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Abstract— We analyze Linear Programming (LP) decoding of
graphical binary codes operating over soft-output, symmetc
and log-concave channels. We show that the error-surface,
separating domain of the correct decoding from domain of
the erroneous decoding, is a polytope. We formulate the
problem of finding the lowest-weight pseudo-codeword as a me
convex optimization (maximization of a convex function) oer a
polytope, with the cost function defined by the channel and ta
polytope defined by the structure of the code. This formulaibn
suggests new provably convergent heuristics for finding the
lowest weight pseudo-codewords improving in quality upon
previously discussed. The algorithm performance is testedn
the example of the Tanner[155 64,20 code over the Additive

configuration which lies on the median between the pseudo-
codeword and zero-codeword. In essence, the algorithm of
[17] performs a biased walk over the exterior of the domain
of correct LP decoding (surrounding zero codeword) and
arrives at the error-surface (boundary of the domain) in
a small finite number of steps. The algorithm, tested on
some number of codes over the AWGN channel, showed
excellent performance. For any noise initiation it always

approaches the error-surface monotonically in simulation

even though the monotonicity proof was not provided. Latter
the algorithm was generalized to the case of discrete-outpu

White Gaussian Noise (AWGN) channel. channel (specifically Binary Symmetric (BS) channel) in

[18], [19], where the monotonicity proof was given. The
technique was also extended to discover the most probable

) ) configurations of error-vectors in compressed sensing [20]
Low-Density Parity Check (LDPC) codes are capac-

ity achieving (in the thermodynamic limity and are easy 1NS paper continues the trend of [17] and analyzes
to decode via message-passing algorithms of the Belidf?® error-surface and the associated low-weight pseudo-
Propagation (BP) type [1], [2], [3]. However, performancé:odewords. We study the domain of correct decoding,
of the efficient decoder on a given finite code is not ideaf?ounded by the error-surface; formulate the (channel spe-
resulting in a sizable difference between optimal (Maximur&ific) problem of finding the most probable configuration
A-Posteriori) and the suboptimal decoders observed in tfd the noise leading to a failure (and respective pseudo-
asymptotics of Bit-Error-Rates (BERs) at the high Signal¢odeéword) as an optimization problem; design an efficient
to-Noise-Ratios (SNR), in therror floor regime [4]. Errors heuristic; and illustrate performance of the algorlthm on
in this extreme regime of therror-floor are mainly due to e exemplary Tannef15564,20 code [21]. The main
special configurations of the channel noise, called instant Statements of the manuscript are:

[5], correspondent to decoding into pseudo-codewords [6], , The domain of correct decoding is a polytope in the
[7] different from any of the codewords of the code. Analysis  qise space. For a typical code the polytope is likely to
of the instantons and pseudo-codewords in the case of LP o non.tractablei.e., requiring description exponential
decoder [8] is of a special interest. LP is a combinatorial 4 the code size. [SectidIl]

(zero-temperature) version of BP, thus admitting convenie | The problem of finding the lowest weight pseudo-
description in terms of the pseudo-codeword polytope [8].  ~5deword of a graphical code over log-concave sym-
The geometric structure associated with the polytope gave yetric (for example AWGN) channel is reduced to
rise to new decoding techniques related to graph covers [9],  mayimization of a convex function, associated with the
adaptive processing of the polytope constraints [10], and  channel, over a polytope, associated with the code and

the concept of LP duality [11]. The succinct combinatorial  yefined as the cross-section of the decoding polytope by
formulation of the coding was also useful in terms of a plane. [SectiofIV.]

improving LP and thus reducing the gap between the LP | \ve suggested Majorization Optimization Algorithm
and MAP decoders [12], [13], [14], [15], [16]. (MOA), based on majorization-minimization [22] ap-

