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Abstract—We consider the problem of identifying a linear therefore always identifiable, provided that the input algran
deterministic operator from an input-output measurement. For  have infinite bandwidth and we can observe the output signal
the large class of continuous (and hence bounded) operators oyer an nfinite duration. In the general case (i.e., for LTV
under additional mild restrictions, we show that stable identi- . N . ;
fiability is possible if the total support area of the operata’s sys_tem,s), the situation is fundamentally different. Siuealy, .
spreading function satisfies A < 1/2. This result holds for Kailath's landmark paper_[2] shows that LTV systems with
arbitrary (possibly fragmented) support regions of the speading spreading function compactly supported on a rectangle are
function, does not impose limitations on the total extent of identifiable if and only if the spreading function’s supparéa
the support region, and, most importantly, does not require  gaiisiesA < 1. Bello [3] later pointed out that Kailath’s

the support region of the spreading function to be known . e L - .
prior to identification. Furthermore, we prove that asking for identifiability result continues to hold, even if the suppor

identifiability of only almost all operators, stable identifiability is ~ '€gion ofsy is scattered across tlie, v)-plane, as long as the
possible if A < 1. This result is surprising as it says that there is total support area satisfies < 1. Kozek and Pfandef [5] and

no penalty for not knowing the support region of the spreadiy  Pfander and Walnut [6] provided functional-analytic pof
function prior to identification. of the results in[[2],[3]. Common td [2][[3][[5]L[6] is the
assumption of the support region &f being known prior to

o S identification. This is clearly restrictive and often impise
Identification of deterministic linear operators from aRg realize in practice.

input-output measurement is an important problem in many  contributions: In this paper, we consider the problem
fields of engineering. Concrete examples include system-idey jgentifying deterministic linear operators with spreag
tification in control theory and practice and the measurémeqinction compactly supported on amknown possibly frag-
of wireless communication channels. mented, region in thér, v)-plane. We do not impose limi-

It is natural to ask under which conditions on the operatptions on the total extent of the support region. Our main
identification from an input-output measurement is possibl resylt shows that an operator with input-output relatigh (1
principle, and how one would go about choosing the probing identifiable, without prior knowledge of the spreading
signal and extracting the operator from the corresponding Ofynction’s support region, if and only if the total support
put signal. This paper addresses these questions in géyeralrea ofs; satisfiesA < 1/2. We then show that this factor
by considering the (large) class of linear operators thath® of two penalty—compared to the case where the support
represented as a continuous weighted superposition of tinﬂggion is known in advancé[2][][3]—can be eliminated, if
frequency shift operators, i.e., the operator’s respoosti¢ one asks for identifiability oflmost all operators only. This

I. INTRODUCTION

signalz(t) is given by result is surprising as it shows that (for almost all opas)to
. there is no price to be paid for not knowing the spreading
y(t) = //SH(Ta v)a(t — 7)e’“™ dvdr (1) function’s support region in advance. We discuss the design

) . of probing signals and we outline an algorithm which, in the
where sy denotes the spreading function of the operator nojseless case, provably recovers all operators itk 1/2.
The representation theoreml [1, Thm. 14.3.5] states that {grthermore, we present an algorithm which, again in the
action of any continuous (and hence bounded) linear operaigviseless case, provably recovers almost all operatois wit
under additional mild restrictions, can be representednas A <« 1.
(@. In the communications literature![2].][3].1[4], opeved Relation to previous work:Recently Bajwa et al.[]7]
with input-output relation as in 1) are referred to as linegonsidered the identification of LTV-systems with spregdin
time-varying channels/systems ang is the delay-Doppler fynction sy supported in a rectangle of are’d < 1 and
spreading function. For the special case of linear timevilant  consisting of a finite number of discrete components with
(LTI) systems, we havesy(r,v) = h(r)é(v), so that[(l) ynknown delays and Doppler shifts. In the present paper, we

reduces to allow general spreading functions that can be supportelen t
y(t) = /h(T):v(t — T7)dT. (2) entire (7, v)-plane with possibly fragmented support region.
4 Notation: We use lowercase boldface letters to denote

