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Abstract— In this paper, we investigate the additive Gaussian in Section VII.
noise channel with noisy feedback. We consider the setup  Notations: Uppercase and corresponding lowercase letters

of linear coding of the feedback information and Gaussian (eq.Y,Z,y,z) denotes random variables and realizations

signaling of the message (i.e. Cover-Pombra Scheme). Theme . n T
derive the upper and lower bounds on the largest achievable "€SPectively.x" represents the vectdixy,xp,---, x|’ and

rate for this setup. We show that these two bounds can be X°=0.l, represents anx nidentity matrix.K, >0 (K, >0)
obtained by solving two convex optimization problems. Findy,  denotes that th@ x n matrix K, is positive definite (semi-

we present some simulations and discussion. definite).log denotes the logarithm base 2 and OlegO.

The expectation operator ov&ris presented ag(X).
I. INTRODUCTION

. . . . Il. TECHNICAL PRELIMINARIES
The study of the additive Gaussian noise channel with

feedback has been a hot research topic for decades. So faln this section, we review some main definitions and
a large body of work has looked at the ideal feedback cas€mmas in information theory. .

and obtained many notable results [1]-[5]. As an illustrati ~ Definition 1: [13] The mutual informationl (X;Y) be-

it is known that noiseless feedback improves the errdween two random variables with joint densifyx,y) is
exponent and reduces the coding complexity. However, onfigfined as

few papers have studied channels with noisy feedback and ] " f(xy)

many open problems still exist. Literature on noisy feedtbac H(X:Y) :/ f(xy)log f(x)f(y) dxdy

problems can be largely classified into two categories. The Let h(X) denote the differential entropy of a random
first category studies the usefulness of noisy feedback lwariable X. Then it is clear that

investigating reliability functions and error exponen€, [ _

[7]. The second focuses on the derivation of coding schemes H(X;Y) = h(Y) —h(Y|X)

refer interested readers to [2], [8]-[11] for details. Lemma 1: [13] Let the random vectoX € R" have zero

In this paper, we investigate the behavior of the largeskean and covariandéxn = EXXT (i.e. Kij = EXX], 1<
achievable rate of the additive Gaussian noise channel with; < 1), Then ’ B

noisy feedback, under the restriction of linear feedback
coding scheme (i.e.Cover-Pombra Scheme). We derive in- h(X) < }|Og(2n-e)”deﬂ(x‘n
formative upper and lower bounds on the largest achievable 2 '
rate. This upper bound outperforms the bound presentgdth equality if and only ifX ~ N(0,Kyn).
in [12], especially, in the case of having small feedback Finally, we introduce an meaningful notion of directivity
noise. The lower bound shows the enhancement, in terrts the information flow through a channel [3].
of the achievable rate, by exploiting the noisy feedback.lin  Definition 2: The directed information (X" — Y") from
Additionally, the derived bounds provide insight on how thea sequenc&" to a sequenc¥" is defined by
noisy feedback channel behaves with respect to the feedback no _
noise. I(X" = Y") = S I(Xhy Y-t
The paper is organized as follows. In Sectioh I, we = :
introduce some important definitions and lemmas, which ar(? I ha; _b](ceen showr_1 in 3], when ff?edback_ IS hpreser?t,
used throughout the paper. In Section lll, we introduce the're(.:?e n ormatpn 'S a more usetu quantity than the
; . .traditional mutual information.
signal model of the noisy feedback channel and then derive
the formula of the achievable rate. In Sec AV d V, we I11. M ODELING AND ACHIEVABLE RATE
derive an upper bound and a lower bound on the Iargeit
achievable rate, respectively. We present some simulatiofi

results and discussion in Section] VI and conclude the paperConsider a point-to-point additive Gaussian noise channel
with access to an additive Gaussian noise feedback link.
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If the feedback is ideal (i.eKyn = Opn), expression[{l) is

n_ &N n i n
X' =s"+B,(w'+v") y simplified to

A 4

M—> Encoder > Decoder 7 -
7'y * fb 1 det((In+Bn)Kwn(ln+Bn)" +Ksgn)
C,’(P)= max —log ' :
Bn,Ksn N detKwn

wheredb(P) denotes then-block capacity of the additive
o Gaussian noise channel with ideal feedback ar{#s, +
TI BnKwnBl) < nP. Note that the fact déit, + By,) = det(l, +
V" Bn)" = 1 is applied in the simplification. [14] found that
this problem can be transformed into a well-known convex
Fig. 1. A additive Gaussian noise channel with noisy feekbac ~ OPtimization problem called the matrix determinant maxi-
mization (max-det) problem and, then, solved efficiently.
If there exists no feedback (i.8, = Opn), expression[{1)
we consider a system with linear encoding of the feedbad& simplified to
signal and Gaussian signaling of the message (i.e. shown in

