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Abstract—We consider the problem of identifying a linear
deterministic operator from an input-output measurement. For
the large class of continuous (and hence bounded) operators,
under additional mild restrictions, we show that stable identi-
fiability is possible if the total support area of the operator’s
spreading function satisfies∆ ≤ 1/2. This result holds for
arbitrary (possibly fragmented) support regions of the spreading
function, does not impose limitations on the total extent of
the support region, and, most importantly, does not require
the support region of the spreading function to be known
prior to identification. Furthermore, we prove that asking for
identifiability of only almost all operators, stable identifiability is
possible if∆ ≤ 1. This result is surprising as it says that there is
no penalty for not knowing the support region of the spreading
function prior to identification.

I. I NTRODUCTION

Identification of deterministic linear operators from an
input-output measurement is an important problem in many
fields of engineering. Concrete examples include system iden-
tification in control theory and practice and the measurement
of wireless communication channels.

It is natural to ask under which conditions on the operator,
identification from an input-output measurement is possible in
principle, and how one would go about choosing the probing
signal and extracting the operator from the corresponding out-
put signal. This paper addresses these questions in generality
by considering the (large) class of linear operators that can be
represented as a continuous weighted superposition of time-
frequency shift operators, i.e., the operator’s response to the
signalx(t) is given by

y(t) =

∫

τ

∫

ν

sH(τ, ν)x(t − τ)ej2πνtdνdτ (1)

wheresH denotes the spreading function of the operatorH .
The representation theorem [1, Thm. 14.3.5] states that the
action of any continuous (and hence bounded) linear operator,
under additional mild restrictions, can be represented as in
(1). In the communications literature [2], [3], [4], operators
with input-output relation as in (1) are referred to as linear
time-varying channels/systems andsH is the delay-Doppler
spreading function. For the special case of linear time-invariant
(LTI) systems, we havesH(τ, ν) = h(τ)δ(ν), so that (1)
reduces to

y(t) =

∫

τ

h(τ)x(t − τ)dτ. (2)

The question of identifiability of LTI systems is readily an-
swered by noting that the system’s response tox(t) = δ(t) is
given by its impulse responseh(t), which fully characterizes
the input-output relation according to (2). LTI systems are

therefore always identifiable, provided that the input signal can
have infinite bandwidth and we can observe the output signal
over an infinite duration. In the general case (i.e., for LTV
systems), the situation is fundamentally different. Specifically,
Kailath’s landmark paper [2] shows that LTV systems with
spreading function compactly supported on a rectangle are
identifiable if and only if the spreading function’s supportarea
satisfies∆ ≤ 1. Bello [3] later pointed out that Kailath’s
identifiability result continues to hold, even if the support
region ofsH is scattered across the(τ, ν)-plane, as long as the
total support area satisfies∆ ≤ 1. Kozek and Pfander [5] and
Pfander and Walnut [6] provided functional-analytic proofs
of the results in [2], [3]. Common to [2], [3], [5], [6] is the
assumption of the support region ofsH being known prior to
identification. This is clearly restrictive and often impossible
to realize in practice.

Contributions: In this paper, we consider the problem
of identifying deterministic linear operators with spreading
function compactly supported on anunknown, possibly frag-
mented, region in the(τ, ν)-plane. We do not impose limi-
tations on the total extent of the support region. Our main
result shows that an operator with input-output relation (1)
is identifiable, without prior knowledge of the spreading
function’s support region, if and only if the total support
area ofsH satisfies∆ ≤ 1/2. We then show that this factor
of two penalty—compared to the case where the support
region is known in advance [2], [3]—can be eliminated, if
one asks for identifiability ofalmost all operators only. This
result is surprising as it shows that (for almost all operators)
there is no price to be paid for not knowing the spreading
function’s support region in advance. We discuss the design
of probing signals and we outline an algorithm which, in the
noiseless case, provably recovers all operators with∆ ≤ 1/2.
Furthermore, we present an algorithm which, again in the
noiseless case, provably recovers almost all operators with
∆ ≤ 1.

