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Abstract

We introduce a new class of measurement matrices for compressed sensing, using low order sum-

maries over binary sequences of a given length. We prove recovery guarantees for three reconstruction

algorithms using the proposed measurements, including `1 minimization and two combinatorial meth-

ods. In particular, one of the algorithms recovers k-sparse vectors of length N in sublinear time

poly(k log N), and requires at most Ω(k log N log log N) measurements. The empirical oversam-

pling constant of the algorithm is significantly better than existing sublinear recovery algorithms such

as Chaining Pursuit and Sudocodes. In particular, for 103 ≤ N ≤ 108 and k = 100, the oversam-

pling factor is between 3 to 8. We provide preliminary insight into how the proposed constructions,

and the fast recovery scheme can be used in a number of practical applications such as market basket

analysis, and real time compressed sensing implementation.

1 Introduction

Despite significant advances in the field of Compressed Sensing (CS), certain aspects of CS remain rela-

tively immature. Thus far, CS has been viewed primarily as a data acquisition technique [1]. As a result,

the applicability of CS to other computational applications has not enjoyed commensurate investigation.

In addition, to the best of the authors’ knowledge, there is no unified CS system that has been imple-

mented for practical real-time applications. A few recent works have addressed the former by applying

sparse reconstruction ideas to certain inference problems including learning and adaptive computational

schemes ( e.g. [2, 3, 4]). Several other works have addressed the latter by designing hardware, which

exploits the fact that CS enables the monitoring of a given bandwidth at a much lower sampling rate

than traditional Nyquist-based methods (see e.g., [6]). The motivating factor behind these works is that
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for a given maximum sampling rate (limited by the poor power consumption scaling with sampling rate)

achievable by digitizing hardware, it is possible to either acquire signals over a much greater bandwidth,

or with much less power for a given bandwidth. Recent work, inspired by this line of thought, has led to

the development of hardware CS encoders (see e.g. [7, 8, 9, 10]). However, none of the previous works

address the problem of real-time signal decoding, which is a critical requirement in many applications.

Although variant by the nature of the problem and physical constraints, perhaps two fundamental

issues in the practical implementations of CS are the following: 1) construction of measurement matri-

ces that are provably good, certifiable and inexpensive to implement (either as real time sketches or as

pre-built constructions), 2) Time efficient and robust recovery algorithms. Our aim is to introduce and

provide an analysis of a sparse reconstruction system that addresses the aforementioned problems and

allude to the extensions of CS in the less explored directions.

We introduce a new class of measurement matrices for sparse recovery that are deterministic, struc-

tured and highly scalable. The constructions are based on labeling the ambient state space with binary

sequences of length n = log2N , and summing up entries of x that share the same pattern (up to a fixed

length) at various locations in their labeling sequences. The class of corresponding matrices are RIP-less

matrices that are congruent with the Basis Pursuit algorithms, which are standard techniques for sparse

reconstruction [11]. In addition, we provide two efficient combinatorial algorithms along with theoreti-

cal guarantees for the proposed measurement structures. The proposed algorithms are sub-linear in the

ambient dimension of the signal. In particular, we propose a summarized support index inference (SSII)

algorithm with a running time of O(poly(k logN)) that requires O(k logN log logN) measurements to

recover k-sparse vectors, and has a empirical required over-sampling factor significantly better than exist-

ing sublinear methods. Due to the particular structure of the measurements and decoding algorithms, we

believe that the proposed compression/decompression framework is amenable to real time CS implemen-

tation, and offers significant simplification in the design of an existing CS encoder/decoder. Furthermore,

observations collected based on the proposed constructions appear as low order statistics or “summaries”

in a number of practical situations in which a similar intrinsic labeling of the state space exists. This

includes certain inference and discrete optimization problems such as market basket (commodity bundle)

analysis, advertising, online recommendation systems, genomic feature selection, social networks, etc.

It should be acknowledged that there are various results on sublinear sparse recovery in the literature,

including [12, 13, 14, 15, 16]. Unlike most previous works, the constructions of this paper offer sublinear

storage requirement and are compatible with the practical scenarios that we consider. The recovery time

of the algorithm is sublinear in the signal dimension, and the empirical recovery bounds are significantly

better than the existing sublinear algorithms, such as Chaining Pursuit and Sudocodes, especially for

small and moderate sparsity levels and very large signal dimensions.

