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Abstract— We analyze Linear Programming (LP) decoding of
graphical binary codes operating over soft-output, symmetric
and log-concave channels. We show that the error-surface,
separating domain of the correct decoding from domain of
the erroneous decoding, is a polytope. We formulate the
problem of finding the lowest-weight pseudo-codeword as a non-
convex optimization (maximization of a convex function) over a
polytope, with the cost function defined by the channel and the
polytope defined by the structure of the code. This formulation
suggests new provably convergent heuristics for finding the
lowest weight pseudo-codewords improving in quality upon
previously discussed. The algorithm performance is testedon
the example of the Tanner[155,64,20] code over the Additive
White Gaussian Noise (AWGN) channel.

I. I NTRODUCTION

Low-Density Parity Check (LDPC) codes are capac-
ity achieving (in the thermodynamic limit) and are easy
to decode via message-passing algorithms of the Belief-
Propagation (BP) type [1], [2], [3]. However, performance
of the efficient decoder on a given finite code is not ideal,
resulting in a sizable difference between optimal (Maximum
A-Posteriori) and the suboptimal decoders observed in the
asymptotics of Bit-Error-Rates (BERs) at the high Signal-
to-Noise-Ratios (SNR), in theerror floor regime [4]. Errors
in this extreme regime of theerror-floor are mainly due to
special configurations of the channel noise, called instantons
[5], correspondent to decoding into pseudo-codewords [6],
[7] different from any of the codewords of the code. Analysis
of the instantons and pseudo-codewords in the case of LP
decoder [8] is of a special interest. LP is a combinatorial
(zero-temperature) version of BP, thus admitting convenient
description in terms of the pseudo-codeword polytope [8].
The geometric structure associated with the polytope gave
rise to new decoding techniques related to graph covers [9],
adaptive processing of the polytope constraints [10], and
the concept of LP duality [11]. The succinct combinatorial
formulation of the coding was also useful in terms of
improving LP and thus reducing the gap between the LP
and MAP decoders [12], [13], [14], [15], [16].

In [17] we suggested an LP-specific heuristic Pseudo-
Codeword Search (PCS) algorithm. The main idea of the
algorithm was based on exploring the Wiberg relation, from
[6], [7], between pseudo-codeword and an optimal noise

configuration which lies on the median between the pseudo-
codeword and zero-codeword. In essence, the algorithm of
[17] performs a biased walk over the exterior of the domain
of correct LP decoding (surrounding zero codeword) and
arrives at the error-surface (boundary of the domain) in
a small finite number of steps. The algorithm, tested on
some number of codes over the AWGN channel, showed
excellent performance. For any noise initiation it always
approaches the error-surface monotonically in simulations,
even though the monotonicity proof was not provided. Latter
the algorithm was generalized to the case of discrete-output
channel (specifically Binary Symmetric (BS) channel) in
[18], [19], where the monotonicity proof was given. The
technique was also extended to discover the most probable
configurations of error-vectors in compressed sensing [20].

This paper continues the trend of [17] and analyzes
the error-surface and the associated low-weight pseudo-
codewords. We study the domain of correct decoding,
bounded by the error-surface; formulate the (channel spe-
cific) problem of finding the most probable configuration
of the noise leading to a failure (and respective pseudo-
codeword) as an optimization problem; design an efficient
heuristic; and illustrate performance of the algorithm on
the exemplary Tanner[155,64,20] code [21]. The main
statements of the manuscript are:

• The domain of correct decoding is a polytope in the
noise space. For a typical code the polytope is likely to
be non-tractable,i.e., requiring description exponential
in the code size. [Section III.]

• The problem of finding the lowest weight pseudo-
codeword of a graphical code over log-concave sym-
metric (for example AWGN) channel is reduced to
maximization of a convex function, associated with the
channel, over a polytope, associated with the code and
defined as the cross-section of the decoding polytope by
a plane. [Section IV.]

• We suggested Majorization Optimization Algorithm
(MOA), based on majorization-minimization [22] ap-
proximation of the aforementioned optimization formu-
lation. We showed that MOA, as well as previously
introduced PCS, are both monotonic in discovering
iteratively the low-weight pseudo-codewords (effective
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weight decreases with iterations). [Section V.] Perfor-
mances of MOA and PCS are tested on the Tanner code
over AWGN channel in Section VI.