Relation to previous work:Recently Bajwa et al. [7]
considered the identification of LTV-systems with spreading
function sH supported in a rectangle of area∆ ≤ 1 and
consisting of a finite number of discrete components with
unknown delays and Doppler shifts. In the present paper, we
allow general spreading functions that can be supported in the
entire(τ, ν)-plane with possibly fragmented support region.

Notation: We use lowercase boldface letters to denote
column vectors, e.g.,x, and uppercase boldface letters to
designate matrices, e.g.,X. The superscripts∗, H , and T

stand for complex conjugation, Hermitian transposition, and
transposition, respectively. The space spanned by the columns
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of X is designated byR(X). The entry in thekth row
and lth column of X is denoted by[X]k,l. For the vector
x, the Euclidean norm is denoted as‖x‖ℓ2 and the kth
entry of x is [x]k. |Ω| stands for the cardinality of the
set Ω. For two setsΩ1 and Ω2 we define set addition as
Ω1 + Ω2 = {ω : ω1 + ω2, ω1 ∈ Ω1, ω2 ∈ Ω2}. δ(x) denotes
the Dirac delta function. For a functionf(x), supp(f) denotes
the support set off . For two functionsf(x), g(x), defined on
Ω, we write 〈f, g〉 ,

∫

Ω f(x)g∗(x)dx for the inner product;
‖f‖ ,

√

〈f, f〉 is the norm off .

II. PROBLEM FORMULATION

Given normed linear spaces1 X,Y , we consider linear
operatorsH : X 7→ Y that can be represented as a con-
tinuous weighted superposition of translation operatorsTτ ,
with (Tτx)(t) , x(t− τ), and modulation operatorsMν with
(Mνx)(t) , ej2πνtx(t):

(Hx)(t) ,

∫

τ

∫

ν

sH(τ, ν)(MνTτx)(t)dνdτ. (3)

This is a rather general setting, since according to [1, Thm.
14.3.5], any continuous (and hence bounded) linear operator,
under additional mild restrictions, can be represented as in (3).
In the following, denote the linear space of operators that can
be represented according to (3) byH, and define the inner
product on this space by

〈H1, H2〉H , 〈sH1
, sH2

〉 =
∫

R2

sH1
(τ, ν)s∗H2

(τ, ν)d(τ, ν),

H1, H2 ∈ H, with the induced norm‖H‖H ,
√

〈H,H〉H.
Restrictions on the spreading function:We assume that the

support region ofsH has the form

MΓ ,
⋃

(k,m)∈Γ

(

U +
(

kT,
m

TL

))

⊆ [0, τmax)× [0, νmax) (4)

where U , [0, T ) × [0, 1/TL) is a “fundamental cell” in
the (τ, ν)-plane andT ∈ R is a parameter whose role will
become clear shortly. The set of “active cells” is specified by
Γ ⊆ Σ , {(0, 0), (0, 1), ..., (L− 1, L− 1)}. Consequently, we
have τmax = TL and νmax = 1/T . We denote the support
area ofMΓ as A(MΓ). Given a general support region for
sH , possibly fragmented and spread over the entire(τ, ν)-
plane, we can chooseT andL such that this region can be
approximated arbitrarily well by a support region of the form
(4) (see Fig. 1).

A. Identifiability

Let us next formally define the notion of identifiability of a
set of operatorsQ ⊆ H. The setQ is said to be identifiable
from an input-output measurement, if there exists a probing
signal x ∈ X such that for eachH ∈ Q, the action of the
operator on the probing signal,Hx, uniquely determinesH ,
i.e., if there exists anx ∈ X such that

1 Since our identifiability proof relies on sending Dirac delta impulses,
we need to chooseX such that it contains generalized functions. To keep
the exposition simple, we will not dwell on the resulting functional-analytic
subtleties. Instead, we refer the interested reader to [5],[6] for a description
of the rigorous mathematical setup required here.

