Viewing the channel as a malicious jammer,
it is important to specify what information the channel has while deciding on which bits to flip. Such a
specification defines the model of communication and strongly affects the obtainable rate of communication.

In one extreme, there is the classical adversarial model in which the channel has full knowledge on the
entire transmitted codeword x. Given x and the coding scheme of Alice and Bob, the channel chooses an
error for x. Calculating the maximum achievable rate for such a channel is a fundamental open problem
in coding theory. The best known lower bound on the rate is due to Gilbert [8] and Varshmov [20] and
equals 1 −H(2p), where H stands for the binary entropy function. Namely, Gilbert and Varshamov show
that there exists a subset of {0, 1}n of size roughly 2(1−H(2p))n in which every two distinct vectors have
Hamming distance at least 2pn + 1. This implies that if we take the vectors in this set as codewords then
a nearest neighbor decoder always recovers the correct sent codeword. On the other hand, the best known
upper bound is due to McEliece et al. [15] and is strictly higher than the Gilbert-Varshamov bound for any
p ∈ (0, 1

4).
In the second extreme, there are channel models in which the error imposed on the codeword x is com-

pletely independent of x. An example of such a channel is the well-known binary symmetric channel studied
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(among other channels) by Shannon [19]. In this channel every transmitted bit is flipped independently with
probability p, no matter what the sent codeword is. As opposed to the classical adversarial model, the pic-
ture here is completely clear, since Shannon proved that 1 −H(p) is a tight lower and upper bound on the
maximum achievable rate.

In this work we continue the line of research in [12, 6, 7] which study the online channel model —
a channel model whose strength lies somewhere between the above two extremes. In the online channel
model, Alice sends a codeword x bit by bit over a binary communication channel. For each 1 ≤ i ≤ n the
channel decides whether to flip the ith bit or not immediately after xi arrives. This means that the channel’s
decision depends only on (x1, . . . , xi). As in the adversarial model, the channel is limited to corrupt at
most pn of the bits. Roughly speaking, the online channel is stronger than the binary symmetric channel,
as an online channel can mimic the random behavior of a binary symmetric channel. On the other hand,
the online channel is weaker than the classical adversarial channel, as an online channel is limited to make
its decisions in a causal manner. The main theme of this work is to better understand the strength of the
online channel model — in particular, does the maximum achievable rate when communicating over online
channels resemble that of the classical adversarial channel, that of the binary symmetric channel, or maybe
neither?

Studying online adversarial channels is naturally motivated by practical settings in which the sent mes-
sage is not known to the channel which simultaneously learns it. For example, the online channel model
simulates a transmission of a codeword x via n uses of a channel over time, where at time i the ith bit of x
is transmitted. At each step the channel decides whether to flip xi whereas the receiver waits until the end of
the transmission before decoding. As in the classical adversarial channel model, the channel is limited to at
most pn corruptions, what is usually interpreted as limited processing power or transmit energy. From a the-
oretical point of view, understanding the online channel model and comparing it to the classical adversarial
channel model might shed some light on the capacity of the classical adversarial channel, a long-standing
open problem in coding theory.

1.1 Related Work

Let Conline(p) denote the capacity of the online channel, defined as the maximum achievable rate when
communicating over an online channel allowed to corrupt at most a p-fraction of the transmitted codeword.
We give a rigorous definition of the capacity Conline(p) in Section 2. The known bounds on the capacities
of the classical adversarial channel and the binary symmetric channel immediately imply some bounds on
the capacity of the online channel. It is clear that any coding scheme that works for the classical adversarial
channel works also for the online channel, and hence Conline(p) ≥ 1 − H(2p). On the other hand, the
online channel can flip every bit independently with probability p (up to pn of them) ignoring the transmitted
codeword x. It is not hard to verify that this implies that Shannon’s upper bound (for the binary symmetric
channel) holds for the online channel model as well, that is, Conline(p) ≤ 1 −H(p). Recently, this upper
bound was improved in [12] for any p ≥ 0.15642. More precisely, it was shown in [12] that for any p ≥ 1

4 no
communication with positive rate is possible via the online channel and that for p < 1

4 ,Conline(p) ≤ 1−4p.
This implies that the online channel model is strictly stronger than the binary symmetric channel, in the sense
that there exist values of p (e.g., p = 1

4 ) for which no communication is possible over the online channel
whereas a positive rate is possible for the binary symmetric channel. In [12] no non-trivial lower bounds on
Conline(p) were presented. The state of the art on the online channel model is given below (see Figure 1).

Theorem 1.1 ([12]). For any p ∈ [0, 1
2 ], it holds that 1−H(2p) ≤ Conline(p) ≤ min (1−H(p), (1− 4p)+),

where (1− 4p)+ is defined to be 1− 4p for p < 1
4 and 0 otherwise.

The problem of coding against online channels over large alphabets was studied in [6], where a full
characterization of the capacity is presented. Namely, it is shown in [6] that when communicating over large
alphabets, the online channel is no weaker than the classical adversarial channel and has capacity 1− 2p for
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Figure 1: The bounds on the capacities of the classical adversarial channel and the online channel. The bold
line (in purple) is the upper bound on the capacity of the online channel from [12].

p < 1
2 and 0 otherwise. The proofs of the tight upper and lower bounds in [6] use the geometry that fields of

large size enjoy, and it is not clear if these ideas can be extended to the binary case considered in our work.
To the best of our knowledge, other than the works mentioned above, communication in the presence of

an online channel has not been explicitly addressed in the literature. Nevertheless, we note that the model
of online channels, being a natural one, has been “on the table” for several decades and the analysis of
the online channel model appears as an open question in the book of Csiszár and Korner [4] in the section
addressing Arbitrarily Varying Channels (AVC) [2]. (The AVC model is a broad framework for modeling
channels, which encapsulates our online model. For a nice survey on AVCs see [13].) In addition, various
variants of online channels have been addressed in the past, for instance [2, 11, 17, 18, 16, 9] – however the
models considered therein differ significantly from ours.

