
ar
X

iv
:1

10
8.

28
16

v1
  [

cs
.IT

]  
13

 A
ug

 2
01

1

Bounds on the Achievable Rate of Noisy feedback Gaussian Channels
under Linear Feedback Coding Scheme

Chong Li and Nicola Elia
Department of Electrical and Computer Engineering, Iowa State University

Ames, IA, 50011
Email: {chongli, nelia}@iastate.edu

Abstract— In this paper, we investigate the additive Gaussian
noise channel with noisy feedback. We consider the setup
of linear coding of the feedback information and Gaussian
signaling of the message (i.e. Cover-Pombra Scheme). Then,we
derive the upper and lower bounds on the largest achievable
rate for this setup. We show that these two bounds can be
obtained by solving two convex optimization problems. Finally,
we present some simulations and discussion.

I. I NTRODUCTION

The study of the additive Gaussian noise channel with
feedback has been a hot research topic for decades. So far,
a large body of work has looked at the ideal feedback case
and obtained many notable results [1]–[5]. As an illustration,
it is known that noiseless feedback improves the error
exponent and reduces the coding complexity. However, only
few papers have studied channels with noisy feedback and
many open problems still exist. Literature on noisy feedback
problems can be largely classified into two categories. The
first category studies the usefulness of noisy feedback by
investigating reliability functions and error exponents [6],
[7]. The second focuses on the derivation of coding schemes
based on the well-known Schalkwijk-Kailath scheme. We
refer interested readers to [2], [8]–[11] for details.

In this paper, we investigate the behavior of the largest
achievable rate of the additive Gaussian noise channel with
noisy feedback, under the restriction of linear feedback
coding scheme (i.e.Cover-Pombra Scheme). We derive in-
formative upper and lower bounds on the largest achievable
rate. This upper bound outperforms the bound presented
in [12], especially, in the case of having small feedback
noise. The lower bound shows the enhancement, in terms
of the achievable rate, by exploiting the noisy feedback link.
Additionally, the derived bounds provide insight on how the
noisy feedback channel behaves with respect to the feedback
noise.

The paper is organized as follows. In Section II, we
introduce some important definitions and lemmas, which are
used throughout the paper. In Section III, we introduce the
signal model of the noisy feedback channel and then derive
the formula of the achievable rate. In Section IV and V, we
derive an upper bound and a lower bound on the largest
achievable rate, respectively. We present some simulation
results and discussion in Section VI and conclude the paper
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in Section VII.
Notations: Uppercase and corresponding lowercase letters

(e.g.Y,Z,y,z) denotes random variables and realizations,
respectively.xn represents the vector[x1,x2, · · · ,xn]

T and
x0 = /0. In represents ann×n identity matrix.Kn >0 (Kn≥ 0)
denotes that then×n matrix Kn is positive definite (semi-
definite). log denotes the logarithm base 2 and 0log0= 0.
The expectation operator overX is presented asE(X).

II. T ECHNICAL PRELIMINARIES

In this section, we review some main definitions and
Lemmas in information theory.

Definition 1: [13] The mutual informationI(X;Y) be-
tween two random variables with joint densityf (x,y) is
defined as

I(X;Y) =
∫

f (x,y) log
f (x,y)

f (x) f (y)
dxdy

Let h(X) denote the differential entropy of a random
variable X. Then it is clear that

I(X;Y) = h(Y)−h(Y|X)

Next, we present a useful Lemma as follows.
Lemma 1: [13] Let the random vectorX ∈R

n have zero
mean and covarianceK x,n = EXXT (i.e. K i j = EXiXj , 1≤
i, j ≤ n). Then

h(X)≤
1
2

log(2πe)ndetK x,n

with equality if and only ifX ∼ N(0,K x,n).
Finally, we introduce an meaningful notion of directivity

to the information flow through a channel [3].
Definition 2: The directed informationI(Xn → Yn) from

a sequenceXn to a sequenceYn is defined by

I(Xn →Yn) =
n

∑
i=1

I(Xi ;Yi |Y
i−1).

It has been shown in [3], when feedback is present,
directed information is a more useful quantity than the
traditional mutual information.

III. M ODELING AND ACHIEVABLE RATE

A. Modeling

Consider a point-to-point additive Gaussian noise channel
with access to an additive Gaussian noise feedback link.
Since it is difficult to characterize the capacity in general,
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Fig. 1. A additive Gaussian noise channel with noisy feedback

we consider a system with linear encoding of the feedback
signal and Gaussian signaling of the message (i.e. shown in
a vector form in Fig. 1) [12].

The channel input signal:xn = sn+Bn(wn+ vn)
The channel output signal:yn = sn+Bn(wn+ vn)+wn

The power constraint: tr(K s,n+Bn(Kw,n+K v,n)BT
n )≤ nP

where wn ∼ N(0,Kw,n) and vn ∼ N(0,K v,n). We assume
that Kw,n > 0 andK v,n > 0 and, therefore, these covariance
matrices are invertible. Here,sn ∼ N(0,K s,n) is the message
information vector.Bn is an n× n strictly lower triangular
linear encoding matrix. Note that the one-step delay in the
feedback link is dealt with the structure of matrixBn and
random variablessn,vn,wn are automatically assumed to be
independent.