II. PRELIMINARY DISCUSSIONS ANDDEFINITIONS

We consider LP decoding [8] of binary LDPC code and
discuss the problem of finding the most probable configura-
tion of the noise, so-called instanton, for which the decoding
fails [17]. Equivalently stated, this is the problem of finding
the lowest weight (closest to the zero codeword) pseudo-
codeword of the code.

The technique we discuss here applies to any soft-output,
symmetric channels where the transition probability,P (x|σ),
from the codewordσ to the channel outputx, is a log-convex
function ofx, i.e., − log(P (x|σ)) is a convex function ofx).
AWGN channel is our enabling example with

P (x|σ) ∝ exp

(

−2s2
N

∑
i=1

(xi −σi)
2

)

, (1)

where s is the signal-to-noise ratio of the noise,σ =
(σi = 0,1|i = 1, · · · ,N), is the binaryN-bits long codeword
launched into the channel, andx = (xi ∈ R|i = 1, · · · ,N) is
the real valued signal received by the decoder.

Maximum Likelihood decoding can be formulated as an
LP optimization over the polytope,P , spanned by all the
codewords of the codeC,

min
σ′ ∑

i
(1−2xi)σ′

i

∣
∣
∣
∣
σ′∈P

. (2)

However, the full codeword polytope is exponentially largein
the code size and thus it is not tractable. Trading optimality
for efficiency the authors of [8] have suggested to relax the
full polytope into a tractable one (stated in terms of a poly-
nomial, in the size of the code, number of constraints). The
relaxation, coined LP-decoding, is based on decomposition
of the code into small individual checks based codes thus
assuring (by construction) that the set of original codewords
forms a subset of all the corners of the relaxed polytope (so-
called set of pseudo-codewords). The LP-decoding can be
formulated in multiple ways. Following [17], we choose to
start here with the formulation of LP, correspondent to the
so-called zero-temperature version of the Bethe Free Energy
approach of [23]:

LPp(x) = min
b

∑
i

(1−2xi) ∑
σi=0,1

σibi(σi)

∣
∣
∣
∣
b∈Pl

, (3)

Pl =







∀i : ∑σi
bi(σi) = 1; ∀α : ∑σα bα(σα) = 1;

∀i, ∀α ∼ i : ∑σi
(1−2σi)bi(σi)

= ∑σα(1−2σi)bα(σα);
∀i : bi(σi)≥ 0; ∀α : bα(σα)≥ 0







,

whereb are beliefs,i.e., proxies for respective marginal prob-
abilities.Pl is a polytope, which we call large (LP-decoding)
polytope.Pl only depends on the structure (graph) of the
code (and it does not depend on the channel model). There
are beliefs of two types associated with two types of nodes

in the parity check graph of the code,G , bits i and checks
α respectively.σi = 0,1 represent values of the biti, and the
vectorσα = (σi |i ∼α;s.t. ∑i σi = 0 mod 2) stands for one of
the allowed local codewords associated with the checkα. Of
the conditions in the definition ofPl , the first two equalities
are normalizations (for the beliefs/probabilities), the third
equality states consistency between beliefs associated with
bits and checks. The two last inequalities inPl ensure that
the beliefs (probabilities) are positive. If the channel noise
corrupting the zero codeword is sufficiently weak,i.e., if
|x| ≪ 1, the LPp outputs zero, corresponding to successful
decoding. However,LPp confuses another pseudo-codeword
(typically non-integer) for the codeword ifx is sufficiently
noisy, then giving a strictly negative output,LPp < 0.

Description of theLPp(x) in Eq. (3) can be restated in
terms of a smaller set of beliefs, only bit beliefsβββ = (βi =
bi(1)|i = 1, · · · ,N). Then the “small polytope” formulation
of Eq. (3) becomes [24], [8]:

LPp(x) = min
βββ

∑
i

(1−2xi)βi

∣
∣
∣
βββ∈Ps

, (4)

Ps=







∀α∀I ⊆ Iα, |I | is odd : ∑
i∈I

βi− ∑
i∈Iα\I

βi ≤ |I |−1

∀i : 0≤ βi ≤ 1






,

whereIα is the subset of bit-nodes contributing checkα.