N 1. detKyn+Kspn)
a vector form in Fig[1) [12]. openpy — Zlog =AW T Thsn)
gt) [12] CoPeP) Tgxn 0g deti<un
The channel input signak™ = "+ Bp(w" + V") where CaP®'(P) denotes then-block capacity of the open-
The channel output signay" = s" + Bp(w" +v") +w" loop additive Gaussian noise channel anKspn) < nP. It

The power constraint: (K s+ Bn(Kwn+Kyn)BL) <nP is well known that this optimization problem can be solved
' ' ' by water-filling on the eigenvalues ¢f,%.
wherew" ~ N(0,Kyn) and v" ~ N(0,K ). We assume Unlike the _abo.ve.z two simpliﬁeq forms, the_optimization
that Ky,n > 0 andKy, > 0 and, therefore, these covariancd®roblem [1) is difficult to solve (i.e. not easily expressed
matrices are invertible. Here!) ~ N(0,Ksy) is the message " @ convex form). Furthermore, the expression RY™/
information vector.B, is ann x n strictly lower triangular 0€S not provide much information about the behavior of the
linear encoding matrix. Note that the one-step delay in thghannel with respect to the feedback noise. This motivates u

feedback link is dealt with the structure of mati, and O derive the effective upper and lower boundsRifia(P),
random variables”,v"w" are automatically assumed to peffom which we can discover some characterizations of the

independent. noisy feedback channel.

. . noisy
Remark 1:The bounds provided later in the paper are IV. AN UPPERBOUND ON Rq max(P)

only valid for this specific setup. In other words, the |, this section, we first present an upper bound on the
bounds may not be true for the capacity (i.e. the maximumchievaple rate of a general channel with additive noise
achievable rate over all encoding strategies). Informativieeqhack (i.e. not restricted to be an additive Gaussiasenoi

computable bounds on the capacity of channels with noigfhannel). Then, we show that, for the noisy feedback Gaus-
feedback, however, are not known. sian channel under linear feedback coding scheme, thisuppe

B. n-block Achievable Rate bound can be obtained by solving a convex optimization

problem.
Based on the above model, we obtain the n-block achiev- | emma 2:For a point-to-point communication channel
NOIS
able rateRy”* as with additive noise feedback, we have
oy 1
Rnno'sy:ﬁl (M;Y™) L(M; YY) < I (XM= YOIV < I(X" = Y™ <1 (XY™
:EI (ShY") (a) The first and second equalities hold if there exists an ideal
2 feedback (i.eV" = 0). The last equality holds if these exists
:ﬁ(h(Y”) —h(Y"|9") no feedback.
71- log det((In+Bn)Kwn(In+ Bn)T + BnKv,nB-rq +Ksn) Proof:
n det((In+ Bn)Kwn(ln+Bn)T +BnKynB}) [(M;Y™)
(a) follows the fact that the message information ve&bis =h(M) —h(M[Y")
determined by the messadf and the last equality follows <h(M) —h(M|Y",V™)
from Lemmall. We denote the largest n-block achievable (a) N N on
rate under power constraift as Rima(P) where =h(M|V") —h(M[Y",V")
_ : =I(M;Y V")
RAS(P) = max RS (1)

BnKan =h(Y"V") — h(Y"|M, V™)



n . .
= zih(Yi Y=L VM) —h(Y Y1 M, v convex optimization problem.