2 Proposed Measurement Structures

We define a class of structured binary measurement matrices, based on the following definition
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Definition 1. Let m,n and d be integers. A (n, d) summary is a pair X = (S, c), where S is a subset

of {1, 2, · · · , n} of size d, and c is a binary sequence of length d. A (m,n, d) summary codebook is a

collection C = {(Si, cj) | 1 ≤ i ≤ m, 0 ≤ j ≤ 2d− 1} of (n, d) summaries, where Si’s are distinct subsets,

and cj is the length d binary representation of the integer j. If m =
(
n
d

)
, C is called the complete (n, d)

summary codebook.

To a given (m,n, d) summary codebook C, we associate a binary matrix A of size M × N where

M = 2d ×m, and N = 2n, in the following way. For every (S, c) ∈ C, there is a row a = (a1, . . . , aN ) in

A that satisfies:

aj = 1 {bj(S) = c} 1 ≤ j ≤ N (1)

where bj is the n-bit binary representation of j, and bj(S) is the subsequence of the binary sequence

bj , indexed by the entries of the set S1. In other words, a has a 1 in those columns ` whose binary

labeling conform to (S, c). Every column of A has exactly m ones, and each row has exactly 2n−d ones.

To clarify this definition, we consider the following example illustrated in Figure 1, in which n = 4 and

d = 2. Suppose that a summary (S, c) is given with S = {1, 2} and c = 10. All possible binary sequences

of length 4 that match (S, c) are listed in Figure 1. To find the corresponding indices of the listed labels,

we should convert them to decimal values and increase by 1, which gives 9, 10, 11 and 12. The row a of

a measurement matrix that includes this summary is a vector of length 24 that has a 1 in those indices,

as displayed.

1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1    

1 0 X X

S={1,2}, c = 10

a = ( 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 ) 

Figure 1: An example (4, 2) summary and the corresponding row of the structured measurement matrix.

The defined matrices are very well motivated by some practical problems. In general, in a situation

where the given signal space retains an intrinsic structured labeling similar to the one described, such

constructions prove very useful. In particular, we consider the following two motivational examples.

Resource Optimization. Assume that a set F = {F1, F2, · · · , Fn} of features (or parameters) is avail-

able, and assume that certain accumulations or collections of features form ”lucrative” profiles (struc-

tures). In particular, a lucrative profile can be a subset of features which is representable by a binary

sequence b = b1b2 . . . bn, where bi determines the presence of the i’th feature. A practical assumption is

that lucrative profiles are limited and weighted, meaning that their profitabilities are variable. The vector

x = (p1, p2, . . . , p2n)T formed by the respective profits of all feature collections is thus an approximately

sparse vector. Furthermore, the available information about the profitability of profiles is often derived

from a pool of observations or real world implementations, and are mostly given in the form of sum-

1Note that these structured matrices can be defined for any finite alphabets other than the binary field.
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maries. More formally, what can be learned is the average profitability of a certain configuration of only

d features. For example, it can be assessed that when F1 and F2 are present and F3 is absent, regardless

of all other features, the average profit is some p. The collection of summaries form an observation vector

y, that is related to x through a set of linear equations y = Ax, where A has a form similar to those

obtained by summary codebooks. This setting arises in many practical applications such as market basket

(commodity bundle) analysis, where the objective is to configure the structure of a market that complies

the best with the needs and the behaviors of the customers. To that end, it is essential to understand

which market configurations are winning and what packages of features (e.g. commodities, pricing op-

tions, interest rates, etc.) should be offered to customers, and with what percentages . Furthermore, the

customers’ behavioral information is often given in terms of high level summaries, e.g. in the lines of the

statement “people who buy A and B, are likely to buy C”.

Compressed Sensing Hardware. There are a few factors that severely limit the scalability of the

existing CS hardware designs to larger problem dimensions. One of these factors is the generation of

the measurement matrix A. In the simplest existing design, A is typically a pseudo-random matrix

generated with a linear feedback shift register (LFSR) [8, 10]. The timing synchronization of a large

number of measurements as well as the planar nature of physical implementations is very limiting. Using

a more structured matrix may allow considerable simplification and reduction of the required hardware

easing some of the previously mentioned limitations. The measurement structure defined in this work is

potentially highly amenable to the implementation of practical CS hardware, due to the following two

reasons. 1) There exist simple sublinear recovery algorithms for the proposed matrices, other than the

linear programming method. This will be elaborated in the proceeding sections. 2) Due to the highly

structured design, the integration matrix A can be implemented using one single LFSR seed, and a num-

ber of asynchronous digital circuits. Due to the lack of space and the irrelevance of the context, we avoid

a detailed description of the latter, and postpone this to a future work.

