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Abstract—In this paper we present regular bilayer LDPC
convolutional codes for half-duplex relay channels. For the binary
erasure relay channel, we prove that the proposed code construc-
tion achieves the capacities for the source-relay link and the
source-destination link provided that the channel conditions are
known when designing the code. Meanwhile, this code enablesthe
highest transmission rate with decode-and-forward relaying. In
addition, its regular degree distributions can easily be computed
from the channel parameters, which significantly simplifiesthe
code optimization. Numerical results are provided for bothbinary
erasure channels (BEC) and AWGN channels. In BECs, we can
observe that the gaps between the decoding thresholds and the
Shannon limits are impressively small. In AWGN channels, the
bilayer LDPC convolutional code clearly outperforms its block
code counterpart in terms of bit error rate.

I. I NTRODUCTION

The relay channel was introduced in 1971 when van der
Meulen [1] proposed a channel model consisting of one
source, one relay, and one destination. The relay aids the
communication between the source and the destination so that
increased robustness, higher transmission efficiency, and/or
larger coverage range can be achieved. As smallest but fun-
damental unit of large network topologies, the relay channel
has been extensively studied focusing on both theoretical and
implementation aspects.

Decode-and-forward (DF) relaying is the most researched
protocol for relay channels. In particular, the design of dis-
tributed channel codes has attracted considerable attention.
The concept of distributed Turbo coding (DTC) was proposed
in [2], which offered a new fashion of distributed code design.
Low-density parity-check (LDPC) codes were considered for
distributed coding for example in [3], [4] and [5]. Different
approaches were presented to optimize LDPC codes for given
channel conditions. For LDPC block codes, an irregular degree
distribution needs to be derived to match a given channel. For
a variety of channel conditions, extensive re-optimization is
required. This leads to a high complexity for code adaptation
and may not be feasible in practice.

In this paper we propose to use LDPC convolutional codes
for distributed channel coding in relay networks. LDPC con-
volutional codes were first proposed in [6] as a time-varying
periodic LDPC code variation. Then the idea was further
developed in, e.g., [7], [8]. Recently, it has been proven
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analytically in [9] that the belief-propagation (BP) decoding
threshold of an LDPC convolutional code achieves the optimal
maximum a posteriori probability (MAP) threshold of the
corresponding LDPC block code with the same variable and
check degrees. This code in turn approaches the capacity as
the node degrees increase. Furthermore, regular LDPC convo-
lutional codes allow us to avoid complicated re-optimization
of the degree distributions for varying channel conditions.
Meanwhile, LDPC convolutional codes enable recursive en-
coding and sliding-window decoding [8], which dispels the
concerns over complexity and delay. Motivated by the good
properties of LDPC convolutional codes, we consider in this
paper the design of bilayer LDPC convolutional codes for
the relay channel. A similar code construction was proposed
in [10] for the wiretap channel. A protograph-based bilayer
code was proposed in [11] which applies the concept of
bilayer-lengthened codes. In contrast to [11] we present bilayer
expurgated codes [5] in this paper.

In the following, we will discuss the construction of bilayer
LDPC convolutional codes for given relay channels. We will
prove analytically that the proposed bilayer code is capable of
achieving the highest rate with DF relaying in binary erasure
channels (BEC). Moreover, the regularity of degree distribu-
tions significantly simplifies the code optimization. Numerical
results are provided to verify the theoretical analysis.

II. PRELIMINARIES

In this section, firstly we introduce the transmission model
we use throughout the paper. Then we briefly review the
coding strategy which leads to the highest achievable rate [12]
with DF relaying. The construction of bilayer codes [5] is
described as a practical realization of the coding strategy.

A. System Model

In this paper, we restrict ourself to the three-node relay
channel which is composed of one source, one relay, and one
destination. The source (S) intends to transmit its information
to the destination (D) while the relay (R) provides assistance.

The system model is shown in Figure 1. Due to practical
constraints the relay works in a half-duplex mode, which
means it cannot transmit and receive at the same time or
the same frequency. This implies that the transmission from
the source to the destination is carried out in two phases. In
the first phase, the source broadcasts while the relay and the
destination listen. In the second phase, the relay transmits to
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the destination while the source keeps silent. We assume the
transmissions on the three links to be orthogonal.
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Fig. 1. Transmission model.

In the following we useXi, i ∈ {S,R}, to denote the BPSK
modulated signals which are transmitted from the source and
the relay, and we useYi,j , i ∈ {S,R}, j ∈ {R,D}, for
the channel observations of the three links. We useCij =
I(Xi;Yij), i ∈ {S,R}, j ∈ {R,D} to denote the capacity
of each link constrained to the BPSK modulation. In this
paper we assume that perfect channel-state information (CSI)
is available for code construction.