1.2 Our Result

The Gilbert-Varshamov rate of 1 − H(2p) is the state of the art when communicating over classical ad-
versarial channels. The question whether one can improve upon this rate when communicating over online
channels is an intriguing question. An affirmative answer would not only make progress in our understand-
ing of the online channel model but also may hint on a possible separation between the online and classical
adversarial channels. In our work we address this question and present a lower bound on the capacity of the
online channel that beats the Gilbert-Varshamov bound. More precisely, we prove that for any small enough
p, the Gilbert-Varshamov lower bound is not tight for the online channel. This means that for any such p,
there exists a coding scheme for the online channel with rate strictly higher than 1 − H(2p). This is the
first lower bound for the online channel which is not known to hold for the classical adversarial model. Our
result is stated below.

Theorem 1.2. For any p such that H(2p) ∈ (0, 1
2) there exists a δp > 0 such that

Conline(p) ≥ 1−H(2p) + δp.

Note that H(2p) ∈ (0, 1
2) for any p ∈ (0, 1

2 ·H
−1(1

2)) ≈ (0, 0.055). We also note that our result holds
with respect to the average error criteria (see Section 2.2 for a discussion on the error type). Finally, we
remark that in order to prove Theorem 1.2 we show a lower bound on a much stronger channel model, which
we refer to as the two-step model (defined below).

3



1.3 Techniques and Proof Overview

Our goal in this paper is to show the existence of an encoder and a decoder for the online channel by which
Alice and Bob achieve some rateR strictly higher than 1−H(2p), which is the rate achieved by the Gilbert-
Varshamov bound. Instead of dealing directly with the online channel model we consider a stronger channel
model, the two-step model, defined as follows. Denote α = R−ε for some small ε > 0. In the first step Alice
sends the first αn bits of her encoded message and the channel (after viewing this transmitted information)
decides which bits to flip out of these αn bits. In the second step Alice sends the rest of the codeword and
the channel (now with full knowledge on the sent codeword) decides which bits to flip out of the remaining
transmission. The number of bits corrupted in the two steps together is limited to be at most pn. Notice that
this model is stronger than the online channel model in the sense that any code allowing communication
over the two-step model will also allow communication over our model of online channels. Indeed, any
adversarial strategy of the online channel model implies a valid strategy for the two-step model achieving
the exact same parameters. Therefore, in order to prove our lower bound on the capacity in Theorem 1.2 it
suffices to consider the two-step model.

We turn to describe our construction of codes that allow communication over the two-step model with
rate R greater than 1 − H(2p). We first note that no linear code will suffice. Roughly speaking, this
follows from the fact that each codeword x in a linear code has exactly the same “neighborhood structure”.
Thus, when a linear code is used, the problems of communicating over channels with limited information
regarding the codeword x and those with full information are equivalent.1 We thus turn to study codes which
are not linear. A natural candidate is a code in which the codewords are chosen completely at random and
the decoder is the nearest neighbor decoder. More precisely, we pick a code C : [2Rn]→ {0, 1}n such that
for every u ∈ [2Rn] the codeword C(u) is independently and uniformly chosen from {0, 1}n. Given such
a code, Bob outputs a message u′ ∈ [2Rn] that minimizes the Hamming distance between C(u′) and the
received corrupted vector.

In order to prove our theorem, we show that the decoding succeeds with high probability no matter how
the adversarial online channel behaves. The intuitive idea is the following. In the first step Alice sends a
prefix m ∈ {0, 1}αn of a codeword where α = R − ε. Since the code C was constructed randomly, for a
typical prefix m there are exponentially many (about 2εn) codewords in C that share m as a prefix. This
means that the channel is not able to recognize the sent codeword at this point, and therefore it has no good
way to decide which bits fromm to flip. Roughly speaking, we show that no matter which bits the adversary
decides to flip in this first step, for most of the codewords that share m as a prefix the error imposed by the
adversary is in a wrong direction and thus will not enable the adversary to cause a decoding error (after the
additional corruption of the second step). In fact, as our analysis shows, for our codes C the best strategy for
the adversary is actually to save its flipping power and to corrupt only in the second step of communication.
This implies that in our setting the two-step channel will concentrate all its error on the second portion of
the codeword! Comparing this state of affairs to the classical channel model in which the error is spread out
over the entire codeword sheds light on the reason we are able to improve upon the Gilbert-Varshamov rate
of 1 −H(2p). Very loosely speaking, to prove our improved rate, we first show that a code C constructed
at random is expected to allow successful communication. However, as the events corresponding to correct
decoding are not independent of each other, our proof for the existence of the desired code follows a rather
delicate analysis.

Our analysis holds for the two-step model and thus suffices to prove Theorem 1.2. To improve upon the
results of Theorem 1.2, it is natural to try to generalize our analysis to a channel model that includes more
than two steps. At its extreme (the n-step model) we obtain our original online channel. Such a generalized

1In detail, for any linear code of (minimum) distance at most 2pn there exists an online channel that causes any decoder to err
with probability at least 1

2
for every sent message. To see this, assume that x and y are two codewords of distance at most 2pn, and

let z be a vector of distance at most pn from both x and y. Now, consider a channel that maps any codeword w to w + (z − y) or
to w + (z − x) with probability 1

2
each. Observe that this is an online channel that causes any decoder to err with probability at

least 1
2

.
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analysis is left open in this work and seemingly cannot be addressed by the current proof techniques.
In the following Section 2 we set the notation and definitions used throughout our work. We then turn

to prove Theorem 1.2 in Section 3.

2 Preliminaries

2.1 Notations and Standard Definitions

For k ∈ N we denote [k] = {i ∈ N | 1 ≤ i ≤ k}. For a vector x = (x1, . . . , xn) ∈ {0, 1}n and a
number 1 ≤ k ≤ n we denote by x|[k] the projection of x on its first k entries, i.e., x|[k] = (x1, . . . , xk).
The Hamming weight of a binary vector is the number of its 1-entries, and the Hamming distance between
x ∈ {0, 1}n and y ∈ {0, 1}n, denoted by distH(x, y), is the Hamming weight of x+ y, where the addition
is modulo 2 and coordinate-wise.