3 Proposed Recovery Algorithms

For the measurement matrices described in the previous section we propose three reconstruction algo-

rithms and provide success guarantees. These algorithms include the Basis Pursuit algorithm (a.k.a `1

minimization), as well as two fast algorithms that can recover sparse vectors from a sublinear number of

measurements and in a sublinear amount of time. The detailed specifications will be given in the sequel.

For the sake of the theoretical arguments that appear in the remainder of this section, we need to define

the following notions:

Definition 2. Let n and l be integers with l < n. We define fS(n, l), fW (n, l, p, ε) and f ′W (n, l, p, ε) to be

the largest integer k such that when k binary sequences of length n are selected at random, the following

happens respectively:

1. With probability 1, there exists a (n, d) summary that appears in exactly one of the sequences.
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2. With probability at least p, for each of the binary sequences, at least a fraction ε of its (n, d)

summaries are unique.

3. With probability at least p, for each of the binary sequences, at least a fraction ε of its (n, d)

summaries that include the first bit are unique.

It is important to note that the recovery guarantees of the presented combinatorial algorithms are

only valid for a class of vectors in which no two disjoint subsets of nonzero coefficients have the exact

same sum. For simplicity, we refer to these vectors as “distinguishable” signals. This is not the case for

Basis Pursuit.

3.1 Basis Pursuit

The success of the basis pursuit algorithm for recovering sparse signals is certified by several conditions.

Two major classes of conditions are the Restricted Isometry Property (RIP) and the null space prop-

erty [11, 5]. It is provable that the measurement structures defined in this paper do not maintain the RIP

properties, due to the existence of columns with fairly large coherence. This however does not discard

the suitability of these constructions for `1 minimization, since RIP is known to provide a sufficient con-

dition (see e.g., [17]). Instead, we prove that certain null space conditions hold for the considered class

of matrices, and therefore provide a sparse signal recovery bound for `1 minimization. We restrict our

attention to nonnegative vectors in this case. The reconstruction method is the following program with

the additional nonnegativity constraint.

minimize ‖x‖1 (2)

subject to Ax = y, x ≥ 0

The performance of the above program was studied for 0-1 matrices in [18]. In particular, it was shown

that a nonnegative vector x can be recovered from (2), if and only if it is the unique nonnegative solution

of the linear system of equations, which is stated formally in the following lemma.

Lemma 3.1 (from [18]). Suppose A ∈ Rm×n is a matrix with constant column sum, and x0 ∈ Rn×1 is a

nonnegative vector. x0 is the unique solution to (2), if and only if x0 is the unique nonnegative solution

to Ax = Ax0.

Using the above lemma, we can evaluate the performance of the Basis Pursuit algorithm when used

with the presented measurement matrices. The following theorem is fundamental to this analysis.

Theorem 3.1 (Strong Recovery for Basis Pursuit). Let k ≤ fS(n, d − 1) be an integer, and let A

correspond to a complete (n, d) summary codebook. Then every k-sparse nonnegative vector x is perfectly

recovered by (2).

Proof. Let k ≤ fS(n, d− 1) and let x0 be a nonnegative k-sparse vector. Also, let the n-bit binary labels

associated to the support set of x0 be b1,b2, . . . ,bk. We show that if A corresponds to a complete (n, d)

5



summary codebook, then x0 is the unique nonnegative solution to Ax = Ax0. Therefore, by Lemma 3.1

it follows that x0 can be recovered via (2). We prove this by contradiction. Suppose that there is another

nonnegative vector x 6= x0 with Ax = Ax0. Due to the nonnegativity assumption, we may assume that

the support sets of x and x0 do not overlap. Let the n-bit labels of the support set of x be the binary

sequences b′1,b
′
2, . . . ,b

′
`. From the definition of fS(·), we can assert that there is a (n, d − 1) summary

that appears in exactly one of the sequences b1, . . . ,bk. Let us assume without the loss of generality that

the first d− 1 bits of b1 are unique, and that b1 is the all zero binary sequence. Therefore, there are at

least n− d+ 1 measurements in y = Ax0 that are equal to the entry of x0 that corresponds to the label

b1. These measurements are those that correspond to the summaries

({1, 2, . . . , d− 1, i},0), d ≤ i ≤ n (3)

Since, Ax = Ax0, there must be a nonzero entries in x with labeling indices that satisfy the above

summaries. In particular, without loss of generality assume that the first d bits of b′1 are all zero.