T

1
TL

TL

1
T

τ

ν

Fig. 1. Approximation of a general support region.

H1x = H2x =⇒ H1 = H2, ∀ H1, H2 ∈ Q. (5)

Identifiability is hence equivalent to invertibility of themap-
ping

Q → Y : H 7→ Hx (6)

induced by the probing signalx. Invertibility alone is typically
not sufficient as one wants to recoverH from Hx in a
numerically stable fashion, i.e., we want small errors in
Hx to result in small errors in the identified operator. This
requirement implies that the inverse of the mapping (6) must
be continuous (and hence bounded), which finally motivates
the following definition.

Definition 1: We say thatx stablyidentifiesQ if there exist
constants0 < α ≤ β < ∞ such that for all pairsH1, H2 ∈ Q,

α‖H1 −H2‖H ≤ ‖H1x−H2x‖ ≤ β‖H1 −H2‖H. (7)

Furthermore, we say thatQ is stably identifiable, if there exists
an x ∈ X such thatx stably identifiesQ.

Note that (7) is stated in terms of differences of operators,
since(H1−H2) is not necessarily contained in the setQ. The
lower bound in (7) guarantees that the inverse of (6) exists and
is bounded and hence continuous, as desired. Proving thatx
stably identifiesQ essentially amounts to proving thatα > 0
in Definition 1. The ratioβ/α provides a measure for the noise
sensitivity of the identification process, the closerβ/α to one,
the better.

III. M AIN RESULTS

Before stating our main results, we define the set of oper-
ators withsH supported on a given areaMΓ:

HMΓ
, {H ∈ H : supp(sH) ⊆ MΓ}. (8)

In this notation, Kailath [2] discussed the case whereMΓ is a
(single) rectangle, and Bello [3] analyzed the case whereMΓ

is an arbitrary region, possibly fragmented and spread over
the entire(τ, ν)-plane. We first recall the key results in [3],
[6] on the identification ofHMΓ

under the assumption ofMΓ

known:
Theorem 1 ([3], [6]): Let MΓ be given. The set of oper-

atorsHMΓ
is stably identifiable if and only ifA(MΓ) ≤ 1.

In the following, we consider the set of operators

X (∆) ,
⋃

A(MΓ)≤∆

HMΓ
(9)



which consists ofall setsHMΓ
such thatA(MΓ) ≤ ∆.

Our main results are as follows.
Theorem 2:The set of operatorsX (∆) is stably identifiable

if and only if ∆ ≤ 1/2.
Note that Theorem 2 applies to the union ofall sets of

operators with spreading function supported on a region with
area no larger than∆, and, in particular, does not need the
support region ofsH to be known in advance. The main
implication of Theorem 2 is that the penalty for not knowing
the support region ofsH in advance is a factor of two in the
support set size of the spreading function. We can eliminate
this penalty by relaxing the identification requirement to
almost allH ∈ X (∆).

Theorem 3:Almost all H ∈ X (∆) can be stably identified
if ∆ < 1.

The factor of two penalty in Theorem 2 has the same
roots as the factor of two penalty in spectrum-blind sampling
[8], [9], [10], [11], sparse signal recovery [12], and in the
recovery of signals that lie in a union of subspaces [13].
It was recognized before—in the context of spectrum-blind
sampling—that the factor of two penalty can be eliminated
by relaxing the recovery requirement toalmost allsignals [8],
[9], [10].

IV. N ECESSITY INTHEOREM 2

To prove necessity in Theorem 2 we start with the following
lemma which states an equivalent condition on stable identifi-
ability of X (∆). This condition is often easier to verify than
that in Definition 1.