I. INTRODUCTION

In [17] we suggested an LP-specific heuristic Pseudo-
Codeword Search (PCS) algorithm. The main idea of the
algorithm was based on exploring the Wiberg relation, from
[6], [7], between pseudo-codeword and an optimal noise

proximation of the aforementioned optimization formu-
lation. We showed that MOA, as well as previously
introduced PCS, are both monotonic in discovering
iteratively the low-weight pseudo-codewords (effective
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weight decreases with iterations). [Sectloh V.] Perforin the parity check graph of the codg, bitsi and checks
mances of MOA and PCS are tested on the Tanner coderespectivelyo; = 0,1 represent values of the hjtand the

over AWGN channel in Sectidn VI. vectoroq = (aj|i ~a;s.t. ¥;0i =0 mod 2 stands for one of
the allowed local codewords associated with the cloecRf
Il. PRELIMINARY DISCUSSIONS ANDDEFINITIONS the conditions in the definition afj, the first two equalities

fre normalizations (for the beliefs/probabilities), therd
equality states consistency between beliefs associattd wi
%its and checks. The two last inequalities#n ensure that
the beliefs (probabilities) are positive. If the channelseo
corrupting the zero codeword is sufficiently weale., if

?a-:| < 1, the LP, outputs zero, corresponding to successful

) i . decoding. However, P, confuses another pseudo-codeword
The technique we discuss here applies to any soft-outpyfynically non-integer) for the codeword i is sufficiently

symmetric channels where the transition probabiiftyr|o), noisy, then giving a strictly negative outpuP, < 0.
from the codewordr to the channel output, is a log-convex

function ofz, i.e., —log(?(x|o)) is a convex function of).
AWGN channel is our enabling example with

We consider LP decoding [8] of binary LDPC code an
discuss the problem of finding the most probable configur
tion of the noise, so-called instanton, for which the dengdi
fails [17]. Equivalently stated, this is the problem of fingi
the lowest weight (closest to the zero codeword) pseud
codeword of the code.

Description of theLPy(x) in Eq. (3) can be restated in
terms of a smaller set of beliefs, only bit beli@s= (B =
bi(1)]i =1,---,N). Then the “small polytope” formulation
of Eq. (3) becomes [24], [8]:

LPy(@) = miny (1 2x)i| . (4)
. . . . . B BePs
where s is the signal-to-noise ratio of the noise; = b
(i =0,1]i=1,---,N), is the binaryN-hits long codeword £P { VoVl Clg, [l is odd: ZBi— > Bi<l-1 }
5= le s

P(zlo) O eXp<—252_§1(Xi - 0i)2> , Q)

launched into the channel, ang= (x € R|i =1,---,N) is . I€la !
the real valued signal received by the decoder. vi:0<Bis1

Maximum Likelihood decoding can be formulated as anvherelq is the subset of bit-nodes contributing check
LP optimization over the polytope?, spanned by all the  The “large polytope” formulation of the LP-decodirg (3)
codewords of the cod€, can also be restated in terms of its dual (the formulatioe her
is almost identical to DLPD2 of [11])
miny (1— 2x)0] : )
7

a'e?P

LPy(z) = rgr?g%lz @+ O : ()

a

However, the full codeword polytope is exponentially laige
the code size and thus it is not tractable. Trading optimalit , ) oAty
for efficiency the authors of [8] have suggested to relax the 7, { Vi, Voi 1 0i(1-2%)—(1-20i) T a~ilia > @ }

. : a= Vo, Vog: TiogMNa(l—20;) > 6q ’
full polytope into a tractable one (stated in terms of a poly- » VOl Yicaia [
nomial, in the size of the code, number of constraints). The@here ¢ = (@i = 1,---,N), 8 = (B4la =1,--- ,M), A =
relaxation, coined LP-decoding, is based on decompositiqiiy|(i,a) € G1) are Lagrangian multipliers (messages) con-
of the code into small individual checks based codes thyggated to the first, second and third conditions in the adbi
assuring (by construction) that the set of original codelsor LP (3) respectively. According to the main (strong duality)
forms a subset of all the corners of the relaxed polytope (s¢theorem of the convex optimization (see many textbooks,
called set of pseudo-codewords). The LP-decoding can ey, [25]) the results of the primal problerl (3) and the dual
formulated in multiple ways. Following [17], we choose toproblem ) coincidel-P, = LP;.
start here with the formulation of LP, correspondent to the |, this manuscript we are mainly concerned with the

so-called zero-temperature version of the Bethe Free gnerﬂ)llowing practical problem: given a finite code, log-conea

approach of [23]: channel (for concreteness and without loss of generality we
. will consider AWGN channel as an example), and the LP-
LPp(x) = mban(l—in) Z) aibi(oi) ’ (3) decoding (in its primal or dual versions), to find the most
I 0;=0,1 . . . .
probable configuration (instanton) of the channel noisge,