The question of identifiability of LTI systems is readily ancolumn vectors, e.g.x, and uppercase boldface letters to
swered by noting that the system’s response () = 6(¢) is designate matrices, e.gX. The superscripts, 7, and 7
given by its impulse respong€g(t), which fully characterizes stand for complex conjugation, Hermitian transpositiond a
the input-output relation according tbl (2). LTI systems argansposition, respectively. The space spanned by thencu
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of X is designated byR(X). The entry in thekth row
and /th column of X is denoted by[X]; ;. For the vector
x, the Euclidean norm is denoted ds||,, and the kth
entry of x is [x]x. || stands for the cardinality of the \
set 2. For two sets(); and 2, we define set addition as
D+ Qo ={w: w +ws, wy € Q1,ws € Na}. §(x) denotes
the Dirac delta function. For a functiof(x), supp(f) denotes
the support set of . For two functionsf (x), g(x), defined on
Q, we write (f,g) £ [, f(x)g*(x)dx for the inner product; L

IfII = v/(f, ) is the norm off. = -

Il. PROBLEM FORMULATION T

Given normed linear spadksX,Y, we consider linear Fig. 1. Approximation of a general support region.
qperatorsH_ X =Y that_ can be repres_ented as a con- Hyx = Hox —> H, = Hy, Y Hy,Hyc Q. (5)
tinuous weighted superposition of translation operatbys o ] ) o
with (T,z)(t) £ z(t — ), and modulation operator/, with ldentifiability is hence equivalent to invertibility of theap-
(M,x)(t) & P2t n(t): ping

el

Q—Y :Hw— Hzx (6)
AN
(Hz)(t) = / / s (7, v) (M, Tra)(t)dvdr. () induced by the probing signal Invertibility alone is typically

This is a rather general setting, since accordingto [1, Thi#ot sufficient as one wants to recovéf from Hz in a
14.3.5], any continuous (and hence bounded) linear operafyymerically stable fashion, i.e., we want small errors in
under additional mild restrictions, can be represented §&)i 1 10 result. in s_mall errors in the identified operator. This
In the following, denote the linear space of operators that c'eduirement implies that the inverse of the mappldg (6) must
be represented according {0 (3) By, and define the inner be continuous (and hence bounded), which finally motivates

product on this space by the fo_llo_v_ving definition. _ 3 _ _
Definition 1: We say that stablyidentifiesQ if there exist

(Hi, Ha),, 2 (sy,,s5m,) = / sm, (T, V)85, (T, v)d(T, V), constant®) < a < 8 < oo such that for all pairdi;, Hs € O,
RZ

Hy, H, € H, with the induced norm{H||,, £ \/(H, H),,. o[ Hy = Hally < ”Hlx_ Hoz| _Sﬁ”f’_fil }{2””' (7.)
Restrictions on the spreading functiokive assume that the Furthermore, we say tha is _stably_|dent|f|able, if there exists
support region of has the form anz € X such thatr stably identifiesQ.
Note that[(¥) is stated in terms of differences of operators,
Mr 2 U (U + (k:T, ﬁ)) C [0, Tmax) X [0, vmax) (4) since(H; — Hs) is not necessarily contained in the €tThe
(k,m)er TL lower bound in[(¥) guarantees that the inversd bf (6) exists a
N : w » - is bounded and hence continuous, as desired. Provingrthat
whereU' = [0,T) x [0,1/TL) is a "fundamental cell" in stably identifiesQ essentially amounts to proving that> 0

the (7,v)-plane andT' € R is a parameter whose role will _ : . .
becc(>me clear shortly. The set of “active cells” is specifigd g" Definition[l. The ratiq3/a provides a measure for the noise