For two functions f, g : N → R, we say that f and g are polynomially equivalent and write f ∼ g if
there are constants c1, c2 such that n−c1 · f(n) ≤ g(n) ≤ nc2 · f(n) for all large enough n ∈ N. Similarly,
we write f . g if there is a constant c such that f(n) ≤ nc · g(n) for all large enough n ∈ N.

The binary entropy functionH : [0, 1]→ [0, 1] is defined byH(0) = H(1) = 0 andH(p) = −p log p−
(1− p) log (1− p) for p ∈ (0, 1), where the logarithms, here and everywhere in this paper, are of base 2. It
is well-known and easy to verify that for any c ∈ (0, 1

2 ],
(
n
cn

)
∼ 2H(c)n. We need the following two simple

facts regarding H . Notice that the first fact implies the second (by setting the parameters of Fact 2.1 to be
x = 0, y = 1

2 , and θ = 1− 4p).

Fact 2.1. The entropy function H is strictly concave, that is, for any θ ∈ (0, 1) and x, y ∈ [0, 1] it holds that
θ ·H(x) + (1− θ) ·H(y) ≤ H(θ · x+ (1− θ) · y), and equality holds if and only if x = y.

Fact 2.2. For any p ∈ (0, 1
4), 4p < H(2p).

We need the following version of the Chernoff-Hoeffding Bound [10, 14] (addressing random variables
which are not necessarily indicator variables).

Theorem 2.3 (Chernoff-Hoeffding). Let X1, X2, . . . , XN be independent and identically distributed ran-
dom variables taking values in the unit interval [0, 1] with expectation at most µ. Then,

Pr

[
N∑
i=1

Xi ≥ 2µN

]
≤ e−Θ(µN).

2.2 The Online Channel Model and the Two-step Model

For R > 0, an (n,Rn)-code C is a mapping C : [2Rn] → {0, 1}n. The elements of the image of C are
called codewords. Define α = R − ε for some ε > 0 and let m ∈ {0, 1}αn be some prefix. Here and
throughout our work we ignore rounding issues and assume that αn, Rn and other such expressions are
integers. We denote by Cm the set of all messages whose codewords have m as a prefix, i.e., Cm = {u ∈
[2Rn] | C(u)|[αn] = m}, and by Cm the set of all messages whose codewords do not have m as a prefix,
i.e., Cm = [2Rn] \Cm. A random code is a mapping C : [2Rn] → {0, 1}n such that for every u ∈ [2Rn]
the codeword C(u) is independently and uniformly chosen from {0, 1}n. Notice that we use C to denote a
fixed code and C to denote a code which forms a random variable.

Consider a code C. Throughout this work, we consider the average error success criteria while commu-
nicating over the online channel model. Namely, Alice’s message u is considered as uniformly distributed
over [2Rn]. Given the message u, Alice deterministically maps u to the codeword C(u) = (x1, . . . , xn) ∈
{0, 1}n and transmits it over the communication channel. For every i ∈ [n] the decision of the channel
whether to flip xi or not depends only on (x1, . . . , xi). In addition, the channel is limited to at most pn
corruptions. Bob’s goal is to recover u from his received vector.
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The probability of error of C is defined as the average over all u ∈ [2Rn] of the probability of error for
the message u, i.e., the probability that the message that Bob decodes differs from the message u encoded
by Alice. Here, the probability is taken over the random variables of the channel and of Bob. We say that the
rate R is achievable if for every ε > 0, δ > 0 and every sufficiently large n there exists an (n, (R − δ)n)-
code that allows communication with (average) probability of error at most ε. The supremum over n of the
achievable rates is called the capacity of the online channel and is denoted by Conline(p). We note that
the discussion in the introduction regarding the known bounds on the capacity of both the binary symmetric
channel and the classical adversarial channel holds for average error (see e.g., [3]).

One may also consider a definition for capacity which takes into account the maximum error over mes-
sages u and not the average error. In this maximum error (or worst case) setting, if the encoding function
of Alice is considered to be deterministic, it is straightforward to verify that online channels have no ad-
vantage over the classical adversarial channel. This is no longer the case when one allows randomization
in Alice’s encoding process (referred to as stochastic encoders). As common in the study of Arbitrarily
Varying Channels (e.g., [5]), there is an equivalence between the capacity when considering the models of
(a) deterministic encoders and average error criteria and (b) stochastic encoders and maximum error success
criteria. This equivalence holds also for the online channel model studied in this work.

As mentioned before, for our lower bound we consider a two-step model defined for a parameter α =
R − ε where ε > 0 is some small constant. In the first step, Alice sends the first αn bits of the encoded
message and the channel decides which bits to flip out of these αn bits. In the second step, Alice sends
the rest of the codeword and the channel decides which bits to flip out of the remaining (1− α)n bits. The
number of bits corrupted in the two steps together is limited to be at most pn. In each step, the decisions
made by the channel are based on the information transmitted in and before the step at hand. The notion of
(average error) capacity is defined as done above. As explained in the introduction, any lower bound on the
capacity of the two-step model holds also for the online channel model.

3 Proof of Theorem 1.2

Before presenting the proof of our lower bound for the online channel model, let us start with a short
comparison to the Gilbert-Varshamov lower bound that holds for the classical adversarial model. One way
to prove the Gilbert-Varshamov bound is to show that a code C : [2Rn] → {0, 1}n chosen at random
combined with the nearest neighbor decoder implies a coding scheme of rate almost 1 −H(2p) with high
probability. Roughly speaking, the achievable rate in this argument is affected by the number of codewords
x that are far away from any other codeword in C. Namely, one is interested in proving that there are lots of
codewords x, for which the ball of radius 2pn centered at x includes no codewords except x. Indeed, such
a transmitted codeword x will be decoded correctly by a nearest neighbor decoder no matter which error is
imposed by the channel. As the volume of this ball is

∑2pn
i=0

(
n
i

)
∼ 2H(2p)n the rate essentially follows.