However, since the support sets of x and x0 do not overlap, b′1 is different from b1 in at least one bit,

say b1(j) 6= b′1(j) for some j > d. Now consider the summary (S, c) = ({1, 2, . . . , d − 1, j}, 00 . . . 01),

which represent the set of all binary sequences that are zero on the first d − 1 bits and one on the jth

bit. Because A corresponds a complete (n, d) codebook, there is a row of A that is based on (S, c), and

moreover the corresponding value of y is nonzero, because b′1 conforms to (S, c). On the other hand

this cannot be true when considering the equations y = Ax, because it requires that one of the labels

b1, . . . ,bk conform to (S, c), which cannot be b1 (recall that b1 is the all zero codeword, whereas c

includes a 1). The existence of such a label contradicts the assumption that b1 is the only label whose

d− 1 first bits are all zero.

The complexity of Basis Pursuit is generally polynomial in the ambient dimension of the signal.

Specifically, one can implement (2) in O(N3) operations, without exploiting any of the available structural

information of the measurement matrix. Although there are some advantages to Basis Pursuit, such as

robustness to noise, its complexity is impractical for problems where N scales exponentially. In these

situations, sublinear time algorithms are preferred.

3.2 Summarized Support Index Inference

The first sublinear algorithm discussed in this subsection is called the summarized support index inference

(SSII). The algorithm is based on iteratively inferring the nonzero entries of the signal based on one of

the distinct values of y and its various occurrences. The method is described below.

At the beginning of the algorithm, distinct nonzero values of the observations y are identified, and

are separated from the zero values. Due to the distinguishability assumption on x, each distinct nonzero

value of y is a sum of a unique subset of nonzeros of x, and can thus be used to infer the position
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Algorithm 1 SSII

1: Repeat until all nonzeros of x are identified.
2: Identify distinct nonzeros of y, exhaust the following:
3: Consider all occurrences of a value yπ(1) = · · · = yπ(t).
4: Construct a binary sequence b by setting b(Sπ(i)) := cπ(i), ∀1 ≤ i ≤ t, where (Sj , cj) is the summary

corresponding to measurement yj .
5: If b is fully characterized without confliction from previous step, then a nonzero entry of x has been

determined. subtract it, update y and go to step 2. Otherwise, exhaust the following step.
6: Find a subset S′, such that among summaries (S′, c) that do not contradict with b, exactly one

corresponds to a nonzero of y, say (S′, c′), and set b(c′) := S′.

of at least one nonzero entry. The index of a nonzero entry of x is determined by its unique labeling,

which is a binary sequence of length n. Therefore, the algorithm attempts to infer all relevant binary

sequences. Suppose that a nonzero value of y is chosen that has t occurrences, say without loss of

generality, y1 = y2 = · · · = yt. Also, let the (n, d) summary which corresponds to the ith row of A

be denoted by (Si, ci) (see equation (1)). The algorithm explores the possibility that y1, y2, . . . , yt are

all equal to a single nonzero entry of x, by trying to build a binary sequence b that conforms to the

summaries {(Si, ci)}ti=1, i.e., by setting:

b(Si) := ci, ∀1 ≤ i ≤ t (4)

If there is a conflict in the set of equations in (4), then that value of y is discarded in the current iteration,

and the search is continued for other values. Otherwise, two events may occur. If (4) uniquely identifies

b, then one nonzero position and value of x has been determined. It is subtracted, measurements are

updated and the algorithm is continued. However, there might be a case where only n1 < n bits of b

are determined by (4). In this case, we use the zero values of y to infer the remaining n − n1 bits in

the following way. Let the set of known and unknown bits of b be denoted by S1 and S2, respectively.

We consider the summaries (S, c) which contribute to A, and among all, consider all distinct subsets S.