T CX2{0,0),(0,1),...(L—1,L—1)}. Consequently, we sensitivity of the identification process, the cloggi to one,

have Tmax = TL and vyax = 1/T. We denote the supportthe better.
area of Mr as A(Mr). Given a general support region for [1l. MAIN RESULTS
si, possibly fragmented and spread over the entire/)-  Before stating our main results, we define the set of oper-

plane, we can choosg and L such that this region can beators withsy supported on a given aredr:
approximated arbitrarily well by a support region of thenfor
bp y y bp 9 Hor = {H € H : supp(sy) € Mr}. (8)

(@) (see Fig[h).

- In this notation, Kailath([2] discussed the case whifg is a
A. Identifiability ) ) _ o (single) rectangle, and Bell@|[3] analyzed the case wlidre
set of operator®) C #. The setQ is said to be identifiable the entire(r,)-plane. We first recall the key results inl [3],
from an input-output measurement, if there exists a probn[@] on the identification off{,;, under the assumption @
signalz € X such that for eaclti € Q, the action of the known:
operator on the probing signal{z, uniquely determinesf,  Theorem 1 ([8], [6]): Let Mr be given. The set of oper-
i.e., if there exists am € X' such that ators . is stably identifiable if and only itA(Mr) < 1.

1 Since our identifiability proof relies on sending Dirac delmpulses, . .
we need to choos& such that it contains generalized functions. To kee;Ln the followmg, we consider the set of operators
the exposition simple, we will not dwell on the resulting ¢tional-analytic A
subtleties. Instead, we refer the interested reader|td@bJor a description X (A) = U Hmr (9)
of the rigorous mathematical setup required here. A(Mp)<A



which consists ofll sets# ;. such thatA(Mr) < A. and Mg N Mg = . This impliesA(MgeUMg) > 1 and hence
Our main results are as follows. application of Theorer1 to the setys, un, €stablishes that
Theorem 2:The set of operator&’(A) is stably identifiable #as,unme IS nNot stably identifiable. By Lemmia 1 this then

if and only if A < 1/2. implies thatX'(A) is not stably identifiable. [ |
Note that Theorenl]2 applies to the union af sets of

operators with spreading function supported on a regioh wit V. SUFFICIENCY IN THEOREM[Z

area no larger thad\, and, in particular, does not need the e prove sufficiency in Theoref 2 by finding a probing
support region ofsy to be known in advance. The mainsignal that stably identifiest(A). Concretely, we choose a
implication of Theoreni 2 is that the penalty for not knowingveightedT'L-periodic train of Dirac impulses
the support region ofy in advance is a factor of two in the
support set size of the spreading function. We can eliminate z(t) = Z ckd(t +kT), cx=cryr, VEEZ (10)
this penalty by relaxing the identification requirement to kez
almost allH € X (A). as probing signal. The specific choice of the coefficients
Theorem 3:Almost all H € X'(A) can be stably identified ¢ = {cg,...,cr_1} will turn out to be crucial and will be
if A<1. discussed later. The main idea of our proof is to 1) reduce
The factor of two penalty in Theorefl 2 has the same identification problem to that of solving a linear system
roots as the factor of two penalty in spectrum-blind samwplirof L equations withL? unknowns, and 2) to apply Lemma
[8], 9], [L0], [11], sparse signal recovery [12], and in th@ to show that a unique solution of this underdetermined
recovery of signals that lie in a union of subspades| [13ystem of equations exists whenever 1/2 (andc is chosen
It was recognized before—in the context of spectrum-blirabpropriately).
sampling—that the factor of two penalty can be eliminated We start by computing the response ®Bfto z(t) in (0):
by relaxing the recovery requirementatmost allsignals [8],
(9], [20]. y(t) = (Hz)(t) = ch / sp(t+ kT, v)e?™dy.  (11)
IV. NECESSITY INTHEOREM[Z _ her )
To prove necessity in Theordr 2 we start with the followinaieex;’i gdne;:Z?t)th; Zak transform [14] (with parameft) of