Lemma 1:x stably identifiesX (∆) if and only if it stably
identifiesall sets

HMΦ∪MΘ
, {H : H = H1 −H2, H1 ∈ HMΦ

, H2 ∈ HMΘ
}

with A(MΦ) ≤ ∆ andA(MΘ) ≤ ∆ whereΦ,Θ ∈ Σ.
Proof of Lemma 1: Follows immediately by

invoking the definition of stable identifiability and
noting that α‖H1 −H2‖H ≤ ‖(H1 −H2)x‖ ≤
β‖H1 −H2‖H, ∀H1, H2 ∈ X (∆) if and only if
α‖H‖H ≤ ‖Hx‖ ≤ β‖H‖H for all H ∈ HMΦ∪MΘ

and for
all MΦ,MΘ, with A(MΦ) ≤ ∆ andA(MΘ) ≤ ∆, Φ,Θ ∈ Σ.

Before formally proving necessity in Theorem 2, we com-
ment on an important aspect of the difference between known
and unknown spreading function support region. If the support
region is known and given, by sayMΓ, and we consider
the setHMΓ

, it follows that the differenceH1 − H2 for
H1, H2 ∈ HMΓ

satisfies(H1 −H2) ∈ HMΓ
. If we, however,

consider the setX (∆), we have thatH1, H2 ∈ X (∆) does
not imply (H1 −H2) ∈ X (∆) in general. To see this, simply
takeH1, H2 ∈ X (∆) such that the support regions ofH1 and
H2 have area∆ and are disjoint. We do, however, have that
H1 −H2 ∈ X (2∆), ∀H1, H2 ∈ X (∆). This observation lies
at the heart of the factor of two penalty in∆ as quantified by
Theorem 2.

Necessity in Theorem 2:Follows by taking∆ > 1/2 and
noting that we can findMΦ,MΘ with A(MΦ) = A(MΘ) = ∆

andMΦ∩MΘ = ∅. This impliesA(MΦ∪MΘ) > 1 and hence
application of Theorem 1 to the setHMΦ∪MΘ

establishes that
HMΦ∪MΘ

is not stably identifiable. By Lemma 1 this then
implies thatX (∆) is not stably identifiable.

V. SUFFICIENCY IN THEOREM 2

We prove sufficiency in Theorem 2 by finding a probing
signal that stably identifiesX (∆). Concretely, we choose a
weightedTL-periodic train of Dirac impulses

x(t) =
∑

k∈Z

ckδ(t+ kT ), ck = ck+L, ∀k ∈ Z (10)

as probing signal. The specific choice of the coefficients
c = {c0, ..., cL−1} will turn out to be crucial and will be
discussed later. The main idea of our proof is to 1) reduce
the identification problem to that of solving a linear system
of L equations withL2 unknowns, and 2) to apply Lemma
1 to show that a unique solution of this underdetermined
system of equations exists whenever∆ ≤ 1/2 (andc is chosen
appropriately).

We start by computing the response ofH to x(t) in (10):

y(t) = (Hx)(t) =
∑

k∈Z

ck

∫

ν

sH(t+ kT, ν)ej2πνtdν. (11)

Next, define the Zak transform [14] (with parameterTL) of
the signalu(t) as

Zu(t, f) ,
∑

m∈Z

u(t−mTL)ej2πmTLf

for (t, f) ∈ [0, TL)× [0, 1/TL). The Zak transform ofy(t)
in (11) is given by

Zy(t, f) =

=
∑

k,m∈Z

ck

∫

ν

sH(t−mTL+ kT, ν)ej2πν(t−mTL)dν ej2πmTLf

=
∑

k′,m∈Z

ck′

∫

ν

sH(t+ k′T, ν)ej2πνte−j2πνmTLdν ej2πmTLf

=
∑

k∈Z

ck
1

TL

∑

m∈Z

sH

(

t+ kT, f +
m

TL

)

ej2πt(f+
m
TL)

where we used the substitutionk′ = k − mL and the last
step follows from the Poisson summation formula. Next, we
substitutet = t′ + pT with p ∈ {0, ..., L− 1} andt′ ∈ [0, T ).
This amounts to splitting the fundamental rectangle[0, TL)×
[0, 1/TL) of the Zak transform intoL “cells” U , whereU
was defined in Section II, and yields

zp(t
′, f) , Zy(t

′ + pT, f), (t′, f) ∈ U, p = 0, ..., L− 1

=
∑

k,m∈Z

ck
TL

sH

(

t′ + pT + kT, f +
m

TL

)

ej2π(t
′+pT )(f+ m

TL )