The “large polytope” formulation of the LP-decoding (3)
can also be restated in terms of its dual (the formulation here
is almost identical to DLPD2 of [11])

LPd(x) = max
θ,φ,λ

∑
i

φi +∑
α

θα

∣
∣
∣
∣
∣
θ,φ,λ∈Pd

, (5)

Pd=

{
∀i, ∀σi : σi(1−2xi)−(1−2σi)∑α∼iλiα ≥ φi

∀α, ∀σα : ∑i∼α λiα(1−2σi)≥ θα

}

,

where φ = (φi |i = 1, · · · ,N), θ = (θα|α = 1, · · · ,M), λ =
(λiα|(i,α) ∈ G1) are Lagrangian multipliers (messages) con-
jugated to the first, second and third conditions in the original
LP (3) respectively. According to the main (strong duality)
theorem of the convex optimization (see many textbooks,
e.g., [25]) the results of the primal problem (3) and the dual
problem (5) coincide,LPp = LPd.

In this manuscript we are mainly concerned with the
following practical problem: given a finite code, log-concave
channel (for concreteness and without loss of generality we
will consider AWGN channel as an example), and the LP-
decoding (in its primal or dual versions), to find the most
probable configuration (instanton) of the channel noise,x,
imposed on the zero codeword,σ0 = 0, which leads to
incorrect decoding. Formally, we are solving the following
“instanton” problem

min
x

∑
i

x2
i

∣
∣
∣
∣
x∈Dext

, (6)

where Dext is defined as an exterior (complement) of the
domain,Dint , correspondent to the correct decoding:LPp =
LPd = 0. Thus,Dext = RN \Dint .



III. D OMAIN OF CORRECTDECODING IS A POLYTOPE

Let us show thatDint is actually a polytope.

Consider the following auxiliary domain of(x;θ,φ,λ):

Fd =







∑i φi +∑α θα = 0
∀i, ∀σi : σi(1−2xi)− (1−2σi)∑α∼i λiα ≥ φi

∀α, ∀σα : ∑i∼α λiα(1−2σi)≥ θα






,

constructed from the feasibility region of the dual problem,
LPd, with the zero cost function constraint added. For any
x ∈ Dint there obviously exists an extended configuration
(x,θ,φ,λ) from Fd. On the other hand, ifx ∈ Dext, then
LPp = LPd < 0 (i.e., a pseudo-codeword, different from the
zero codeword, is selected by the LP), and sinceLPd is
defined as a maximum over an extension ofFd (where
the first condition inFd is removed) there exists no valid
(x,θ,φ,λ) from Fd in this case. One concludes thatDint(x)
coincides with the projection ofFd on thex variable

Dint = Proj(Fd)x = {∃(θ,φ,λ) s.t. (x;θ,φ,λ) ∈ Fd}. (7)

However bothFd and its projection tox are polytopes,i.e.,
Dint is also a convex domain, moreover it is a polytope1.

Note that the projected polytope is most likely non-
tractable, in the sense that the number of constraints required
to describe the polytope is expected to be exponential in the
dimension ofx (size of the code).

IV. SEARCH FORLOWESTWEIGHT PSEUDO-CODEWORD

AS AN OPTIMIZATION

Noticing, that Eq. (6) is stated in terms of the exterior
domain,Dext, which is a compliment ofDint , one attempts
to formulate a closely related problem stated in terms of
optimization over a convex sub-domain ofDint :

Q(ε) = min
x

LP(x)
∣
∣
∣
x∈Ballε

, (8)

where Ballε ≡ {ζζζ ∈ RN : ‖ζζζ‖2 ≤ ε} is the ball of radiusε
(which is convex by construction). For sufficiently smallε
anyLP(x) = 0 for anyx∈ Ballε, while a gradual increase in
ε will eventually lead, at someε∗, to appearance of the closest
to the zero codeword (in terms of thel2 norm of the AWGN
channel) noise configuration,xinst, for which LP(xinst) ≤
0. One concludes that the function of a single parameter,
Q(ε), jumps from zero atε < ε∗ to some negative value at
ε = ε∗. Then, 4ε2

∗ becomes the effective distance of the code
(under the LP-decoding), and the optimal value,x∗ of Q(ε∗),
corresponds to the most probable instanton.

Using primal formulation of LP-decoding from Eq. (4)
and combining minimization overx and βββ variables, one
reformulates Eq. (8) as the following optimization problem

Q(ε) = min
βββ,x

∑
i
(1−2xi)βi

∣
∣
∣
∣
∣
x∈Ballε, βββ∈Ps

. (9)

1We are thankful to P. Vontobel for pointing out, after reading the first
version of the manuscript, that the statement above is closely related to these
made in [26]. See Fig. 11,12 of [26] as well as preceding and following
discussions.