lemma which states an equivalent condition on stable iflenti

ability of X(A). This condition is often easier to verify than Z,(t, f) & Z u(t — mTL)ei™mTLf
that in Definition[1. mez
Lemma 1:z stably identifies¥'(A) if and only if it stably for (¢, ) € [0,7L) x [0,1/TL). The Zak transform of(t)
identifiesall sets in (I1) is given by
Hypunteo ={H : H=Hy — Hy, Hy € Hagy . Ho € Haro} Zy(L, f) =
with A(Ms) < A and A(Me) < A where®,0 € ¥. => ck/sH(t — mTL + kT, v)es?m(t=mTL) gy, ei2nmTLf

Proof of Lemma [Jl: Follows immediately by & mez 7¥
invoking the definition of stable identifiability and , vt — i 9m T 2amTLf
noting that o Hy— Hyll,, < |(Hi— Ha)al| < = 2o Ck'/USH(HkT’ v)e! e dv e’

BlHy — Ha|,,,VHi,Ha €  X(A) if and only if  *mez .
allHll,, < [|[Hz|| < B||H||y, for all H € Harume and for - N"¢ — Z SH(H/{T’fJF ﬂ) ed2mt(F+7%)
all My, Mo, with A(Ms) < A andA(Me) < A, ®,0 € 3. = TL = TL
n -
Before formally proving necessity in Theordth 2, we com¥here we used the substitutiord = k —mL and the last
ment on an important aspect of the difference between knowigP follows from the Poisson summation formula. Next, we

and unknown spreading function support region. If the suppgUPstitutel = ¢’ +pT" with p € {0,..., L — 1} and?’ € [0, T).
region is known and given, by sayfr, and we consider INiS amounts to splitting the fundamental rectar(glél’ L) x

the setH,y,., it follows that the differenceH; — H, for [0,1/TL) of the Zak transform intal “cells” U, where U

Hy, Hy € My, satisfies(Hy, — Hy) € Hay,.. If we, however, Was defined in Sectidnlll, and yields

con.sider the sei’(A), we ha_ve thatH,, Hy € X(A.) d_oes Wt )2 2, +pT,f), (t'.f)eU, p=0,...[—1

not imply (H, — Hz) € X(A) in general. To see this, simply ch m - .

take Hy, H, € X(A) such that the support regions & and = Z ——SH (t/ +pT + kT, f + —) eI (T (F+ 4 )
L TL TL

H, have area\ and are disjoint. We do, however, have that & mez

Hy — Hy, € X(2A), VHy, Hs € X(A). This observation lies _ Ck'—p Z sy (t’ FET, f+ ﬁ) ed2m (' +0T) (f+ 7% )
at the heart of the factor of two penalty ik as quantified by 5=, TL = TL
Theoren{P. L—1

L—1
Necessity in Theoref Zollows by takingA > 1/2and _ > Ck—p S s (t’ YT, f + ﬂ) 32 (' +pT) (F 47 )
’ TL
k=0

noting that we can find/s, Mg with A(Mg) = A(Me) = A TL ~



where we used the substitutiéh = p + k& and the last step is VI. RECOVERING THESPREADING FUNCTION
a consequence of; (7, v) = 0 for (7,v) € [0,TL)x[0,1/T), e next discuss an algorithm for the recovery of operators
by definition. We can now rewrite the last equation in Vectoly ¢ x(A) from the operator’s responséz to the probing
matrix form by defining the column vectoz$t, ) ands(t, f): signal z(¢) in (I0). We start by noting that recovering
; amounts to recoverin which b is equivalent to
el )]y 2 2p(t, e, p=0,.. L1 o ) o e