Recall that for our lower bound on the capacity of the online channel we consider the two-step model.
In the first step Alice sends a prefix m of length αn and the channel chooses which bits to flip out of these
αn bits, and in the second step Alice sends the remaining (1 − α)n bits and the channel again chooses
which bits to flip out of the remaining part of the codeword. Let us now study the required “forbidden ball”
corresponding to a codeword x in the two-step model. To take advantage of the two-step model, consider
fixing an error pattern e imposed on the first portion of x. Let B(x, e) be the subset of {0, 1}n that satisfies
the following property: if the codeword x was transmitted, the error pattern e was imposed on the first
portion of x in the first step, and there are no codewords other than x in B(x, e); then no matter what the
channel does in the second step the decoding of Bob will succeed. We define B(x, e) (denoted as B(z) for
z = x + e) rigorously and analyze its size in the upcoming section. Specifically, we show that the size of
B(z) is exponentially smaller than 2H(2p)n. This fact is a core ingredient in our proof. Combining it with
several additional ideas leads to our improved lower bound.

We now turn to present the proof of Theorem 1.2. In Section 3.1 we formally define the “forbidden
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ball” B(z) described above and analyze its size. In Sections 3.2 and 3.3 we prove our theorem by showing
that with high probability over the codeword x chosen by Alice, the decoding is successful. Namely, that
Bob decodes a codeword x′ which is equal to the transmitted codeword x. In Section 3.2 we analyze the
probability (over x) that Bob decodes an incorrect codeword x′ in which x and x′ differ in their first αn
bits. In Section 3.3 we address x and x′ which agree on their first αn bits. Finally, in Section 3.4 we prove
Theorem 1.2.

3.1 The “Forbidden Ball” B(p,q)
α (z)

Consider a situation in which Alice transmits a codeword x. Namely, in the first step, Alice sends the first αn
bits of x and the channel flips qn of them for some q ∈ [0,min(p, α)]. Let e1 ∈ {0, 1}αn×{0}(1−α)n be the
vector of Hamming weight qn that represents the channel’s corruptions in the first step, and let z = x+e1 be
the (partially) corrupted codeword after the first step. In the second step Alice sends the remaining (1−α)n
bits of x. Since the channel is limited to a total number of pn corruptions, at most (p−q)n of the bits can be
flipped in this step. Let e2 ∈ {0}αn × {0, 1}(1−α)n be the vector of Hamming weight at most (p− q)n that
represents the channel’s corruptions in the second step, and let w = z + e2 = x+ e1 + e2 be the corrupted
codeword received by Bob.

Conditioning on the first step, namely on the value of z, we are interested in counting the vectors that
the channel (in its second step) may enforce Bob to consider in his nearest neighbor decoding. These are all
the vectors y ∈ {0, 1}n for which there exists a vector w ∈ {0, 1}n such that

• w is of distance at most pn from y, and

• w and z agree on the first αn bits and the distance between them is at most (p− q)n.

Notice that the second item follows from the fact that our channel can only corrupt bits in the (1−α)n suffix
of z in the second step. We define

B(p,q)
α (z) = {y ∈ {0, 1}n | ∃w ∈ {0, 1}n s.t. distH(w, y) ≤ pn, z|[αn] = w|[αn], distH(z, w) ≤ (p−q)n}.

It is not hard to verify that (a) the original transmitted codeword is in B(p,q)
α (z), and (b) if this is the

only codeword in B(p,q)
α (z) then Bob will decode successfully. It is also not hard to verify that the size of

B(p,q)
α (z) does not depend on z and therefore we can denote B(p,q)

α = |B(p,q)
α (z)| for any z ∈ {0, 1}n. The

following claim bounds B(p,q)
α and is proven in the appendix.

Claim 3.1. For any 0 < p < 1
2 ·H

−1(1
2) there exists an η > 0 such that for any 1−H(2p) ≤ α ≤ 1− 2p

and q ∈ [0, p] it holds that B(p,q)
α ≤ 2(H(2p)−η)n.

3.2 Errors Caused by Codewords with Distinct Prefixes

Let C : [2Rn] → {0, 1}n be a code chosen at random and let x ∈ {0, 1}n be a codeword sent by Alice.
Consider the setting in which Alice, in the first step, sends the prefix m = x|[αn] and the channel corrupts
qn of its bits for some q ∈ [0,min(p, α)]. Let e ∈ {0, 1}αn × {0}(1−α)n be the vector of Hamming weight
qn that represents the channel’s corruptions in the first step. In the second step Alice sends the last (1−α)n
bits of x and the channel is allowed to flip at most (p − q)n of these bits. After the first step, the set of
vectors that are of Hamming distance at most pn from a vector that the channel can cause Bob to receive is
exactly B(p,q)

α (x + e). Therefore, if a nearest neighbor decoder fails then there must be another codeword
of C (in addition to x) in B(p,q)

α (x+ e). In this section we study the probability that B(p,q)
α (x+ e) contains

a codeword with a prefix that differs from m and show that it is small no matter what m or e are. Here, the
probability is taken over the random construction of C.

In general, it is not hard to verify that in expectation, indeed a random code C will ensure an exponen-
tially decaying decoding error in the case under study (here, the expectation is over the code construction
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and the error is over the messages of Alice). However, as the events corresponding to correct decoding are
not independent of each other, our proof includes a rather delicate analysis. Our proof in this section consists
of two parts. In the first part, we identify a certain property on codes C, and prove that it holds with very
high probability. This property is then used in the second part of our proof, and enables to cope with the
dependencies mentioned above. We start by defining our needed property on C.

A code is considered as good with respect to the pair (m, e) if it has the following two properties: (a) the
number of codewords with prefix m is close to its expectation and, in addition, (b) the number of codewords
that do not start with m but alternatively may cause a decoding error on the transmission of a word that
does start with m is not much larger than the expectation. This notion is formally defined below. We then
show that for every m and e a code C chosen at random is good with respect to (m, e) with high probability.
Recall the definitions of Cm and Cm from Section 2.2.