One important advantage of this formulation is in the fact
that Eq. (9) is stated as an optimization problem, in contrast
with the sequential instanton search optimization of [17],
where one optimizes over the noise, then evaluates an internal
minimization (the LP decoding itself) for each configuration
of the noise. Note that the cost function in Eq. (9) is quadratic
and concave.

Eq. (9) can be simplified further. We expect that the
extremal value will be achieved (at least for sufficiently large
ε) “at the surface” of the ball,i.e., at ∑i x

2
i = ε2. Replacing

x ∈ Ballε by this equality and performing optimization over
x, we arrive (with the help of the standard Lagrangian
multiplier technique, and also assuming that all components
of the candidate noise vector are positive) at the following
nonlinear optimization problem stated primarily in terms of
the beliefs

Q(ε) = min
βββ

(

∑
i

βi −2ε
√

∑
i

β2
i

)∣
∣
∣
∣
∣
βββ∈Ps

. (10)

This problem can be solved approximately (but efficiently)
via the majorization-minimization iterative method [22],con-
sisting in upper-bounding the cost function by its linearized
expression, minimizing the upper-bound, and iterating by
shifting the linearization point to the solution received on
the previous step. The linearization (for majorization) ateach
iterative step is justified because of the following obvious
inequality

‖βββ‖2 ≥ L
(
βββ; βββ(k)) =

(
βββ ·βββ(k))/‖βββ(k)‖2, (11)

which holds for anyβββ. Then the iterative solution of Eq. (10)
becomes

Q(k+1)(ε) = min
βββ

(

∑
i

βi −2εL
(
βββ; βββ(k))

)∣
∣
∣
∣
βββ∈Ps

, (12)

where k = 0,1, · · · till convergence,βββ(k) is the optimal
solution of the optimization found at thek iteration step,
and βββ(k+1) becomes the optimal solution at the(k+ 1)-th
iteration. The optimization problem on the rhs of Eq. (12) is
an LP, i.e., it can be solved efficiently. We also expect that
the iterations overk converge fast. The iterative procedure
will depend on the initiation set atk = 0, and starting from
different initial conditions we sample different local optima.

Note that ε∗, defined as the smallestε for which Q(ε)
becomes negative, allows useful interpretation in terms of
the effective distance of the corresponding pseudo-codeword.
Indeed, 4ε2

∗ = w(βββ), where

w(βββ) =
(∑i βi)

2

∑i β2
i

. (13)

is the weight of the noise (and of the corresponding pseudo-
codeword) according to the Wiberg formula from [6], [7],
expressing relation between the direction of the optimal noise
and the distance along the direction from the zero codeword
to the error-surface.
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Fig. 1. The Figure illustrates the sequential progress (from left to right) of the majorization-minimization procedure. The shaded area corresponds to
Pcone. Dashed lines on the left sub-figure show edges ofPs containing the origin0. The optimization starts fromβββ(0). Thin solid lines are the level curves
of the linear functionL

(
βββ; βββ(k)

)
, which optimum overβββ results inβββ(k+1). The procedure continues till convergence,βββ(k+1) = βββ(k) (achieved withk= 2 in

the illustration).

V. CONE FORMULATION AND MAJORIZATION

OPTIMIZATION ALGORITHM

To utilize Eq. (10) for finding the low-weight pseudo-
codewords one needs to scan over the values ofε, thus
making one-parametric optimization (overε) in addition to
the (multi-dimensional) optimization contained in Eq. (10).
The main result of this Subsection is that this additional
degree of freedom in the optimization is unnecessary, thus
leading to a simplification of Eq. (10).

Let us first show that:the vertex ofPs, correspondent to
the pseudo-codeword with the lowest weight, is connected by
an edge to the vertex correspondent to the zero-codeword.

Since the weight-function,w(βββ) from Eq. (13), does not
depend on the length of the vectorβββ, one considersβββ, as the
direction in the respective space pointing from the origin,0=
(0, · · · ,0), to a point within the polytopePs. It is convenient
to parameterize the direction in terms of the projection to
the ∑i βi = 1 plane. Pseudo-codewords correspond to special
values of theβββ vector projected to the plane, and to find the
pseudo-codeword with the minimum weight we will need to
minimize the weight,w(βββ) = 1/∑i β2

i , over the cross-section
of the polytope by the plane (projection). One restates the
problem as maximization of∑i β2

i , which is also equivalent
to findingβββ maximizing the distance to the central point of
the plane within the polytopePs, 1/N = (1, · · · ,1)/N. Ps

is projected through the origin to the plane, thus forming a
polytope too (call it cone polytope)