If there is a subset S′ such that among all the measurements corresponding to (S′, c) where c does not

conflict with b(S′), exactly one of them are nonzero, say (S′, c′), then the bits of b over S′ ∩ S2 can

be uniquely determined by setting b(S′) = c′. This procedure is repeated until either b is completely

identified, or all possibilities are exhausted. A high level description of the presented method is given in

Alg. 1, for which we can assert the following weak and strong recovery guarantees.

Theorem 3.2 (Strong Recovery for SSII). Let k ≤ fS(n, d− 1) be an integer, and let A correspond to a

complete (n, d) summary codebook. Then every k-sparse distinguishable vector x is perfectly recovered by

Alg. 1.

Proof. Let k ≤ fS(n, d − 1) and let x be a k-sparse vector. Also, let the n-bit binary labels associated

to the support set of x be b1,b2, . . . ,bk. We show that at least one of these labels can be inferred from

one of the nonzero values of the vector y = Ax, by solving (4). From the definition, there is a (n, d− 1)

summary that appears in exactly one of the labels b1,b2, . . . ,bk. Without loss of generality, let’s assume
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that the first d−1 bits of b1 are unique, and that b1 is the all zero binary sequence. Also, let the nonzero

value of x in the position given by b1 be γ. Now consider all summaries (S, c) for which the value of the

corresponding entry in y is equal to γ. Let these summaries be denoted by {(Si, ci)}ti=1, where t is the

number of occurrences of γ in y. We show that there is a unique binary sequence b′ that conforms to all

of these summaries. In other words, we prove that equation (4) has a unique solution which is equal to

b′ = b1.

Due to the distinguishability assumption on the nonzero values of x, The set {(Si, ci)}ti=1 should

include the following summaries:

({1, 2, . . . , d− 1, i},0), d ≤ i ≤ n (5)

Where 0 indicates the all zero bit sequence of length d. Clearly the only length n binary sequence that

conforms to all of the above summaries is the all zero binary sequence, namely b1. Thus, we only need

to show that b1(Si) = ci for all other summaries (Si, ci), 1 ≤ i ≤ t. This also follows immediately from

the distinguishability assumption on x, and the fact that every instance of γ in the vector y is only the

result of the nonzero value in x labeled by b1 (i.e. it is not the direct sum of another subset of the entries

of x).

Theorem 3.3 (Weak Recovery for SSII). Let k ≤ f ′W (n, d, p, ε) be an integer, and let A correspond to

a random (n,m, d) summary codebook. Then, a random k-sparse distinguishable vector x is recovered by

Alg. 1 with probability at least 1− kn
(
1− p+ p(1− εd

n )m
)
.

Proof. We define an event E which is stronger that the success event of Algorithm 1, namely a sufficient

condition for the success of SSII. Let the n-bit binary labels associated to the support set of x be

b1,b2, . . . ,bk, and let C be the (n,m, d) summary codebook based on which A is constructed. The

sufficient condition for success of SSII is that for every 1 ≤ i ≤ k, and every bit 1 ≤ j ≤ n, there exists

a summary (S, c) in C such that j ∈ S and in addition bi(S) = c and b` 6= c ∀` 6= i. In other words, for

each of the k labels corresponding to the support of x and each of the n bits, there is a summary in the

codebook that includes the considered bit and only conforms to that particular label.

We find a lower bound on the probability of the complementary event Ec by using union bounds. Note

that there are m distinct subsets in the summaries of the codebook C, which are chosen randomly. We

assume that the subsets are chosen independently at random, and allow repetition. In case of repetition,

the repeated subset is excluded, which only makes things worst. Consider a label b1 and the first bit.

The probability that a randomly chosen subset of bits of length d includes the first bit is d
n . Furthermore,

let us say that at least a fraction ε′ of the summaries that conform to b1 and include the first bit, does

not conform to the remaining bi’s (i.e. only appear in b1). Then, when a random subset S is chosen,

with probability at least ε′d
n , the following happens:

1 ∈ S and bi(S) 6= b1(S) ∀1 < i ≤ k (6)
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Therefore, the probability that the above event does not happen for any of m randomly chosen subsets

S is at most (1− ε′d
n )m. From the definition of f ′W (·) and the fact that k ≤ f ′W (n, d, p, ε), we know that

with probability at least p, ε′ ≥ ε, and therefore, the probability that (6) does not happen for any set S

in the codebook C is at most 1− p+ p(1− εd
n )m. If we union bound the probability of such event for all

possible k labels and all possible n bits, we conclude that the probability of the undesirable event Ec is

bounded by:

P(Ec) ≤ nk(1− p+ p(1− εd

n
)m) (7)

Which concludes the proof of the theorem.