recoverings(t, f) from (I3). This will be accomplished by
A first identifying the support set ofy, (i.e., the active cells
?nd(t jc()t’ f)s B (t[j?)’%t’vdcizhso’l(t’ P)asonaa(tf o s(t, f)), and then solving the resulting linear system of
LOH Sy ey SL1, LIRS equations[(14).
o (S )t 12 1) Support set recovenif we assume thatd(Mr) < 1/2,
)e - 12 then the support sel' can be recovered frona(¢, f) by
solving:

m
skom(t, f) = sm (t + kT, f+ o7

It is easily seen that the vectex(t, f), (¢, f) € U, fully
characterizes the spreading function. With all definitiams (PO) {minimize T

place, we finally obtain subject to z(t, f) = Arsr(t, f), (t,f) €U

z(t, f) = Acs(t, f), (t,f)eU (13)  \where the constraint is over adir(t, f) with [T| < L/2.
with the L x L? matrix This is a standard problem, and solutions have been proposed
N a1 % in the context of spectrum-blind samplingl [8],] [9I,_[11]/ al
Ac = [Acol - [Acr-1], Ack = ﬁCC=kF involving a correlation matrix, which in our setup becomes

where [F|,, = ¢ 927 pom = 0,..,L — 1, andCey, is Z = Jy 2(t, f)2" (¢, f)d(t, ). The main difference to signal

the diagonal matrix with diagonal entri¢s;, cx_1, ...,cxs1}. €COVery in the context of spectrum-blind sampling [8],, [9]
The proof will be effected by applying Lemrma 1. Concretelill] is that here a function of two variables has to be receder

we will prove stable identifiability 0ft{y7, s, for all pairs rather than a fu_nct|0n of one variable. Usirig](14) we can

Ms, Mo with A(Ms) < 1/2 and A(Me) < 1/2. By €xpressZ according to

setting Mr = Mg U Me, this is equivalent to proving stable Z = ArSrAf (16)

identifiability of H,. for all Mr with A(Mp) < 1. We X . ) o

therefore consided! € s, and note that, by definition WhereSr = [y, sr(t, f)sr (¢, f)d(t, f). Using similar argu-

skm(t, f) =0, V(k,m) ¢ T. Denote the vector obtained fromMenNts as in [10], it can be shown that (PO) is equivalent to

s(t, f) by selecting the entries corresponding to the active cells o {minimize |

. I~ 0
T by sr(t, f) and letAr be the matrix containing the columns (PO) subject to Z — ApSpAH

of A, that correspond to these cells. Thenl(13) becBmes
2(t, f) = Arsr(t, ), (t,f) € U. (14) where the constraint is over all Hermitian matric8s <

o CITIxITl Since Z is normal, it can be decomposed As=
Next, we formally relate [(14) to the definition of stabl Q', where the R = rank(Z) columns of the matrix

identifiability through the following lemma, whose proof isQ € CL*E are orthogonal. As shown by Ferig [10PQ) (and

given in the appendix. hence (P0)) is equivalent to
Lemma 2:Let z be given by [(ID). Then, the bounds 3

in (7) for the set of operator,,,. are given as (PO) {minimize IT| (17)
subjectto Q = ArG
ar =VTL inf (Arv), fr =VvTL sup (Arv). (15) ) Q =
Ivlle, =1 Ivlle, =1 where the constraint is over aip € CI'1*E, (PQ) is known

The proof of sufficiency in Theoreid 2 is now completeé'ﬂ the literature as the fi_nite_ multiple-measurement vector
by showing that for allMr with A(Myp) < 1, H,y, is stably (MMV) problenf [16]. Application of [16, Thm. 2.4] ensures
identifiable, i.e..ar > 0. This amounts to proving thaa that (P0) provably recovers the correct support Seas long
has full rank for all My such thatd(Mr) < 1, i.e., for all @S/l < L/2,i.e. aslong as the area of the unknown support
T € ¥ such thatlT| < L. What comes to our rescue here i$€t of the spreading function satisfies< 1/2.