® § h(Y[Y =L, v™) —h(Y Y=L M, V", X maximize iIogdet Kur Bal _ iIogde(Kflen)
- Zl i ’ i s IV, ) Hn.Bn 2n Bn HrI 2n v,n d

subject to tr(Hp — KynB! — BnKwn — Kwn) < nP
Hn  In+B} B}
['n-i—Bn K\T\/% On] >0
Bn O Kyt
Bp is strictly lower triangular

n . . .
9 3 AOHYLVT) — YY)

n

=3 1YLV
2

=1(X" = Y"V"

(a) follows from the fact tha andV" are independent. (b) Proof: We are beginning with the opt|m|zat|0n
follows from the fact thaX' can be determined byl and the problem 2). LetH, = (In+ Bn)Kwn(ln + Bn) +Kgn+
outputs of the feedback link (i. &1+ Vvi-1), (c) follows BnKynB/, we have
from the Markov chainvl — (Y'=1 X! V") — V.. Note that '
the equality holds iv"=0

Next, we have

(X" = Y V™)

(X" = Y V")

—
—~

a

=

h(YE Y1,V —h(Y Y X7

h(Y] Y"1, V™) — h(X +WY'~1 X wi—1)

& 3 BV — YRV

JWDWJ

hOYE Y,V — h(Ww )

n . . .
© zih(Yi YL V) — Y|y X))

< hYY'l h(YiY' =1 X :(YN ~hw)
_ | XI Y|Y| 1 :h((ln—FBn)Wn—FQ)—h(Wn)
Zl @}Iog det((In+Bn)Kwn(In+Bn)" +Ksn)
1, det(Hy—ByKynBl)
where (d) follows from step (c) and (e) follows from the :élog detk
Markov chainV" — (Y'=1 X') — Y;. Note that the equality wn
holds if v = 0. where (a) follows from step (e) in the proof of Lemfda 2 and
The last inequalityl (X" — Y") < I(X™Y") is proved in  (p) follows from LemmdL.

[3]. = Also, we have

It is known that, for ideal feedback channels, the directed
information | (X" — Y") is an appropriate measure on the tr(Kyn) <nP< tr(Ksn+Bn(Kyn+Kwn)B}) <nP
achievable rate and, therefore, can correctly charaetéhiz & tr(Hn— KwnBl — BnKyn — Kwn) < nP
ideal feedback channel capacity [15]. However, Lenitha 2 '
shows that, for noisy feedback channels, the conditional Next, we have the following equivalences by applying the
directed informationl (X" — Y"|V") performs as a better Schur complement
upper bound on the achievable rate tH@K" — Y"). This K;n B, T 1
motivates us to také(X" — Y"V") as an upper bound on (1 )det[ Hn] = detHn —BnKunBy ) ety
ChoY(P) instead off (X" — Y") and investigate the following (2)-

optimization problem.
P P Ksn>0< Hn— (In+Bn)Kyn(ln+Bn)" —BnKynB] >0

- 1
maximize =1(X" — Y"|V") Hn  In+Bf Bf
BnKsn N @ In+Bn  Kyh O [ >0
subject to tr(Kyxn) <nP Ksgn>0 Bn On Kyn
By is strictly lower triangular ) ) o
By taking simple replacements on the optimization prob-
Next, we show that the above optimization problem cafem (2), the proof is complete. [ |

be transformed into a convex form. Note thatH, is the covariance of the received signal

Theorem 1:An upper bound on the largest n-blocky". This upper bound provides interesting insight because
achievable rate of linear feedback coding scheme for Gaus-shows that the effect of the noise in the feedback link can
sian channels with additive noise feedback, as shown in Fige formulated as the allocation of the channel input power
[, can be obtained as the optimal value of the followind?. As shown in the proof of Theoreld 1, we can rewrie (2)
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subject to tr(Ksn+Bn(Kun+Kwn)B) <P Ksn>0  can pe obtained as the optimal value of the following convex

By is strictly lower triangular optimization problem.

®3) 0
Kyn herein only affects the power constraint.f,, = Op, maH>r§!‘r3nn|ze 2n
the optimization probleni{3) recovers the n-block capacity subject to tr(Hn— KyunBr — BnKuwun — Kwyn) < NP
of channels with ideal feedback [4]. This implies that, for H ) L gT ’ ’
channels with noisy feedback, it is necessary to assigaioert L +”B r|‘<,1 n
amount of power to cancel the effect of the feedback noise nTen wun
such that the message can be recovered by the decoder with Bn is strictly lower triangular
an arbitrarily small error probability. If the noise in the\hereK nn = Kyn+ Kun.
feedback link increases (i.K.,» grows large in some sense), The proof is similar to that in [14] by considering the
the feedback benefit in increasing reliable transmissit® ragpoye setup.
vanishes. Namely, the noisy feedback system behaves like aremark 2: This lower bound is tight whely,, = 0 and
nonfeedback system since, due to the power const@int, pecomes increasing loose a, increases. This lower
approache$y, asKyn grows. Note that this upper bound ispoynd becomes useless when it is below the corresponding