=
∑

k′∈Z

ck′−p

TL

∑

m∈Z

sH

(

t′ + k′T, f +
m

TL

)

ej2π(t
′+pT )(f+ m

TL )

=

L−1
∑

k=0

ck−p

TL

L−1
∑

m=0

sH

(

t′ + kT, f +
m

TL

)

ej2π(t
′+pT )(f+ m

TL )



where we used the substitutionk′ = p+ k and the last step is
a consequence ofsH(τ, ν) = 0 for (τ, ν) /∈ [0, TL)×[0, 1/T ),
by definition. We can now rewrite the last equation in vector-
matrix form by defining the column vectorsz(t, f) ands(t, f):

[z(t, f)]p , zp(t, f)e
−j2πpTf , p = 0, ..., L− 1

and s(t, f) , [s0,0(t, f), s0,1(t, f), ..., s0,L−1(t, f),
s1,0(t, f), ..., sL−1,L−1(t, f)]

T with

sk,m(t, f) , sH

(

t+ kT, f +
m

TL

)

ej2π(f+
m
TL )t. (12)

It is easily seen that the vectors(t, f), (t, f) ∈ U , fully
characterizes the spreading function. With all definitionsin
place, we finally obtain

z(t, f) = Acs(t, f), (t, f) ∈ U (13)

with theL× L2 matrix

Ac , [Ac,0| ... |Ac,L−1], Ac,k ,
1

TL
Cc,kF

H

where [F]p,m = e−j2π pm

L , p,m = 0, ..., L − 1, andCc,k is
the diagonal matrix with diagonal entries{ck, ck−1, ..., ck+1}.

The proof will be effected by applying Lemma 1. Concretely
we will prove stable identifiability ofHMΦ∪MΘ

for all pairs
MΦ,MΘ with A(MΦ) ≤ 1/2 and A(MΘ) ≤ 1/2. By
settingMΓ = MΦ ∪MΘ, this is equivalent to proving stable
identifiability of HMΓ

for all MΓ with A(MΓ) ≤ 1. We
therefore considerH ∈ HMΓ

, and note that, by definition
sk,m(t, f) = 0, ∀(k,m) /∈ Γ. Denote the vector obtained from
s(t, f) by selecting the entries corresponding to the active cells
Γ by sΓ(t, f) and letAΓ be the matrix containing the columns
of Ac that correspond to these cells. Then (13) becomes2

z(t, f) = AΓsΓ(t, f), (t, f) ∈ U. (14)

Next, we formally relate (14) to the definition of stable
identifiability through the following lemma, whose proof is
given in the appendix.

Lemma 2:Let x be given by (10). Then, the boundsα, β
in (7) for the set of operatorsHMΓ

are given as

αΓ =
√
TL inf

‖v‖
ℓ2

=1
(AΓv), βΓ =

√
TL sup

‖v‖
ℓ2

=1

(AΓv). (15)

The proof of sufficiency in Theorem 2 is now completed
by showing that for allMΓ with A(MΓ) ≤ 1, HMΓ

is stably
identifiable, i.e.,αΓ > 0. This amounts to proving thatAΓ

has full rank for allMΓ such thatA(MΓ) ≤ 1, i.e., for all
Γ ∈ Σ such that|Γ| ≤ L. What comes to our rescue here is
a result in [15] which states that for almost allc, eachL×L
submatrix ofAc has full rank. Hence, there exists ac such
thatαΓ > 0 for all MΓ with A(MΓ) ≤ 1. In the remainder of
the paper,c is chosen such that eachL×L submatrix ofAc

has full rank.

2 Pfander and Walnut [6] used the probing signal (10) to prove that, for
known spreading function support region,∆ ≤ 1 is sufficient for stable
identifiability. The crucial difference between [6] and oursetup is that we
needeach submatrix ofAc of L columns to have full rank, as we do not
assume knowledge of the support region.