Definition 3.2. For a natural number n, p > 0, R > 0, ε > 0, α = R − ε, m ∈ {0, 1}αn and e ∈
{0, 1}αn×{0}(1−α)n of Hamming weight qn for q ∈ [0,min(p, α)], we say that a code C : [2Rn]→ {0, 1}n
is good with respect to the pair (m, e) if

1. 2εn−1 ≤ |Cm| ≤ 2εn+1, and

2.
∑

x∈Zm |{u ∈ Cm | C(u) ∈ B(p,q)
α (x+ e)}| ≤ B(p,q)

α · 2εn+2,

where Zm is the set of all vectors in {0, 1}n with m as a prefix, i.e., Zm = {z ∈ {0, 1}n | z|[αn] = m} .

A remark regarding Item (2) of Definition 3.2 is in place. In general, Item (2) estimates the number of
codewords in Cm that happen to be included in “forbidden balls” of type B(p,q)

α (x+ e) for vectors x ∈ Zm
(namely, x|[αn] = m). Later in our proof, we will think of x as a randomly chosen codeword with prefix m,
and the l.h.s. of Item (2) will correspond to the expected number of codewords in its “forbidden ball”.

Lemma 3.3. For every large enough n, p > 0, R > 0, ε > 0, α = R − ε, a prefix m ∈ {0, 1}αn and
e ∈ {0, 1}αn × {0}(1−α)n of Hamming weight at most pn, the probability that a code C : [2Rn]→ {0, 1}n

chosen at random is good with respect to (m, e) is at least 1− e−2Ω(n)
.

Proof: Fix a pair (m, e) and assume that the Hamming weight of e is qn for q ∈ [0, p]. For every u ∈ [2Rn]
denote byXu the indicator random variable defined to be 1 if u ∈ Cm and 0 otherwise. Notice that theXu’s
are independent and identically distributed and that |Cm| =

∑
u∈[2Rn]Xu. Also, E [Xu] = Pr [Xu = 1] =

1
2αn , and linearity of expectation implies that E [|Cm|] = 2Rn · 1

2αn = 2εn. Applying the standard Chernoff
bound (see, e.g., [1] Appendix A) we get that Item (1) of Definition 3.2 holds with probability at least
1− e−2Ω(n)

.
Now, given that (1) holds, we will show that the probability that (2) holds is 1−e−2Ω(n)

. This will imply
that with such probability both (1) and (2) hold, as follows from Pr [(1) ∧ (2)] = Pr [(1)] · Pr [(2)|(1)].

Since the summands in Item (2) of Definition 3.2 are not independent, we cannot directly apply the
Chernoff-Hoeffding bound. To overcome this issue, we express the summation in (2) as another summation
of independent random variables. Details follow. Recall that Zm stands for the set of all vectors in {0, 1}n
with m as a prefix. Define for every u ∈ Cm the random variable

Yu =
∣∣∣{x ∈ Zm ∣∣ C(u) ∈ B(p,q)

α (x+ e)}
∣∣∣.

Namely, Yu counts the number of balls B(p,q)
α (x + e) (with x ∈ Zm) which include C(u). Denote Y =∑

u∈Cm Yu and observe that Y equals the sum from (2). Observe that the Yu’s are independent and, more-
over, they are independent even when conditioning on the size of the set Cm. Given that u ∈ Cm, for every

x ∈ Zm the probability that C(u) ∈ B(p,q)
α (x+ e) is at most B

(p,q)
α

2n−2(1−α)n . Hence,

E [Yu] ≤ |Zm| ·
B

(p,q)
α

2n − 2(1−α)n
≤ 2 · 2(1−α)n · B

(p,q)
α

2n
=
B

(p,q)
α

2αn−1
.
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Notice that for every u ∈ Cm we have Yu ≤ B
(p,q)
α and define Y ′u = Yu

B
(p,q)
α

∈ [0, 1] and Y ′ = Y

B
(p,q)
α

. For

any k ∈ [2εn−1, 2εn+1] use the Chernoff-Hoeffding bound (Theorem 2.3) to obtain

Pr
[
Y ≥ B(p,q)

α · 2εn+2
∣∣∣ |Cm| = k

]
≤ Pr

[
Y ≥ 4B

(p,q)
α (2Rn − k)

2αn

∣∣∣ |Cm| = k

]

= Pr

[
Y ′ ≥ 4(2Rn − k)

2αn

∣∣∣ |Cm| = k

]
= e−Ω(2εn).

Finally, for a large enough n we obtain

Pr [(2)|(1)] = 1−
∑

k∈[2εn−1,2εn+1]

Pr
[
Y ≥ B(p,q)

α · 2εn+2
∣∣∣ |Cm| = k ∧ (1)

]
· Pr

[
|Cm| = k

∣∣∣ (1)]
≥ 1− e−Ω(2εn) ·

∑
k∈[2εn−1,2εn+1]

Pr
[
|Cm| = k

∣∣∣ (1)] = 1− e−Ω(2εn).

We now turn to the second part of our proof. Let m be a prefix of a codeword sent by Alice and let e be
the vector that represents the corruptions made by the channel in the first step. Consider a fixed choice of the
codewords in C which do not have m as a prefix (i.e., C|Cm). The following lemma shows that the number
of messages in Cm for which the channel may cause a decoding error due to messages in Cm is small with
high probability. The probability here is over the choice of the codewords that start with m (since C|Cm is
fixed).

For any u ∈ Cm define Tu to be the number of codewords of messages from Cm in the “forbidden ball”
corresponding to u. Namely, Tu = |{u′ ∈ Cm | C(u′) ∈ B(p,q)

α (C(u)+e)}|. Let Pu be an indicator random
variable defined to be 1 if Tu ≥ 1 and 0 otherwise. Finally, we let P (m,e) denote the number of codewords
with prefix m whose corresponding “forbidden balls” contain codewords associated with elements from
Cm. Formally, P (m,e) =

∑
u∈Cm Pu. We stress that messages u with Pu = 1 are considered as messages

for which the channel may cause a decoding error. Thus our objective is to show that P (m,e) is small.