Vit 3o bi(0i) =1, Va3, ba(oa) = 1; imposed on the zero codeword; = 0, which leads to
Vi, Ya~i: ¥4 (1—20)bi(oi)

beR

A= 5. (12%0))bu(0a) incorrect decoding. Formally, we are solving the following
= 204+ = 401)0a(0a); " “instanton” problem
Vi bi(01) > 0; Vo ba(og) >0 P
whereb are beliefsj.e., proxies for respective marginal prob- mmlnz Xi2 ) (6)
|

abilities. g is a polytope, which we call large (LP-decoding) z€Dext

polytope. B only depends on the structure (graph) of thavhere Dy is defined as an exterior (complement) of the
code (and it does not depend on the channel model). Thetemain, Dy, correspondent to the correct decodihg, =
are beliefs of two types associated with two types of noddsPy = 0. Thus,Dey = RN \ Dint.



[1l. D OMAIN OF CORRECTDECODING IS APOLYTOPE One important advantage of this formulation is in the fact
that Eq. [9) is stated as an optimization problem, in cohtras

Let us show thathyy is actually a polytope with the sequential instanton search optimization of [17],

Consider the following auxiliary domain dfe;0,®,A): where one optimizes over the noise, then evaluates an aitern
Ti@+50a=0 minimization (the LP decoding itself) for each configuratio
Fa=1< Vi, Voi: 0i(1—2%) — (1-20) Sguilia > @ ¢, of the noise. Note that the cost function in Ed. (9) is quadrat
Va, Voo SioqNa(l—20i) > 64 and concave.

constructed from the feasibility region of the dual problem Ed. (3) can be simplified further. We expect that the
LPy, with the zero cost function constraint added. For angxtremal value will be achieved (at least for sufficientisgka

x € Dy there obviously exists an extended configuratio) “at the surface” of the balli.e., at y;x = €. Replacing
(z,0,¢p,\) from 4. On the other hand, ifc € Dey, then « € Balle by this equality and performing optimization over
LP, = LPy < O (i.e, a pseudo-codeword, different from the, we arrive (with the help of the standard Lagrangian
zero codeword, is selected by the LP), and sih€g is Mmultiplier technique, and also assuming that all composent
defined as a maximum over an extension &f (where Of the candidate noise vector are positive) at the following
the first condition in7y is removed) there exists no valid honlinear optimization problem stated primarily in ternfs o
(z,0,¢,\) from 7y in this case. One concludes thag, (z)  the beliefs
coincides with the projection ofy on thex variable

Dint = Proj(#a), = {3(6,@\) s.t. (z;0,\) € Fa}.  (7) Q(e) = n’gn (.Z Bi—2¢ ZB?)

(10)

BePs
However both7y and its projection to are polytopesi.e.,

Dy is also a convex domain, moreover it is a pont&ae This problem can be solved approximately (but efficiently)

: . . via the majorization-minimization iterative method [22fn-
Note that the projected polytope is most likely nonwigiing in upper-bounding the cost function by its lineadz
tractable, in the sense that the number of constraintsnedjui expression, minimizing the upper-bound, and iterating by
to describe the polytope is expected to be exponential in th@iting the linearization point to the solution received o
dimension ofx (size of the code). the previous step. The linearization (for majorizationgath
iterative step is justified because of the following obvious