VI. RECOVERING THESPREADING FUNCTION

We next discuss an algorithm for the recovery of operators
H ∈ X (∆) from the operator’s responseHx to the probing
signal x(t) in (10). We start by noting that recoveringH
amounts to recoveringsH which by (12) is equivalent to
recoverings(t, f) from (13). This will be accomplished by
first identifying the support set ofsH , (i.e., the active cells
of s(t, f)), and then solving the resulting linear system of
equations (14).

1) Support set recovery:If we assume thatA(MΓ) ≤ 1/2,
then the support setΓ can be recovered fromz(t, f) by
solving:

(P0)

{

minimize |Γ|
subject to z(t, f) = AΓsΓ(t, f), (t, f) ∈ U

where the constraint is over allsΓ(t, f) with |Γ| ≤ L/2.
This is a standard problem, and solutions have been proposed
in the context of spectrum-blind sampling [8], [9], [11], all
involving a correlation matrix, which in our setup becomes
Z ,

∫

U z(t, f)zH(t, f)d(t, f). The main difference to signal
recovery in the context of spectrum-blind sampling [8], [9],
[11] is that here a function of two variables has to be recovered
rather than a function of one variable. Using (14) we can
expressZ according to

Z = AΓSΓA
H
Γ (16)

whereSΓ =
∫

U sΓ(t, f)s
H
Γ (t, f)d(t, f). Using similar argu-

ments as in [10], it can be shown that (P0) is equivalent to

(P0)

{

minimize |Γ|
subject to Z = AΓSΓA

H
Γ

where the constraint is over all Hermitian matricesSΓ ∈
C|Γ|×|Γ|. SinceZ is normal, it can be decomposed asZ =
QQH , where theR = rank(Z) columns of the matrix
Q ∈ CL×R are orthogonal. As shown by Feng [10], (P0) (and
hence (P0)) is equivalent to

(P0′)

{

minimize |Γ|
subject to Q = AΓGΓ

(17)

where the constraint is over allGΓ ∈ C|Γ|×R. (P0′) is known
in the literature as the finite multiple-measurement vector
(MMV) problem3 [16]. Application of [16, Thm. 2.4] ensures
that (P0′) provably recovers the correct support setΓ as long
as|Γ| ≤ L/2, i.e., as long as the area of the unknown support
set of the spreading function satisfies∆ ≤ 1/2.

2) Recovery for known support set:Once the support setΓ
has been identified, we solve (14) forsΓ(t, f), which based on
(12) yieldssH and henceH . Note that (14) has to be solved
over the continuum of values(t, f) ∈ U . We can expand all
quantities in (14) into two-dimensional Fourier series over U ,
which results in a system of countably many linear equations
to be solved.

3The MMV problem is usually formulated as follows: Minimize‖G‖row-0

subject toQ = AcG, where the constraint is over allG ∈ CL
2
×R and

‖G‖row-0 is the number of rows ofG that contain at least one non-zero entry.



VII. I DENTIFICATION FOR ALMOST ALL H ∈ X (∆)

We next prove Theorem 3. The proof is inspired by [9, Thm.
1], and is constructive as it specifies the recovery algorithm
(for almost allH ∈ X (∆),∆ < 1). The basic idea is to use
a MUSIC-like [17] algorithm based on (16), which allows us
to recoverΓ under the following two conditions:

1) ∆ ≤ 1 − 1/L. The penalty of1/L is technical and can
be made arbitrarily small by choosingL large enough.

2) The functionssk,m(t, f), (k,m) ∈ Γ, are linearly in-
dependenton U , i.e., there is no vectora ∈ CN , a 6=
0, N = |Γ|, such thataHsΓ(t, f) = 0, ∀ (t, f) ∈ U .