Lemma 3.4. For every 0 < p < 1
2 · H

−1(1
2) there exists a δp > 0 such that for ε ≤ δ ≤ δp, R =

1−H(2p)+δ and α = R−ε the following holds for any sufficiently large n. For every prefixm ∈ {0, 1}αn,
e ∈ {0, 1}αn×{0}(1−α)n of Hamming weight at most pn, a fixed set of messages Cm and a fixed restriction
C̃ of C to Cm,

Pr
[
P (m,e) < 2εn/2

∣∣∣ C|Cm = C̃ ∧ C is good with respect to (m, e)
]
≥ 1− e−2Ω(n)

.

Here, the probability is taken over the random construction of C.

Proof: For 0 < p < 1
2 ·H

−1(1
2) take δp = min (4

7 · η,H(2p)− 2p), where η is the constant whose existence
is guaranteed in Claim 3.1. Notice that δp > 0 since H(2p) > 2p, as follows from Fact 2.2.

Fix a pair (m, e) and assume that the Hamming weight of e is qn for q ∈ [0, p]. Denote by G(m,e)

the event that C is good with respect to (m, e). Conditioning on C|Cm = C̃ and on G(m,e), every C(u)
for u ∈ Cm is independently and uniformly distributed over the vectors in {0, 1}n that start with m, and
in particular the Pu’s are independent. Since C satisfies Item (2) of Definition 3.2 we get that for every
u ∈ Cm,

E
[
Pu

∣∣∣ C|Cm = C̃ ∧G(m,e)
]
≤ E

[
Tu

∣∣∣ C|Cm = C̃ ∧G(m,e)
]
≤ B

(p,q)
α · 2εn+2

2(1−α)n
=

4B
(p,q)
α

2(1−R)n
.

Notice that our choice of δp implies that 1 − H(2p) ≤ R − ε = α ≤ R ≤ 1 − 2p and hence B(p,q)
α ≤

2(H(2p)−η)n by Claim 3.1. Since C satisfies Item (1) of Definition 3.2 we obtain that

E
[
P (m,e)

∣∣∣ C|Cm = C̃ ∧G(m,e)
]
≤ |Cm| · 4B

(p,q)
α

2(1−R)n
≤ 8 · 2(ε+H(2p)−η)n

2(1−R)n

= 8 · 2(δ+ε−η)n ≤ 8 · 2(ε/4+ 7
4 δp−η)n ≤ 8 · 2εn/4.
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For a sufficiently large n, applying the Chernoff-Hoeffding bound (Theorem 2.3) yields

Pr
[
P (m,e) ≥ 2εn/2

∣∣∣ C|Cm = C̃ ∧G(m,e)
]
≤ Pr

[
P (m,e) ≥ 16 · 2εn/4

∣∣∣ C|Cm = C̃ ∧G(m,e)
]
≤ e−2Ω(n)

,

as desired.

Combining Lemmas 3.3 and 3.4 we get the following corollary.

Corollary 3.5. For every 0 < p < 1
2 · H

−1(1
2) there exists a δp > 0 such that for ε ≤ δ ≤ δp, R =

1 − H(2p) + δ and α = R − ε the following holds for any sufficiently large n. The probability that
a code C : [2Rn] → {0, 1}n chosen at random satisfies that for every prefix m ∈ {0, 1}αn and e ∈
{0, 1}αn×{0}(1−α)n of Hamming weight at most pn, C is good with respect to (m, e) and P (m,e) < 2εn/2,
is at least 1− e−2Ω(n)

.

Proof: Let (m, e) be a fixed pair and denote by G(m,e) the event that C is good with respect to (m, e). In
the following C̃ denotes a restriction of C to Cm. We have

Pr
[
P (m,e) < 2εn/2 ∧ G(m,e)

]
=

∑
C̃

Pr
[
P (m,e) < 2εn/2

∣∣∣ C|Cm = C̃ ∧G(m,e)
]
· Pr

[
C|Cm = C̃ ∧G(m,e)

]
≥ (1− e−2Ω(n)

) ·
∑
C̃

Pr
[
C|Cm = C̃ ∧G(m,e)

]
= (1− e−2Ω(n)

) · Pr
[
G(m,e)

]
≥ (1− e−2Ω(n)

) · (1− e−2Ω(n)
) ≥ 1− e−2Ω(n)

,

where the first and the second inequalities follow, respectively, from Lemmas 3.4 and 3.3. Taking the union
bound over all the possible pairs (m, e) completes the proof.

3.3 Errors Caused by Codewords with the Same Prefix

In this section we consider decoding errors caused by codewords in C that have prefix (of length αn)
identical to the prefix of the transmitted codeword. Namely, we consider the scenario that Alice sends a
codeword x, Bob gets the corrupted vector y, and the message that Bob outputs corresponds to a codeword
that differs from x but shares the prefix x|[αn]. A way to handle such errors is to verify that for every prefix
m, our code C does not include (many) pairs of codewords that share m as a prefix and are close together,
namely of Hamming distance at most 2pn. This is the type of analysis that actually corresponds to the
classical adversarial channel, and can be used here as we are considering a special case of decoding errors.

The following lemma says that a code C : [2Rn]→ {0, 1}n chosen at random with R < 1− 4p has only
few pairs of codewords that share a prefix and have Hamming distance at most 2pn.

Lemma 3.6. For every p ∈ [0, 1
4),R < 1−4p, a sufficiently small ε > 0 and α = R−ε there exists a γ > 0

for which the following holds for any sufficiently large n. The probability that a code C : [2Rn] → {0, 1}n
chosen at random satisfies that

1. for every m ∈ {0, 1}αn, 2εn−1 ≤ |Cm| ≤ 2εn+1,

2. and for every m ∈ {0, 1}αn, besides at most 2(α−γ)n of them, there exists a set Xm ⊆ Cm of size
|Xm| < 2(ε−γ)n such that every distinct u1, u2 ∈ Cm \Xm satisfy distH (C(u1), C(u2)) > 2pn,

is at least 1− e−2Ω(n)
.