1
logdetH, — n log detK yyn

E

tight whenK\, is either small or large. nonfeedback capacity. Since we restrict the feedback godin
V. A LOWERBOUND oN RI(P) scheme to be lineaRhmax is in fact a lower bound of the

capacity. Therefore, the lower bound a‘ﬁf:{fgx is obviously

First of all, we consider a new channel with noisy feedva"d for the capacity.

back, as shown in Fig.2. An identical Gaussian noisis

added on the channel output. Then, V1. SIMULATIONS AND DISCUSSION
N =x" w4 V" In this section, we performed simulations for a specific
—&" 4 (By+ In) (W' 4+ V") channel with noisy feedback link. We assumed that the

forward channel is created by a first order moving average
Since the decoder is not able to access the new additigest-MV) Gaussian process. Namely,

noise, the largest achievable rate of the new channel must
be a lower bound on that of the original channel (shown in W =Ui+aUi_1
Fig[). This motivates us to solve the following optimizati

o . whereU; is a white Gaussian process with zero mean and
problem for obtaining this lower bound.

unit variance. We also assumed that the feedback link is
maximize }I (M'\?") created by an additive white Gaussian noise Wity = ol
Bn,Ksn ' (o > 0). Because of the practical computation limit, we take
subject o tr(Kyn) <nP. Ken >0 (4) coding block lengtt = 30 and power limitP = 10. .
' ' We first compared our upper bound (i.e. Theofém 1) with
the one presented in [12] (Lemma 3). See[Fig.3.AM-
Similarly, we show that the above optimization problentreases, both of the upper bounds approach the nonfeedback
can be transformed into a convex form. capacity, which implies the “shut off” of the feedback link.
Theorem 2:A lower bound on the largest n-block achiev-However, our bound is much more tight, especially, in the
able rate of linear feedback coding scheme for Gaussiamall feedback noise region. Note that, when the feedback
channels with additive noise feedback, as shown in[JFig.hoise vanishes, the bound in [12] on any noisy feedback

Bp is strictly lower triangular



upper bound

\ — — — lower bound
noiseless feedback capacity
— — non-feedback capacity

0.4 0.6 0.8 1 1.2

Fig. 4. The bounds oG of the 1st-MV channel witha = 0.1

1.9

upper bound

h\ — — — lower bound
noiseless feedback capacity
\ — — non-feedback capacity

1.85r

Rate

1.7 L L L L L L
0 0.2 0.4 0.6 0.8 1 12 14

Fig. 5. The bounds of1°® of the 1st-MV channel witha = 0.5

channel grows to infinity and, thus, should be truncated by

the ideal feedback capacity. In contrast, our bound comgerg
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VII. CONCLUSION

We have derived the upper and lower bounds on the largest
achievable rate for a linear feedback coding setup. It isvsho
that these two bounds can be obtained as the optimal values
of two convex optimization problems. Furthermore, these
bounds provide us the following insight: 1. The achievable
rate is very sensitive to the feedback noise. 2. The achlievab
rate of channels with more correlated channel noise is less
sensitive to the feedback noise.

(1]

(2]

(31
(4

to the ideal feedback capacity in this case. Therefore, we mal6l

claim that our upper bound is better in general.

-
Next, we computed the bounds derived in our paper for[ ]

averaging statistioc = 0.3,0.5,0.9 in the 1st-MV channel, as
achievable rateRnmax which is in the region between the
upper and lower bounds, sharply decreases gows. When

o grows large enough (i.ez = 0.8 in Fig[4), the feedback

El

rate-increasing enhancement almost shuts off and, thas, th

feedback system behaves like a nonfeedback system. Baskd

on this observation, we conclude that the achievable rate
the additive Gaussian noise channel with noisy feedback

of
1]

sensitive to the feedback noise under the linear feedback

scheme.

12
Additionally, the plots show that the decrease of thé

achievable rate witho is lesser asx grows. This indicates
that the achievable rate is less sensitive to the feedba

]

@Rl

noise if the channel has more correlated channel noise. Thig;
intuitively makes sense since utilize a feedback link for
channels with more correlated channel noise would increaﬁ%]

more transmission rate and, therefore, the corruptiorceffe
of the feedback noise is relatively reduced in this case.
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