B. Achievable Rate

The highest transmission rate using decode-and-forward
protocol for the half-duplex relay channel with orthogonal
receive components is given as [12]

RDF = sup
α,0≤α≤1

min(αI(XS ;YSR),

αI(XS ;YSD) + (1−α)I(XR;YRD))
(1)

whereα is the fraction of channel uses in the first phase, and
(1− α) is the fraction of channel uses in the second phase.

To achieveRDF , in the first phase the source employs
a capacity-achieving code for the source-relay link which
guarantees successful decoding at the relay. This code may
not be decodable at the destination due to the poorer channel
condition on the source-destination link. Therefore, in the sec-
ond phase the relay forwards additional bits to the destination
in order to construct an overall lower rate code which is
capacity-achieving for the source-destination link. A practical
implementation of the idea is presented in the following.

C. Bilayer LDPC Block Codes for Relay Channels

The construction of bilayer LDPC block codes [5] is real-
ized in two steps corresponding to the two transmission phases.

In the first phase,K1 information bitsB are encoded by
a length-N1 codewordXS through a rate-R1 LDPC codeC1
(i.e.,K1 = N1·R1) with the check matrixHS and transmitted.
At the end of the first phase, the relay decodesC1, using the
check matrixHS , and recoversXS .

At the destination, additionalK2 bits are needed for suc-
cessfully decodingXS :

K2 = N1(I(XS ;YSR)− I(XS ;YSD)).

Therefore, in the second phase the relay generatesK2 new
bits (syndrome,S) using the check matrixHR. TheseK2

syndrome bits are transmitted to the destination via a channel
encoderC2 of rate R2 using N2 channel uses, i.e.,K2 =
N2 ·R2. To simplify the discussion, we assume these syndrome

bits are perfectly known at the destination after decodingC2.
Then the overall codeC is described by the stacked check
matrix H, and we have

HXS =

[

HS

HR

]

XS =

[

0

S

]

.

That is, at the destination (N1 − K1) zero check equations
andK2 non-zero check equations need to be satisfied in the
decoding. The Tanner graph of a bilayer code example is
plotted in Figure 2.

00......0 S

Fig. 2. The Tanner graph of a bilayer LDPC code. Circles represent variable
nodes, and squares indicate check nodes. The solid lines correspond to the
edges inHS , and the dashed lines show the connections determined byHR.

To achieve the optimal performance, the design ofHS

andH needs to guarantee thatC1 andC are simultaneously
capacity-achieving for the source-relay link and the source-
destination link respectively. The authors of [5] approached
this target by applying irregular LDPC block codes. Conse-
quently, re-optimization is required for every given channel,
which results in high complexity and infeasibility. In the next
section we will show how this goal can be achieved by using
regular LDPC convolutional codes leading to significantly
reduced optimization overhead.

If the channel codesC1 andC2 are both capacity-achieving,
i.e., R1 = CSR andR2 = CRD, then the achievable rate in
(1) is maximized by

α =
N1

N1 +N2
=

CRD

CRD + CSR − CSD

. (2)

Later in this paper we will prove that in BECsRDF can be
achieved by applying bilayer LDPC convolutional codes.

III. B ILAYER LDPC CONVOLUTIONAL CODES

A. LDPC Convolutional Codes

A regular (l, r) time-varying binary LDPC convolutional
code can be defined by a syndrome former matrix [8]
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wherel is the variable degree andr is the check degree. We
assume that at each time instantt (t = 1, 2, ..., L) the number
of variable nodes isM . Then each submatrixHT

i (t+ i) is a
M × (Ml/r) binary matrix. The largesti such thatHT

i (t+ i)
is nonzero for somet is called the syndrome former memory
w. The matrixHT is sparse.



There are many variations of LDPC convolutional codes in
the literature. In this paper, we denote an LDPC convolutional
code by four parameters{l, r, L, w}. The memory constraintw
can be any non-negative integer. We assume that each of thel
edges of a variable node at timet uniformly and independently
connects to the check nodes in the time range[t, ..., t + w].
More precisely, for each variable node at timet, one can
define a type Mt

1 [9] which is a w-tuple of non-negative
integers,Mt = (mt,t, ...,mt,t+j , ...,mt,t+w), j ∈ [0, w],
and

∑

j mt,t+j = l. The elementmt,t+j indicates that there
aremt,t+j edges connecting the designated variable node at
time t and the check nodes at timet + j. For each variable
node,Mt is uniformly and independently chosen from all
possible types. It has been stated in [9] that the{l, r, L, w}
code ensemble is capacity achieving and easier to analyze.
However, experimentally it shows a worse trade-off between
rate, threshold and block length.