In order to prove Lemma 3.6 we need the following (known) claim that shows that with high probability
a random code almost achieves the Gilbert-Varshamov bound. We include its proof for completeness.
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Claim 3.7. For any p′ ∈ (0, 1
4), ε

′ > 0 andR′ ≤ 1−H(2p′)−ε′ the following holds for any sufficiently large
n′. The probability that for a code C : [2R

′n′ ]→ {0, 1}n′ chosen at random there exists a setX ⊆ [2R
′n′ ] of

size |X| < 2(R′−ε′/2)n′ such that every distinct u1, u2 ∈ [2R
′n′ ] \X satisfy distH (C(u1), C(u2)) > 2p′n′

is at least 1− 2−
3
8
ε′n′ .

Proof: The probability of two distinct messages to be mapped by C to codewords of Hamming distance at

most 2p′n′ is
∑2p′n′
i=0 (n

′
i )

2n′
∼ 2H(2p′)n′

2n′
. Denote by Y the number of pairs of messages which are mapped by C

to codewords of Hamming distance at most 2p′n′ and notice that E [Y ] . 22R′n′ ·2H(2p′)n′

2n′
. Apply Markov’s

inequality to get that

Pr
[
Y ≥ 2(R′−ε′/2)n′

]
≤ E [Y ]

2(R′−ε′/2)n′
. 2−ε

′n′/2.

This implies that with probability at most 2−
3
8
ε′n′ we have Y ≥ 2(R′−ε′/2)n′ . Taking one message from

every pair counted in Y , we get the required set X .

We now turn to prove our lemma.

Proof of Lemma 3.6: The probability that C satisfies Item (1) is at least 1 − e−2Ω(n)
as follows from the

argument presented in the proof of Lemma 3.3 and a union bound argument over all the possible m’s. Now
we will show, given (1) holds, that the probability that (2) holds is 1− e−2Ω(n)

. This will imply that both (1)
and (2) hold with probability 1− e−2Ω(n)

.
In order to analyze the probability of (2), let us first fix the size of the image of C for every prefix:

for every m ∈ {0, 1}αn denote km = |Cm| ∈ [2εn−1, 2εn+1]. Denote by Tm the indicator random variable
defined to be 1 if there is no setXm ⊆ Cm of size |Xm| < 2(ε−γ)n such that every distinct u1, u2 ∈ Cm\Xm

satisfy distH (C(u1), C(u2)) > 2pn (where γ is some positive constant to be determined later). In addition,
define T =

∑
m∈{0,1}αn Tm. Notice that given the fixed km’s, we can think of C as 2αn random mappings,

where the mapping which corresponds to m maps every element in a domain of size km to an element in
{0, 1}(1−α)n uniformly and independently. Denote n′ = (1− α)n, R′ = ε

1−α ≈
1
n′ · log km and p′ = p

1−α .
Our assumption that R < 1− 4p implies that H(2p′) is bounded away from 1 and hence for a small enough
ε > 0 we have that R′ = ε

1−α ≤ 1 − H(2p′) − ε′ for some ε′ > 0. Define γ = ε′(1 − α)/4. Apply
Claim 3.7 and derive that the probability that there is no set Xm ⊆ Cm of size |Xm| < 2(R′−ε′/2)n′ =
2(ε−2γ)n < 2(ε−γ)n such that every distinct u1, u2 ∈ Cm \ Xm satisfy distH (C(u1), C(u2)) > 2pn is at
most 2−

3
2
γn. Therefore, E [Tm] = Pr [Tm = 1] ≤ 2−

3
2
γn. The Tm’s are independent (given the fixed km’s)

so for a sufficiently large n we can apply the Chernoff-Hoeffding bound (Theorem 2.3) to get

Pr
[
T ≥ 2(α−γ)n

∣∣∣ ∀m. |Cm| = km

]
≤ Pr

[
T ≥ 2 · 2(α− 3

2
γ)n
∣∣∣ ∀m. |Cm| = km

]
≤ e−2Ω(n)

.

Finally,

Pr [(2)|(1)] = 1−
∑

{km}m∈{0,1}αn

Pr
[
T ≥ 2(α−γ)n

∣∣∣ ∀m. |Cm| = km ∧ (1)
]
· Pr

[
∀m. |Cm| = km

∣∣∣ (1)]
= 1− e−2Ω(n) ·

∑
{km}m∈{0,1}αn

Pr
[
∀m. |Cm| = km

∣∣∣ (1)] = 1− e−2Ω(n)
.

3.4 Proof of Theorem 1.2

The following corollary stems from Corollary 3.5 and Lemma 3.6 by Fact 2.2 and the union bound.

11



Corollary 3.8. For every 0 < p < 1
2 · H

−1(1
2) there exist δ > 0, ε > 0, and γ > 0 such that for

R = 1−H(2p) + δ and α = R − ε the following holds for any sufficiently large n. The probability that a
code C : [2Rn]→ {0, 1}n chosen at random satisfies that

1. for every m ∈ {0, 1}αn, 2εn−1 ≤ |Cm| ≤ 2εn+1,

2. for every prefixm ∈ {0, 1}αn and e ∈ {0, 1}αn×{0}(1−α)n of Hamming weight at most pn, P (m,e) <
2εn/2,

3. and for every m ∈ {0, 1}αn, besides at most 2(α−γ)n of them, there exists a set Xm ⊆ Cm of size
|Xm| < 2(ε−γ)n such that every distinct u1, u2 ∈ Cm \Xm satisfy distH (C(u1), C(u2)) > 2pn,

is at least 1− e−2Ω(n)
.

Equipped with Corollary 3.8, we are ready to prove Theorem 1.2.

Proof of Theorem 1.2: Fix 0 < p < 1
2 · H

−1(1
2) and let δ > 0, ε > 0, γ > 0, R = 1 − H(2p) + δ

and α = R − ε be as in Corollary 3.8. Also, let C : [2Rn] → {0, 1}n be a code that satisfies the three
items in the corollary. Denote by M the set of all m ∈ {0, 1}αn for which there is a set Xm ⊆ Cm of size
|Xm| < 2(ε−γ)n such that every distinct u1, u2 ∈ Cm \Xm satisfy distH (C(u1),C(u2)) > 2pn, and by
M its complement M = {0, 1}αn \M . The corollary guarantees that |M | ≤ 2(α−γ)n. We restrict the code
C to the domain U = [2Rn] \ (∪m∈MXm) and denote the restricted code by C′ : U → {0, 1}n. Notice that
|U | ≥ 2Rn − 2αn · 2(ε−γ)n = 2Rn − 2(R−γ)n ≥ 2Rn−1 for a sufficiently large n. We show that this code
and the nearest neighbor decoder supply high probability of correct decoding and hence imply the theorem.