a result in [15] which states that for almost alleachL x I 2) Recovery for known support sence the support sét
submatrix ofA. has full rank. Hence, there existscasuch Nas been identified, we sole {14) far(t, /), which based on
thatar > 0 for all My with A(Mr) < 1. In the remainder of (12) yieldssy and hencefl. Note that [(I}) has to be solved

the paperc is chosen such that eadhx L submatrix ofA, ©Ver the continuum of Valueﬁ, f) € U. We can expand all
has full rank. quantities in[[I¥) into two-dimensional Fourier seriesroi/e
which results in a system of countably many linear equations

2 pfander and Walnuf]6] used the probing sigriall (10) to prdwa, tfor O be solved.

known spreading function support regioh < 1 is sufficient for stable 3 ) o

identifiability. The crucial difference betweehl [6] and csetup is that we The MMV problem is usually formulated as follows: MinimizeG || o,

needeach submatrix of A of L columns to have full rank, as we do notsubject toQ = A.G, where the constraint is over alk € CL™*E and

assume knowledge of the support region. |G |;ow-0 i the number of rows o that contain at least one non-zero entry.



VIl. | DENTIFICATION FORALMOST ALL H € X(A
| et 1) =

We next prove Theorefd 3. The proof is inspired by [9 Thm.
1], and is constructive as it specifies the recovery algorith
(for almost allH € X(A),A < 1). The basic idea is to use :/
a MUSIC-like [17] algorithm based of_(IL6), which allows us [0,7L)x[0,1/TL)

/Izptfl d(t, )

|Zy<t, fPA( 1) = oz | Hel? - (21)

to recoverl” under the following two conditions: where the last equality follows from the unitarity of the Zak
1) A <1—1/L. The penalty ofl/L is technical and can transform[14]. Similarly, we have
be made arbitrarily small by choosirg large enough. / st 2 1t F) = lsell® = I HIZ . 22
2) The functionssy, .. (t, f), (k,m) € T, arelinearly in- lsett: Dlle,d(t, f) = sal™ = 12 (22)

. U .
dependenbn U, i.e., there is no vecton € CN,a # Inserting (22) and[(21) intd (20) completes the proof. m
N = [T, such thata®sp (¢, f) = 0, ¥ (¢, f) € U. Lemma 3:Sr has full rank if and only if the functions

We recognize that almost alf € X'(A) satisfy Conditiori. Skm (& f),(k,m) €T, are linearly independent afi.

Proof of sufficiency in Theorei 3The proof is effected Proof: Assume thatSy dges not haveruII rank. Then
by establishing that, under Conditioh$ 1 and 2 above, eﬁéere exists am # 0,a € C™ such thata SF = 0 and
support setl' is uniquely specified by the indices of the'€NC€2 "Sra = fUal Sr(t;)(a se(t, /)" d(t. /) =
columns ofU A, that are equal t0. Here,U,, is the matrix Sincea”sr(t, f)(a”sr(t, f))” > 0,%(t, f) € U, we must
of eigenvectors of corresponding to zero eigenvalues. To sdeave a’sr(t, f) = 0 a.e. onU, which implies that the
this, we perform an eigenvalue decompositioriZoin (I8) to Set skm(t, f),(k,m) € T, is linearly dependent orU.
obtain Now assume that the sei. ., (¢, f), (k,m) € T, is linearly

A. 0] [UE dependent onJ. Then, there exists am # 0 such that
OZ ] [Uif] = ArSrAf (18) [, asr(t, f)sF (t, f)d(t,f) = 0, and hence, usin@r =
n Jysr(t, f)sF (t, f)d(t, f), by definition, we geta”’ Sy = 0
where U, contains the eigenvectors @, corresponding to which proves thaBr does not have full rank. [ |
the non-zero eigenvalues &. Lemmal3 in the appendix REFERENCES
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