Another variant, the{l, r, L} ensemble, can be considered
as a special case of the more general code ensemble mentioned
above. For this ensemble, the memory lengthw always equals
l−1. Exactly one of thel outgoing edges of each variable node
at timet is connected to one check node at position[t, ..., t+
(l − 1)], i.e., mt,t+j = 1 for all j ∈ [0, l − 1]. We observe
through experiments that this type of ensemble provides good
performance with moderateM andL when l ≥ 3.

In this paper, we use the{l, r, L, w} ensemble for theoretical
analysis while employing the{l, r, L}ensemble in simulations.

B. Bilayer LDPC Convolutional Codes for Relay Channels

Firstly, we define the structure of a bilayer LDPC convo-
lutional code. We assume the number of variable nodes to be
N = M · L. The connections between theN variable nodes
and the check nodes in the first (second) layer are determined
by the ensemble{l1, r1, L, w1} ({l2, r2, L, w2}). If w1 = w2,
we denote the bilayer code by{l1, l2, r1, r2, L, w}. Note that
only the edges belonging to the same layer are connected to
one check node. The structure of the overall check matrix is
illustrated in Figure 3.

= =

PSfrag replacements

H
T H

T
S H

T
R

.. .
.. .

.. .
.. .

Fig. 3. Overall check matrix of a bilayer LDPC convolutionalcode. The
white blocks correspond to the non-zero submatrices in the first layer, and the
grey blocks are for those submatrices in the second layer.

The protocol for transmitting a bilayer LDPC convolutional
code for the relay channel is similar to the strategy we
explained in Section II-C. The information bits from the
source are encoded by the single-layer code{l1, r1, L, w1} and
broadcasted in the first phase. After successful decoding, the
relay generates the syndrome bits using{l2, r2, L, w2}. These
syndrome bits are transmitted to the destination under perfect
protection by another channel code in the second phase. The

1Index of the variable node is omitted for the ease of notation.

destination decodes the overall code by considering the zero
check equations in the first layer and the non-zero check
equations in the second layer.

C. Analysis for Binary Erasure Channels

It has been shown in [9] that the{l, r, L, w} ensemble with
infinite M has the following properties in a binary erasure
channel: for the rate of the codeR

lim
w→∞

lim
L→∞

R(l, r, L, w) = 1−
l

r
, (3)

and for the decoding threshold

lim
w→∞

lim
L→∞

ǫBP (l, r, L, w)= lim
L→∞

ǫMAP (l, r, L, w)=ǫMAP (l, r),

whereǫBP and ǫMAP are respectively the BP threshold and
the MAP threshold for decoding. If we increase the degrees
of the nodes, its decoding threshold approaches the Shannon
limit ǫSh = 1−R,

lim
r→∞

lim
w→∞

lim
L→∞

ǫBP (l, r, L, w) = ǫSh. (4)

In the following, we will show in Theorem 2 that the
bilayer LDPC convolutional code{l1, l2, r, r, L, w} achieves
the same Shannon limit as the standard single-layer ensemble
{l1 + l2, r, L, w} [10]. As a preparation for the theorem, we
introduce the following lemma.

Lemma 1. If M , L and w go to infinity in this order, the
density evolution of a single-layer LDPC convolutional code
{l, r, L, w} in a binary erasure channel can be written as

p(i) = ǫ(q(i−1))l−1 and q(i) = 1− (1− p(i))r−1,

where p(i) (q(i)) is the erasure probability from a variable
(check) node to a check (variable) node in thei-th iteration,
and ǫ is the erasure probability of the channel.

Proof: In the following we refer to the check nodes
connected to a given variable node as the active check nodes
for that variable node. We usepm,(i)

t,t+j to denote the probability
that the message from a given variable node at timet to the
m-th active check node at timet + j in decoding iterationi
is erased. In the first iteration,pm,(1)

t,t+j = ǫ for all m andj. We

useqn,(i)t+j,t to represent the probability that the message from
then-th active check node att+ j to the given variable node
at t is erased. Then we have

p
m,(i)
t,t+j = ǫ

w
∏

k=0,k 6=j

(

mt,t+k
∏

n=1

q
n,(i−1)
t+k,t

)

·

mt,t+j
∏

v=1,v 6=m

q
v,(i−1)
t+j,t . (5)