Pcone=







∀i : βi ≥ 0
∀α∀i ∼ α : βi ≤ ∑

j∼α. j 6=i

β j

∑i βi = 1







. (14)

(The projection is understood in the standard projective space
sense, with a line connecting a point within the polytope
with the point of origin,(0, · · · ,0), projecting to the point
where the line crosses the plane.) Note that only faces ofPs

in Eq. (4) with |I | = 1 become faces of the cone polytope,
Pcone. Further, maximum of∑i β2

i is attained at some vertex
of the polytope. By construction this vertex corresponds toan
edge connecting the point of origin,(0, · · · ,0) with another

vertex of the original polytopePs, correspondent to a pseudo-
codeword with the lowest weight. All the other vertexes of
Ps, which are not connected to the origin, are projected to
interior points of the cone polytopePcone, thus showing a
higher value of the weight.

The choice of the cone cross-section in Eq. (14) is
convenient for the purpose of simplifying the optimization
problem (10). It guarantees that the first term in the objective
of Eq. (10) is constant, and thus the term is inessential for
the purpose of optimization. In the result, we arrive at the
following reduced version of Eq. (10) (one less degree of
freedom and simpler polytope)

Q̃= max
βββ

√

∑
i

β2
i

∣
∣
∣
∣
βββ∈Pcone

. (15)

According to the discussion above, solution of Eq. (15)
only describes the optimal direction in the noise space,x,
and the respective length is reconstructed from the weight
relation 4ε2

∗ =w(βββ). Thus our final expression for the optimal
noise (instanton), correspondent to the (optimal) solution of
Eq. (15) is

x= βββ ∑i βi

2∑i β2
i

. (16)

The geometrical essence of the cone construction and of the
majorization-minimization procedure is illustrated in Fig. 1.

Few remarks are in order. First, note that there is some
additional freedom in choosing the objective function in the

optimization overβββ. For example, one can replace,
√

∑i β2
i ,

under the sum in Eq. (15) by∑i(βi −∑ j β j/N)2, and the
resulting optimalβββ stays the same. Second, the majorization-
minimization procedure of Eq. (12) for Eq. (10), extends
straightforwardly to any appropriate choice of the objective
function in the reduced optimization, in particular the choice
of Eq. (15), thus resulting in the sequence

βββ(k+1) = argmax
βββ

βββ ·βββ(k)

∣
∣
∣
∣
βββ∈Pcone

. (17)

Third, the sequence (17) is monotonic by construction,i.e.,
the effective distance can only decrease with the iteration
numberk, thus proving convergence.



The considerations above suggest the following
Majorization-Optimization Algorithm(MOA):

• Start: Initiate a pointβββ(0) inside the cone cross-section
Pcone with a random deviation from the(1,1, ...,1)/N.
[The sampling step.]

• Step 1: Construct a linear function with the gradient
vector pointing from(1,1, ...,1)/N to βββ(k), optimize it
inside Pcone according to Eq. (17), and get the new
βββ(k+1). [The majorization-minimization step.]

• Step 2: If βββ(k+1) 6= βββ(k), then go toStep 1.
• End: Output the optimal noise configuration according

to Eq. (16).

Like PCS of [17], MOA is sensitive to the choice of the
initial direction in theβββ space, and this clarifies importance
of repeating sampling step multiple times. Obviously, an
individual sampling event outputs only pseudo-codewords
sharing an edge inPs with the zero-codeword, call them
“nearest-neighbors”, thus ignoring other pseudo-codewords,
for example these which are “next-nearest-neighbors” to the
zero codeword,i.e., ones sharing an edge with a pseudo-
codeword which shares an edge with the zero-codeword.
Even though the effective distance of these “next-nearest-
neighbors” may be smaller than the effective distance of
some of the “nearest-neighbors”, MOA guarantees that the
exact solution of Eq. (15) can only be a “nearest-neighbor”.