The explicit recovery bounds given by above theorem are calculated in Section 4. Alg. 1 can be imple-

mented very efficiently, with O(max(poly(M), k logN)) operations, which is sublinear in the dimension

of the problem. The computational advantage is owed to the most part to the structural definition of the

measurement matrices which facilitates sublinear search over the column space of the matrix. In addition,

we do not require an exponential memory for decoding, since the information about A and the current

inferred indices of the unknown vector at each stage can be retained by only storing the corresponding

binary indices.

3.3 Mix and Match Algorithm

We describe a third recovery method, which is on the lines of the algorithm proposed in [2] with slight

modifications. The algorithm consists of two subroutines: a value identification phase in which the

nonzero values of the unknown signal is determined, and a second phase for identifying the support set of

x. The method is based on measurements given by y = (y(1)T ,y(2)T )T = (AT1 , A
T
2 )Tx, where only y(1) is

used for the first phase, and y(2) and A2 are used in the second phase. For details of this method please

refer to [2]. We analyze this algorithm for the proposed measurement structures of this paper, which is

different from the analysis of [2].

Algorithm 2 M&M

Find the set Y of nonzero entries of y1 and set X = ∅. X will determine the set of nonzeros of x.
Repeat steps 2,3 until S(X) = Y .
Update the set S(X) of sums of subsets of X.
Find the smallest entry of Y that is not in S(X), and add it to X.
Initiate zero binary sequences {bx|x ∈ X}, which will determine the labeling of the support indices
of x.
For every nonzero entry of y2, find the corresponding summary (S, c), and a subset X ′ ⊂ X that sum
up to that value of y2. Set bx(S) = c,∀x ∈ X ′.

Theorem 3.4 (Weak Recovery for M&M). Let k ≤ fW (n, d, p, ε) be an integer, and A =
(
AT1A

T
2

)T
where

A1 and A2 correspond to a random (m,n, d) summary codebook, and a complete (n, 1) summary codebook,

respectively. Then, a random nonnegative k-sparse distinguishable vector x is recovered by Alg. 2 with

probability at least p (1− k(1− ε)m).
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Proof. Let the n-bit binary labels associated to the support set of x be b1,b2, . . . ,bk, and let C1 be

the (n,m, d) summary codebook based on which A1 is constructed. It can be shown that the value

identification subroutine of Alg. 2 identifies all nonzero values of the nonnegative vector x correctly, if in

the observation vector y, all every nonzero value of x appear at least once. We find the probability that

this condition holds, when the m subsets of the random coodbook C1 are chosen at random. For every

1 ≤ i ≤ k, we define the following set of subsets of {1, 2, . . . , n}:

Ui{S | |S| = d, bj(S) 6= bi(S) ∀j 6= i} (8)

If a subset S in the codebook C1 belongs to Ui, then the nonzero entry γi that corresponds to the label

bi appears in the observation vector y. Therefore, we are interested in finding the probability that the

set of m subsets of C1 has a nonempty overlap with all Ui’s. Let us assume that for some ε′ > 0, the

following holds:

|Ui| ≥ ε′
(
n

d

)
, ∀1 ≤ i ≤ k (9)

When a subset S is chosen at random, the probability that it belongs to Ui is at least ε′. Therefore the

probability that Ui does not overlap with the set of all subsets S appearing in C1 is at most (1 − ε′)m.

Using a union bound over all 1 ≤ i ≤ k, we conclude that the probability that this undesirable event

happens for at least one of the sets Ui is at most k(1−ε′)m, which means that the probability of success is

at least 1−k(1−ε′)m. However, we know from the definition of fW (·), and the fact that k ≤ fW (n, d, p, ε),

that with probability at least p, we have ε′ > ε. Therefore the overall probability of success is at least:

1− p+ p(1− k(1− ε)m) ≥ p(1− k(1− ε)m) (10)

The complexity of Alg. 2 is O(max(poly(M), 2k)), and thus explodes when k grows.

4 Recovery Bounds

We derive recovery bounds for (2) and Alg.’s 1 and 2 by obtaining explicit bounds on the terms of

definition 2 and replacing them in the recovery guarantees of Section 3, namely Theorems 3.1-3.4. The

proof of the following lemma is based on some combinatorial techniques and Chernoff concentration

bounds.