If M → ∞, the messages from different nodes at the same
time instant behave identically [8]. Then (5) reduces to

p
(i)
t,t+j = ǫ

w
∏

k=0,k 6=j

(q
(i−1)
t+k,t )

mt,t+k · (q
(i−1)
t+j,t )

mt,t+j−1. (6)

The messages from nodes at different time instants can
behave differently and are usually tracked separately. However,
if we haveL → ∞, the effect of boundaries caused by the
initialization and the termination of the code vanishes. Wecan



then consider the code asymptotically regular [13]. The mes-
sage updating is averaged overw+1 time instants. Therefore,
if w → ∞, the messages from the nodes at different time
instants have asymptotically identical distribution. Eventually,
(6) is simplified to

p(i) = ǫ(q(i−1))l−1.

Similarly, we also obtain

q(i) = 1− (1− p(i))r−1.

Now we look at the relation between the bilayer LDPC con-
volutional code ensemble{l1, l2, r, r, L, w} and the standard
single-layer ensemble{l1 + l2, r, L, w}.

Theorem 2. [10] We denote a bilayer LDPC convolutional
code of lengthN = M · L by {l1, l2, r1, r2, L, w}, where l1
and l2 are respectively the variable degrees of the two layers,
r1, r2 are the check degrees of the two layers, andw is the
common memory constraint. If we assume the two layers take
the same check degree, i.e.,r1 = r2 = r, then the bilayer
LDPC convolutional code{l1, l2, r, r, L, w} approaches the
same Shannon limit as the single-layer LDPC convolutional
code{l1 + l2, r, L, w}.

Proof: For the completeness of the proof, we repeat the
derivation of the BP decoding threshold which was previously
given in [10]. According to Lemma 1, we write for the first
layer of the bilayer LDPC convolutional code,

p
(i)
1 = ǫ(q

(i−1)
1 )l1−1(q

(i−1)
2 )l2 and q

(i)
1 = 1− (1− p

(i)
1 )r1−1.

For the second layer of the code, we have

p
(i)
2 = ǫ(q

(i−1)
1 )l1(q

(i−1)
2 )l2−1 and q

(i)
2 = 1− (1− p

(i)
2 )r2−1.

Sincer1 = r2 = r andp(1)1 = p
(1)
2 = ǫ, we obtain from the

iterationsp(i)1 = p
(i)
2 . Then the recursion can be written as

p(i) = ǫ(1− (1− p(i−1))r−1)l1+l2−1.

This indicates that the bilayer LDPC convolutional code has
the same BP threshold as the{l1 + l2, r, L, w} ensemble.

The rate of the bilayer LDPC convolutional code satisfies

lim
w→∞

lim
L→∞

R(l1, l2, r, r, L, w) = 1−
l1
r
−

l2
r
, (7)

and the decoding threshold achieves the Shannon limit,

lim
r→∞

lim
w→∞

lim
L→∞

ǫBP (l1, l2, r, r, L, w) =
l1
r
+

l2
r
. (8)

According to (3) and (4), obviously the single-layer code
{l1 + l2, r, L, w} has the same rate as in (7) and achieves the
same limit as in (8). Therefore, the theorem is proven.

For the design of bilayer LDPC convolutional codes in relay
channels, firstly we choose an{l1, r, L, w} ensemble which is
capacity achieving for the source-relay link. Afterwards the re-
lay generates the syndrome bits according to{l2, r, L, w} and
forwards them to the destination. The overall code structure
is consequently{l1, l2, r, r, L, w}. In the following we will
show this overall code is capacity achieving for the source-
destination link. In addition, it enables the highest achievable
rateRDF of the relay channel.

Theorem 3. For a binary erasure relay channel, we can find
an LDPC convolutional codeC1 = {l1, r, L, w} achieving
the capacity for the source-relay link and simultaneously its
bilayer extensionC = {l1, l2, r, r, L, w} achieving the capacity
for the source-destination link. Meanwhile, the above code
construction provides the highest achievable rate with decode-
and-forward relaying as in (1).

Proof: We assume that the erasure probability for the
source-relay link and the source-destination link areǫSR and
ǫSD, respectively, andǫSR < ǫSD. The corresponding channel
capacities for these two links are

CSR = 1− ǫSR, CSD = 1− ǫSD.

We use a regular LDPC convolutional code{l1, r, L, w}
with l1/r = ǫSR for the transmission in the first phase.
According to (3) and (4), we have

lim
w→∞

lim
L→∞

R(l1, r, L, w) = 1−
l1
r

= 1− ǫSR

and lim
r→∞

lim
w→∞

lim
L→∞

ǫBP (l1, r, L, w) = ǫSR.