IV. SEARCH FORLOWESTWEIGHT PSEUDO-CODEWORD . .
inequality

AS AN OPTIMIZATION

Noticing, that Eq.[{B) is stated in terms of the exterior IBll2 > L(B; BY) = (B-B¥)/IIB¥]2,  (11)
domain, Dey;, Which is a compliment ofDy;, one attempts . . ) .
to formulate a closely related problem stated in terms d@’h'Ch holds for any. Then the iterative solution of Ed. (10)

optimization over a convex sub-domain ©fy;: becomes

;o (12

Q(g) = minLP(x)
x BePs

8 (k+D) (g) = min< i —2eL(B; p )
»cBall,” ® Q™ (e) =min{ 3 B —2eL(B: )
where Balf = {{ € RN : ||{]|2 < €} is the ball of radius _ . ® .
(which is convex by construction). For sufficiently small where k= 0,1, till convergence,™ is the optimal
solution of the optimization found at thle iteration step,

anyLP(x) = 0 for anyx € Ballg, while a gradual increase in and B<) becomes the optimal solution at tifle -+ 1)-th

€ will eventually lead, at some,, to appearance of the closest. ! S .
to the zero codeword (in terms of thenorm of the AWGN iteration. The optimization problem on the rhs of Hq.l(12) is

channel) noise configuratiomsis;, for which LP(zing) < an LP,i.e, it can be solved efficiently. We also expect that

0. One concludes that the function of a single parametetpe iterations ovek converge fast. The iterative procedure

) ; Will depend on the initiation set &= 0, and starting from
Q(e), jumps from zero at < ¢, to some negative value at different initial conditions we sample different local opa
€ =¢,. Then, 42 becomes the effective distance of the code P opa.

(under the LP-decoding), and the optimal value of Q(e.), Note thate,, defined as the smallest for which Q(¢)
corresponds to the most probable instanton. becomes negative, allows useful interpretation in terms of
the effective distance of the corresponding pseudo-codkwo
Indeed, 42 = w(B), where

Using primal formulation of LP-decoding from Ed.](4)
and combining minimization ovex and B variables, one

reformulates Eq[{8) as the following optimization problem (5iBi)?
W) == (13)
Q(e) = min’y (1—2x)B; .9 -
B 4 zcBall,, pens is the weight of the noise (and of the corresponding pseudo-

codeword) according to the Wiberg formula from [6], [7],

lV_Ve are thankful to P Vontobel for pointing out,_after readihe first expressnﬁ]g relation between the direction of the Optlmwmo
version of the manuscript, that the statement above islgloskated to these

made in [26]. See Fig. 11,12 of [26] as well as preceding afioiing ~ &nd the distance along the direction from the zero codeword
discussions. to the error-surface.
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Fig. 1. The Figure illustrates the sequential progress(fieft to right) of the majorization-minimization proce@urThe shaded area corresponds to
Peone Dashed lines on the left sub-figure show edgegofontaining the origid. The optimization starts frorﬁm). Thin solid lines are the level curves
of the linear functionL (B; ), which optimum oves results inB**%). The procedure continues till convergenpé*? =Bk (achieved withk = 2 in

the illustration).

V. CONE FORMULATION AND MAJORIZATION vertex of the original polytop&s, correspondent to a pseudo-
OPTIMIZATION ALGORITHM codeword with the lowest weight. All the other vertexes of
P, which are not connected to the origin, are projected to
To utilize Eq. [I0) for finding the low-weight pseudo-interior points of the cone polytop&€s,ne thus showing a
codewords one needs to scan over the values, dhus higher value of the weight.
making one-parametric optimization (over in addition o The choice of the cone cross-section in EG.](14) is
the (multi-dimensional) optimization contained in EQ.X10 conyenient for the purpose of simplifying the optimization
The main result of this Subsection is that this additiongyopjem [ID). It guarantees that the first term in the objecti
degree of freedom in the optimization is unnecessary, thig gq. [10) is constant, and thus the term is inessential for
leading to a simplification of EqL(10). the purpose of optimization. In the result, we arrive at the
Let us first show thatthe vertex off, correspondent to following reduced version of Eq[(1L0) (one less degree of
the pseudo-codeword with the lowest weight, is connected figedom and simpler polytope)
an edge to the vertex correspondent to the zero-codeword

Y — 2

Since the weight-functiony(B) from Eq. [13), does not Q= mpaxv IZB'
depend on the length of the vec@rone considerB, as the
direction in the respective space pointing from the origin;