We recognize that almost allH ∈ X (∆) satisfy Condition 2.
Proof of sufficiency in Theorem 3:The proof is effected

by establishing that, under Conditions 1 and 2 above, the
support setΓ is uniquely specified by the indices of the
columns ofUH

n Ac that are equal to0. Here,Un is the matrix
of eigenvectors ofZ corresponding to zero eigenvalues. To see
this, we perform an eigenvalue decomposition ofZ in (16) to
obtain

Z =
[

Uz Un

]

[

Λz 0

0 0

] [

UH
z

UH
n

]

= AΓSΓA
H
Γ (18)

whereUz contains the eigenvectors ofZ, corresponding to
the non-zero eigenvalues ofZ. Lemma 3 in the appendix
establishes that, thanks to Condition 2 above, for almost all
H ∈ X (∆), SΓ has full rank. As discussed in Section V,
each set ofL or fewer columns ofAc is linearly independent.
Condition 1 ensures that|Γ| ≤ L− 1, which implies thatAΓ

has full rank for all setsΓ in question. Hence we get from
(18) that

R(AΓ) = R(AΓSΓA
H
Γ ) = R(UzΛzU

H
z ) = R(Uz). (19)

R(Un) is the orthogonal complement ofR(Uz) in CL. It
therefore follows from (19) thatUH

n AΓ = 0. Therefore, the
columns ofUH

n Ac that correspond to indices(k,m) ∈ Γ are
equal to0. To conclude the proof, we show, by contradiction,
that no other columns ofUH

n Ac are equal to0. Suppose that
UH

n a = 0 wherea is any column ofAc corresponding to an
index pair (k′,m′) /∈ Γ. Thena ∈ R(Uz) = R(AΓ). This
would mean that theL or fewer columns ofAc corresponding
to the indices(k,m) ∈ {Γ ∪ (k′,m′)} would be linearly
dependent. The proof is completed by noting that this stands
in contradiction to the fact that—since we assume thatc is
chosen accordingly—each set ofL or fewer columns ofAc

is linearly independent.

APPENDIX

Proof of Lemma 2: Starting from (14), we get for fixed
values of(t, f) ∈ U

αΓ√
TL

‖sΓ(t, f)‖ℓ2 ≤ ‖z(t, f)‖ℓ2 ≤ βΓ√
TL

‖sΓ(t, f)‖ℓ2 (20)

with αΓ, βΓ defined in (15). Squaring and integrating (20) over
U yields

∫

U

‖z(t, f)‖2ℓ2d(t, f) =
L−1
∑

p=0

∫

U

|zp(t, f)|2 d(t, f)

=

∫

[0,TL)×[0,1/TL)

|Zy(t, f)|2d(t, f) =
1

TL
‖Hx‖2 (21)

where the last equality follows from the unitarity of the Zak
transform [14]. Similarly, we have

∫

U

‖sΓ(t, f)‖2ℓ2d(t, f) = ‖sH‖2 = ‖H‖2H. (22)

Inserting (22) and (21) into (20) completes the proof.
Lemma 3:SΓ has full rank if and only if the functions

sk,m(t, f), (k,m) ∈ Γ, are linearly independent onU .
Proof: Assume thatSΓ does not have full rank. Then

there exists ana 6= 0, a ∈ CN such thataHSΓ = 0 and
henceaHSΓa =

∫

U
aHsΓ(t, f)(a

HsΓ(t, f))
H
d(t, f) = 0.

SinceaHsΓ(t, f)(a
HsΓ(t, f))

H ≥ 0, ∀(t, f) ∈ U , we must
have aHsΓ(t, f) = 0 a.e. onU , which implies that the
set sk,m(t, f), (k,m) ∈ Γ, is linearly dependent onU .
Now assume that the setsk,m(t, f), (k,m) ∈ Γ, is linearly
dependent onU . Then, there exists ana 6= 0 such that
∫

U
aHsΓ(t, f)s

H
Γ (t, f)d(t, f) = 0, and hence, usingSΓ =

∫

U
sΓ(t, f)s

H
Γ (t, f)d(t, f), by definition, we getaHSΓ = 0

which proves thatSΓ does not have full rank.
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