Hence,C1 is capacity achieving, and error-free decoding can
be guaranteed at the relay.

We assume that the number of variable nodes ofC1 is NV

and the number of check nodes ofC1 is NC1, then

NC1 = l1NV /r.

The number of additional bits needed at the destination is

NC2 = NV (CSR − CSD) = NV (ǫSD − ǫSR),

and these bits are provided by the syndrome generated at the
relay. At the destination, the total number of check nodes is

NC = NC1 +NC2 = NV (
l1
r
+ ǫSD − ǫSR) = ǫSDNV .

The additionalNC2 check equations bring inrNC2 edges, and
the corresponding variable degreel2 follows as

l2 = rNC2/NV = r(ǫSD − ǫSR).

From Theorem 2, we have for the source-destination link

lim
w→∞

lim
L→∞

R(l1, l2, r, r, L, w) = 1−
l1 + l2

r
= 1− ǫSD,

and lim
r→∞

lim
w→∞

lim
L→∞

ǫBP (l1, l2, r, r, L, w) = ǫSD.

Therefore, the overall codeC achieves the capacity of the
source-destination link.

The number of channel uses in the first phase isN1 = NV .
In the second phase, we can use another capacity-achieving
LDPC convolutional code to transmit theNC2 syndrome bits
to the destination. Therefore,N2 = NC2/CRD channel uses
are needed. The fraction

α′ =
N1

N1 +N2
=

CRD

CRD + CSR − CSD

equals the one in (2), which maximizes the achievable rate.



From Theorem 3, we can conclude that the proposed reg-
ular bilayer LDPC convolutional codes significantly simplify
the code optimization. Appropriate variable and check node
degrees can easily be computed from the parameters of the
channels, and a complicated optimization of irregular degree
distributions as for example in [5] can be avoided.

IV. N UMERICAL RESULTS

In this section, we firstly give numerical results for bilayer
LDPC convolutional code ensembles{l, r, L} in binary erasure
relay channels. The source broadcasts its information bitswith
an {l1 = 3, r = 10, L = 100} LDPC convolutional code. At
each time instant, the number of variable nodes is set to be
M=2000. At the relay, different values ofl2 (l2 ∈ {2, 3, 4, 5})
are chosen. Consequently, bilayer LDPC convolutional codes
of different rates are constructed. Note that rate loss is in-
evitable for finiteL [8]. We compare the decoding thresholds
of both the single-layer code and the bilayer codes with the
corresponding Shannon limits. It can be seen from Figure 4
that the gaps in between are impressively small.
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Fig. 4. Bit erasure rate of bilayer LDPC convolutional codeswith different
overall rates in BECs. The solid curves show the simulation results, and the
dashed lines indicate the Shannon limits.

To evaluate the proposed bilayer LDPC convolutional codes
under more practical conditions, Figure 5 shows the bit-error-
rate performance for the AWGN channel. For comparison
purpose, we also include a regular bilayer LDPC block code.
For both types of the codes, we setl1 = 3, l2 = 2, andr = 10,
which leads to approximatelyRSR = 0.7 and RSD = 0.5.
In addition, the lengths of both codes are chosen in the way
that the same hardware complexity [7] is needed. It can be
observed that the bilayer LDPC convolutional code clearly
outperforms its block code counterpart. Signal-to-noise ratio
(SNR) gains of0.5 dB and1.3 dB are obtained at the relay
and at the destination, respectively.

V. CONCLUSIONS

In this paper bilayer LDPC convolutional codes were pro-
posed for three-node relay channels. For a binary erasure
relay channel, we can find a bilayer LDPC convolutional
code which is able to simultaneously achieve the capacitiesof
the source-relay link and the source-destination link. Mean-
while, this code provides the highest possible transmission

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

SNR (dB)

B
it 

E
rr

or
 R

at
e

 

 

Single−layer LDPC conv. code for the SR link
Bilayer LDPC conv. code for the SD link
Single−layer LDPC block code for the SR link 
Bilayer LDPC block code for the SD link

Rate=0.5

Rate=0.7

Fig. 5. Comparison of bit error rate between a bilayer LDPC convolutional
code and a regular bilayer LDPC block code in AWGN channels.

rate with decode-and-forward relaying. Moreover, the regular
code structure significantly reduces the complexity by avoiding
the optimization of irregular degree distributions. Numerical
results were provided in both binary erasure channels and
AWGN channels. In binary erasure channels, we can observe
that the decoding thresholds are very close to the Shannon
limits. In AWGN channels, a significant gain in terms of SNR
is achieved compared with its block code counterpart.
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