(0,---,0), to a point within the polytopé&. It is convenient

(15)

BEPeone

According to the discussion above, solution of Elg.](15)
only describes the optimal direction in the noise spasge,

to parameterize the direction in terms of the projection t@nd ,the rzespectlve length IS reconstruct_ed from the yvelght
the 5; Bi = 1 plane. Pseudo-codewords correspond to specigiation £5=w(B). Thus our final expression for the optimal
values of the vector projected to the plane, and to find thd'0!S€ (m_stanton), correspondent to the (optimal) safitb
pseudo-codeword with the minimum weight we will need td=9- 13) i

minimize the weightw(B) = 1/ 3; B?, over the cross-section _p2ibi 16

of the polytope by the plane (projection). One restates the r _BZZi 2 (16)

proplem as max_lm_lz_anon OZ'.B' , Which is also equwa!ent The geometrical essence of the cone construction and of the
to finding B maximizing the distance to the central point of > ¥~ . ST L .
majorization-minimization procedure is illustrated irgHil.

the plane within the polytop&s, 1/N = (1,---,1)/N. & _ i )
is projected through the origin to the plane, thus forming a Few remarks are in order. First, note that there is some
polytope too (call it cone polytope) additional freedom in choosing the objective function ie th
optimization ove3. For example, one can replac\g,zi B?,
vavi~ai B S B under the sum in EqL{15) by; (B —3iBj/N)?, and the

T A (24) re;qlh_ng qptlmaB stays the same. Second, the majorization-

iBi=1 minimization procedure of Eq[(IL2) for Ed._{10), extends
straightforwardly to any appropriate choice of the objexti

(The projection is understood in the standard projectiaesp function in the reduced optimization, in particular the icieo
sense, with a line connecting a point within the polytop@f Eq. (I8), thus resulting in the sequence
with the point of origin,(0,---,0), projecting to the point
where the line crosses the plane.) Note that only face® of B = argmax3 - , 17)
in Eq. [4) with |I| =1 become faces of the cone polytope, B B Peone
Peone Further, maximum ofs; B? is attained at some vertex Third, the sequenc€(lL7) is monotonic by constructic,
of the polytope. By construction this vertex correspondmto the effective distance can only decrease with the iteration
edge connecting the point of origif0, ---,0) with another numberk, thus proving convergence.

Vi BiZO

Tcone -



The considerations above suggest the foIIowing_1 /,’—-
Majorization-Optimization AlgorithnrfMOA): "

. Start: Initiate a poinB(? inside the cone cross-section -0.8 ,1/ Lt [
Peone With @ random deviation from thél,1,...,1)/N. // P
[The sampling step.] % j%a

« Step 1: Construct a linear function with the gradient _; . ~ ',"'
vector pointing from(1,1,...,1)/N to B, optimize it r =
inside P.one according to Eq.[(17), and get the new
Bk+1), [The majorization-minimization step.] "

o Step 2:1f BktD £BK) | then go toStep 1 04 -

« End: Output the optimal noise configuration according

to Eq. [16).

Like PCS of [17], MOA is sensitive to the choice of the
initial direction in thef space, and this clarifies importance
of repeating sampling step multiple times. Obviously, an
individual sampling event outputs only pseudo-codewords 15 20 25 w30 35
sharing an edge irPs with the zero-codeword, call them y
“nearestneighbors", thus ignoring other pseuo-coddaior 78, %, The robatityresuency of cecuren, of e peeudo-
for example these which are “next-nearest-neighbors” o thyode [21]. Solid and dashed lines represent results 8ftddls of MOA
zero codewordj.e., ones sharing an edge with a pseudoand PCS algorithm of [17] respectively.
codeword which shares an edge with the zero-codeword.

Even though the effective distance of these “next-nearest-
neighbors” may be smaller than the effective distance of VI. TANNER CODE TEST

some of the “nearest-neighbors”, MOA guarantees that the\ye tested MOA on the popular example of the Tanner
exact solution of Eq[(15) can only be a “nearest-neighborty 55 64,20] code [21]. The results are shown in Fig. 2.