Lemma 4.1. Let n, l and k be integers and 0 < α < 1/2. Also, let ε = 1 − k
(n

2
(1+
√
2α)

l

)
/
(
n
l

)
, and

p = 1− k2e−αn. Then,

1. fS(n, l) ≥ 2l.

2. fW (n, l, p, ε) ≥ k.

10



3. f ′W (n, l, p, ε) ≥ fW (n− 1, l − 1, p, ε).

By exploiting the expressions of the above lemma in Theorems 3.1-3.4, we obtain the following bounds

for different methods:

Basis Pursuit . If a complete (n, d) summary codebook is used to build A, then the number of mea-

surements is M = 2d
(
n
d

)
, and every sparsity k ≤ 2d−1 is guaranteed to be recovered. When put together

(recall that n = log2N), an upper bound on the the required number of measurements for recoverable

sparsity k is given by:
M = 2k

(
logN

log k

)
(11)

In particular, for small values of k, the above bound is comparable with the M = 2k logN bound of `1

minimization for random Gaussian matrices [19].

SSII Algorithm. We focus on the weak bound, namely the one obtained from Theorem 3.3. The general

strategy is to take the values of p and ε according to Lemma 4.1 with l = d − 1, and choose k and m

in such a way that firstly, ε is bounded away from zero, and secondly, the probability of recovery failure

approaches zero as n → ∞. Taking k = λ2−d log2(
√
α/2+1/2) for some 0 < λ < 1, a few basic algebraic

steps lead to the following:

P (failure) ≤ k3ne−αn + kn (1− (1− λ)d/n)m , (12)

It follows that the above expression approaches zero if m = Ω(n log n). Furthermore, α can be chosen ar-

bitrarily close to zero. Therefore, it follows that an upper bound on the required number of measurements

for successful recovery with high probability is given by:

M = Ω(k logN log logN). (13)

M&M Algorithm. We take k = λ2−d log2(
√
α/2+1/2), and ε, p according to Lemma 4.1, it follows that:

P (failure) ≤ k2e−αn + kλm, (14)

Which asymptotically vanishes if m = Ω(log k). Recall that the number of measurements in this case is

determined by the matrix A = [AT1 , A
T
2 ]T described in Theorem 3.4, which is equal toM = 2 logN+m×2d.

Therefore, it follows that an upper bound on the required number of measurements for successful recovery

with high probability is given by:

M = 2 logN + Ω(k log k). (15)

In particular, when k = o(log logN), this means only O(logN) measurements are required, and the

running time of the algorithm is O(logN) (see Section 3), both of which are almost optimal.

5 Simulations

Since Alg. 2 is only efficient for very small values of k, we present the empirical performance of Alg.

1. Due to the efficiency of the method, it is possible to perform simulations for very large values of

11



N . In Figure 2, the empirical required over-sampling rate for Alg. 2 and the proposed constructions is

plotted versus the signal dimension N , for various sparsity levels k. The required criteria here is that

the probability of successful recovery be larger than 90%. Note that when N is increased by 3 orders of

magnitude, the required number of measurements is increased by a factor of 3, which is an indication of

the logarithmic dependence of M to N . Furthermore, as the signal becomes less sparse (i.e. k increases),

the required oversampling factor decreases. For k = 100, this ratio is only about 3 for N = 1024, and

about 8 for N = 3.3× 107. This is significantly better than existing sublinear recovery algorithms. Note

that the optimal value of d for constructing the measurement matrices for every k,N is found empirically.
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Figure 2: Required oversampling rate for successful recovery of Alg. 1 on proposed constructions versus signal dimension for various
sparsity levels.

In Figure 3, the probability of successful recovery is plotted against the sparsity level k for N = 32768,

and M = 140 and 240. We can see that although the number of measurements has only increased by a

factor of 1.7, the recoverable sparsity (given a fixed probability of success) has improved in some cases by

a factor of 5. These curves are comparable with the performance of `1 minimization over dense matrices,

with N = 900, as displayed, which is an indication of the strong performance of the proposed scheme.
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Figure 3: Probability of successful recovery of Alg. 1 versus sparsity level k, for N = 32768 and M = 140, 240, and the same curves
for `1-minimization over i.i.d Gaussian matrices with N = 900.
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