In the remainder of the Section let us briefly compare
MOA with PCS. The iterative procedure of PCS is analogous
to Eq. (17) and it can be restated as

βββ(k+1) = argmax
βββ

βββ ·

(

βββ(k) ∑i β(k)
i

∑i(β
(k)
i )2

−1

)

︸ ︷︷ ︸

−h=2x−1

∣
∣
∣
∣
βββ∈Ps

. (18)

Note, that,∂w(βββ)/∂βββ = (2∑i βi)(∑i β2
i ) ·h, so clearly, PCS

aims to approximatew(βββ), linearly inside the polytope,Ps.
The functionw(βββ) is a homogeneous function of degree 0.
MOA takes advantage of this fact and attempts to minimize
w(βββ) in the projective space ofβββ, indexed by the points
of Pcone. The value of max in (18) is non-negative, and it is
exactly zero atβββ=βββ(k). If w(βββ)<N, vector∂w(βββ)/∂βββ points
away from the central direction1, and thus minimization (18)
is not going to increasew(βββ), i.e., under this (weak and easy
to realize) condition the PCS is provably monotonic. Also,
as βββ · (∂w(βββ)/∂βββ) = 0, PCS, like MOA, always converges
to vertices ofPs which are the “nearest-neighbors” of the
zero-codeword (the cone origin).

Since PCS works with∂w(βββ)/∂βββ, and not directly with
w(βββ) like MOA, it “confuses”w(βββ) for being a homogeneous
function of degree 1. Therefore, compared to MOA, PCS has
an additional bias away from the cone origin, thus suggest-
ing that its convergence is slower and resulting end-points
being further away from the cone origin. This assessment is
confirmed in the simulations of the next Section (see,e.g.,
Fig. 2).
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w

)
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Fig. 2. The probability/frequency of occurrence,ρ(w), of the pseudo-
codewords with effective weightw or smaller for the Tanner[155,64,20]
code [21]. Solid and dashed lines represent results of 104 trials of MOA
and PCS algorithm of [17] respectively.

VI. TANNER CODE TEST

We tested MOA on the popular example of the Tanner
[155,64,20] code [21]. The results are shown in Fig. 2.
We analyzed effective distance,w, of the pseudo-codewords
found in the result of 104 trials (different in initial orien-
tation). As in the case of the PCS of [17], the probability
(frequency),ρ(w), of finding pseudo-codeword with effective
distance smaller thanw, grows monotonically withw. Like
PCS, MOA result for the smallest effective distance of
the code is,wmin ≈ 16.4037< 20, where 20 is the Ham-
ming distance of the code. However, we also observe that
MOA is sampling the low-weight “nearest-neighbor” pseudo-
codewords more efficiently than PCS, which is seen in a
steeper dependence ofρ(w) as a function ofw in Fig. 2. As
discussed above, we attribute the better performance of MOA
to stronger bias towards the zero codewords convergence, as
well as simpler and more homogeneous (in the low weight
sector of the pseudo-codewords) initiation procedure.

VII. C ONCLUSIONS ANDPATH FORWARD

This paper reports new results related to analysis and al-
gorithms discovering the lowest-weight pseudo-codeword(s)
of the LP decoding of graphical codes performing over soft-
output (log-concave) channels, like the AWGN channel. On
the theoretical side, we show here that the set of correct
decoding is a polytope in the space of noise. We also
formulate the problem of finding the smallest weight noise
(instanton) as an optimization problem, Eq. (15), looking
for a maximum of a convex function over a convex set
(a polytope). The exact solution of the problem is likely
non-tractable, and we suggest heuristic iterative algorithmic
solution based on the majorization-minimization approachof
the optimization theory [22]. We show that convergence of



both MOA and PCS, introduced in [17], is monotonic. We
also compare the algorithms in simulations on the standard
example of the Tanner[155,64,20] code [21], and observe
that MOA is superior in discovering the low-weight part of
the pseudo-codeword spectrum.

We plan to extend this research in the future along the
following directions:

• Test MOA on other and longer codes.
• Test MOA on other log-concave, but still binary, chan-

nels. We also envision extension of the technique to
non-binary channels, especially these related to phase
modulation in modern fiber optics [27].

• It will be useful to find a version of the majorization-
minimization initiation which samples the “nearest-
neighbor” pseudo-codewords uniformly, or (preferably)
according to a given function of the effective weight.

• The LP-decoding is a close relative of the gener-
ally faster but more difficult to analyze iterative BP-
decodings. It will be useful to extend the polytope
theory and the MOA algorithm discussed in the paper
to the case of iterative decodings, for example to the
basic min-sum algorithm.

• Our major long-term goal consists in designing better
graphical codes. We anticipate that MOA will be instru-
mental in searching over candidate codes (for example
sampled from a properly expurgated ensemble of LDPC
codes [3]) for the one showing the lowest error-floor
possible.
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