Let x ∈ {0, 1}n be the codeword sent by Alice and denote by mx = x|[αn] ∈ {0, 1}αn the vector that
Alice sends in the first step of the two-step model. We first show that the probability over Alice’s messages
thatmx ∈M is exponentially decaying: Pr

[
mx ∈M

]
=
∑

m∈M
|Cm|
|U | ≤ |M |·

2εn+1

2Rn−1 ≤ 2(α−γ)n · 2εn+1

2Rn−1 ≤
2−γn+2. Thus, we may neglect the event that mx ∈M .

Now assume that mx ∈ M . Observe that for every m ∈ M the number of codewords of C′ that start
with m satisfies |Cm \ Xm| ≥ 2εn−1 − 2(ε−γ)n ≥ 2εn−2 for a large enough n. In the first step of our
two-step model the channel outputs mx+e

′ for some e′ ∈ {0, 1}αn of Hamming weight at most pn. Extend
e′ to a vector e ∈ {0, 1}n by concatenating it to (1− α)n zeros. We now bound the probability of incorrect
decoding averaged over all codewords x with prefix mx. We divide our analysis according to the cases
discussed in Sections 3.2 and 3.3.

For the analysis corresponding to Section 3.2 consider the probability (taken over messages in Cmx \
Xmx) that the “forbidden ball” corresponding to x and e contains a codeword with a prefix that differs from
mx. Recall that this probability bounds the probability of a decoding error in the setting of Section 3.2, and,
by our definitions, is at most P (mx,e)

|Cmx\Xmx |
≤ 2εn/2

2εn−2 ≤ 22−εn/2. Here, the bound on P (mx,e) holds since the
code satisfies Item (2) in Corollary 3.8.

For the analysis corresponding to Section 3.3, due to our restriction C′ of C to U and the assumption
mx ∈ M , x is the only codeword with prefix mx and Hamming distance at most 2pn from x. Hence, the
“forbidden ball” corresponding to x does not contain a codeword with a prefix that equals mx, implying no
decoding error in the setting examined in Section 3.3.

Therefore, the probability (taken uniformly over Alice’s message u ∈ U ) of an incorrect decoding is at
most Pr

[
mx ∈M

]
+ Pr [mx ∈M ] · 22−εn/2 ≤ 2−γn+2 + 1 · 22−εn/2 = 2−Ω(n). All in all, we obtain that

the probability of a correct decoding is arbitrarily close to 1 for a sufficiently large n, which concludes our
proof.
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Appendix

A Proof of Claim 3.1

First, by our setting of p, notice that α ≥ 1
2 + γ for some γ ∈ (0, 1

2) that depends only on p. Observe that

B(p,q)
α ≤

(2p−q)n∑
k=0

∑
i≤min (pn,k)

Bk,i,

where Bk,i =
(
αn
i

)
·
((1−α)n

k−i
)
. Here, with respect to the notation in the definition of B(p,q)

α (z), we set k to
be equal to the Hamming distance between z and y, and i to be equal to the Hamming distance between
z|[αn] and y|[αn]. Notice that k ≤ distH(z, w) + distH(w, y) ≤ (2p − q)n and as z|[αn] = w|[αn] it holds
that i ≤ pn. In order to prove the claim it suffices to prove the existence of an η > 0 for which for every
0 ≤ k ≤ (2p − q)n and i ≤ pn, we have Bk,i . 2(H(2p)−η)n. Fix such a k and denote k = (2p − q′)n for
some q′ ∈ [q, 2p]. Consider the following two cases:

• Case 1: q′ ≥ 2γ · p. Denoting i = βk for β ∈ [0, 1] we obtain

Bk,i =

(
αn

βk

)
·
(
(1− α)n
(1− β)k

)
∼ 2αnH( βkαn ) · 2(1−α)nH(

(1−β)k
(1−α)n

) ≤ 2nH( kn ) = 2nH(2p−q′) ≤ 2n(H(2p)−η1),

where the first inequality follows from Fact 2.1, and the second holds for η1 = H(2p)−H((2−2γ)p)
since H is monotonically increasing in [0, 1

2 ] and 2p < 1
2 . Notice that η1 depends solely on p.

• Case 2: q′ < 2γ · p. In this case we have α(2p − q′) > p · 2α(1 − γ) ≥ p(1 + 2γ)(1 − γ) > p.
Denoting i = (p− β)n for β ∈ [0, p] such that p− q′ + β ≤ 1− α we obtain

Bk,i =

(
αn

(p− β)n

)
·
(

(1− α)n
(p− q′ + β)n

)
∼ 2αn·H( p−βα )+(1−α)n·H( p−q

′+β
1−α ) ≤ 2αn·H( pα )+(1−α)n·H( p−q

′
1−α ).

To verify the last inequality, one can show that α(2p− q′) > p implies that the function g : [0, p]→
[0, 1] defined by g(β) = α ·H

(
p−β
α

)
+(1−α) ·H

(
p−q′+β

1−α

)
is monotonically decreasing, as follows

from calculating its derivative. The assumption α ≤ 1− 2p implies that H
(
p−q′
1−α

)
≤ H

(
p

1−α

)
since

H is monotonically increasing in [0, 1
2 ]. Now, let α∗ be the α ∈ [12 + γ, 1 − 2p] that maximizes

α ·H( pα) + (1− α) ·H( p
1−α)

2 and obtain that

Bk,i . 2α
∗n·H( p

α∗ )+(1−α∗)n·H( p
1−α∗ ) = 2n(H(2p)−η2),

where the equality holds for some η2 > 0 that depends solely on p, as follows from Fact 2.1 using
p
α∗ <

p
1−α∗ .

Choosing η = min (η1, η2) completes the proof.

2It can be seen that α∗ = 1− 2p.
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