In the remainder of the Section let us briefly compardVe analyzed effective distance, of the pseudo-codewords

MOA with PCS. The iterative procedure of PCS is analogou@und in the result of 1btrials (different in initial orien-
to Eq. [I7) and it can be restated as tation). As in the case of the PCS of [17], the probability

(frequency)p(w), of finding pseudo-codeword with effective
) o Si B(k) distance smaller thaw, grows monotonically withw. Like
B*Y = argmax- | B' )'7(:()—1 . (18) PCS, MOA result for the smallest effective distance of
B Si(Bi)? Bes the code is,Wnin ~ 16.4037< 20, where 20 is the Ham-
—h=2z-1 ming distance of the code. However, we also observe that
MOA is sampling the low-weight “nearest-neighbor” pseudo-
Note, that,0w(B)/dB = (23;Bi)(3iB?) - h, so clearly, PCS codewords more efficiently than PCS, which is seen in a
aims to approximatev(), linearly inside the polytopefs.  steeper dependence pfw) as a function ofw in Fig.[2. As
The functionw(B) is a homogeneous function of degree Odiscussed above, we attribute the better performance of MOA
MOA takes advantage of this fact and attempts to minimizg stronger bias towards the zero codewords convergence, as
w(B) in the projective space o, indexed by the points well as simpler and more homogeneous (in the low weight
of Peone The value of max in[{I8) is non-negative, and it issector of the pseudo-codewords) initiation procedure.
exactly zero afp =B . If w(B) < N, vectorow()/dp points
away from the central directioh, and thus minimizatiori{18) VIl. CONCLUSIONS ANDPATH FORWARD
is not going to increas&(B), i.e., under this (weak and easy
to realize) condition the PCS is provably monotonic. Also
asf-(ow(B)/oB) = 0, PCS, like MOA, always converges
to vertices ofZs which are the “nearest-neighbors” of the
zero-codeword (the cone origin).

|

This paper reports new results related to analysis and al-
gorithms discovering the lowest-weight pseudo-codeva)rd(
of the LP decoding of graphical codes performing over soft-
output (log-concave) channels, like the AWGN channel. On
the theoretical side, we show here that the set of correct

Since PCS works wittdw(B)/dB, and not directly with decoding is a polytope in the space of noise. We also
w(B) like MOA, it “confuses”w(B) for being a homogeneous formulate the problem of finding the smallest weight noise
function of degree 1. Therefore, compared to MOA, PCS hgistanton) as an optimization problem, Ef.1(15), looking
an additional bias away from the cone origin, thus suggedier a maximum of a convex function over a convex set
ing that its convergence is slower and resulting end-poin{a polytope). The exact solution of the problem is likely
being further away from the cone origin. This assessment ron-tractable, and we suggest heuristic iterative aliyoriit
confirmed in the simulations of the next Section (seg, solution based on the majorization-minimization approafch
Fig.[2). the optimization theory [22]. We show that convergence of



both MOA and PCS, introduced in [17], is monotonic. We [7]
also compare the algorithms in simulations on the standard
example of the Tann€155 64,20] code [21], and observe

that MOA is superior in discovering the low-weight part of [g]

the

pseudo-codeword spectrum.

We plan to extend this research in the future along thd9]
following directions:

Test MOA on other and longer codes. (10]
Test MOA on other log-concave, but still binary, chan-
nels. We also envision extension of the technique tf1]
non-binary channels, especially these related to phaﬁ%]
modulation in modern fiber optics [27].

It will be useful to find a version of the majorization-
minimization initiation which samples the “nearest-[3!
neighbor” pseudo-codewords uniformly, or (preferably)
according to a given function of the effective weight.
The LP-decoding is a close relative of the gener[-14]
ally faster but more difficult to analyze iterative BP-
decodings. It will be useful to extend the polytope15]
theory and the MOA algorithm discussed in the paper
to the case of iterative decodings, for example to the
basic min-sum algorithm. [16]
Our major long-term goal consists in designing better
graphical codes. We anticipate that MOA will be instru{;7;
mental in searching over candidate codes (for example
sampled from a properly expurgated ensemble of LDPC
codes [3]) for the one showing the lowest error-floog;g
possible.
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