Remark 1:The bounds provided later in the paper are
only valid for this specific setup. In other words, the
bounds may not be true for the capacity (i.e. the maximum
achievable rate over all encoding strategies). Informative
computable bounds on the capacity of channels with noisy
feedback, however, are not known.

B. n-block Achievable Rate

Based on the above model, we obtain the n-block achiev-
able rateRnoisy

n as

Rnoisy
n =

1
n

I(M;Yn)

=
1
n

I(Sn;Yn) (a)

=
1
n
(h(Yn)−h(Yn|Sn))

=
1
n

log
det((In+Bn)Kw,n(In+Bn)

T +BnK v,nBT
n +K s,n)

det((In+Bn)Kw,n(In+Bn)T +BnK v,nBT
n )

(a) follows the fact that the message information vectorSn is
determined by the messageM and the last equality follows
from Lemma 1. We denote the largest n-block achievable
rate under power constraintP asRnoisy

n,max(P) where

Rnoisy
n,max(P) = max

Bn,Ks,n
Rnoisy

n (1)

If the feedback is ideal (i.e.K v,n = 0n), expression (1) is
simplified to

C f b
n (P) = max

Bn,Ks,n

1
n

log
det((In+Bn)Kw,n(In+Bn)

T +K s,n)

detKw,n

whereC f b
n (P) denotes then-block capacity of the additive

Gaussian noise channel with ideal feedback andtr(K s,n +
BnKw,nBT

n )≤ nP. Note that the fact det(In+Bn) = det(In+
Bn)

T = 1 is applied in the simplification. [14] found that
this problem can be transformed into a well-known convex
optimization problem called the matrix determinant maxi-
mization (max-det) problem and, then, solved efficiently.

If there exists no feedback (i.e.Bn = 0n), expression (1)
is simplified to

Copen
n (P) = max

Ks,n

1
n

log
det(Kw,n+K s,n)

detKw,n

whereCopen
n (P) denotes then-block capacity of the open-

loop additive Gaussian noise channel andtr(K s,n) ≤ nP. It
is well known that this optimization problem can be solved
by water-filling on the eigenvalues ofK−1

w,n.
Unlike the above two simplified forms, the optimization

problem (1) is difficult to solve (i.e. not easily expressed
in a convex form). Furthermore, the expression forRnoisy

n

does not provide much information about the behavior of the
channel with respect to the feedback noise. This motivates us
to derive the effective upper and lower bounds onRnoisy

n,max(P),
from which we can discover some characterizations of the
noisy feedback channel.

IV. A N UPPERBOUND ON Rnoisy
n,max(P)

In this section, we first present an upper bound on the
achievable rate of a general channel with additive noise
feedback (i.e. not restricted to be an additive Gaussian noise
channel). Then, we show that, for the noisy feedback Gaus-
sian channel under linear feedback coding scheme, this upper
bound can be obtained by solving a convex optimization
problem.

Lemma 2:For a point-to-point communication channel
with additive noise feedback, we have

I(M;Yn)≤ I(Xn →Yn|Vn)≤ I(Xn →Yn)≤ I(Xn;Yn)

The first and second equalities hold if there exists an ideal
feedback (i.e.Vn = 0). The last equality holds if these exists
no feedback.

Proof:

I(M;Yn)

=h(M)−h(M|Yn)

≤h(M)−h(M|Yn
,Vn)

(a)
=h(M|Vn)−h(M|Yn

,Vn)

=I(M;Yn|Vn)

=h(Yn|Vn)−h(Yn|M,Vn)



=
n

∑
i=1

h(Yi|Y
i−1

,Vn)−h(Yi|Y
i−1

,M,Vn)

(b)
=

n

∑
i=1

h(Yi|Y
i−1

,Vn)−h(Yi|Y
i−1

,M,Vn
,Xi)

(c)
=

n

∑
i=1

h(Yi|Y
i−1

,Vn)−h(Yi|Y
i−1

,Xi
,Vn)

=
n

∑
i=1

I(Xi;Yi |Y
i−1

,Vn)

=I(Xn →Yn|Vn)

(a) follows from the fact thatM andVn are independent. (b)
follows from the fact thatXi can be determined byM and the
outputs of the feedback link (i.e.Yi−1 +V i−1). (c) follows
from the Markov chainM → (Yi−1,Xi ,Vn) → Yi . Note that
the equality holds ifVn = 0.

Next, we have

I(Xn →Yn|Vn)

(d)
=

n

∑
i=1

h(Yi|Y
i−1

,Vn)−h(Yi|Y
i−1

,Xi
,Vn)

(e)
=

n

∑
i=1

h(Yi|Y
i−1

,Vn)−h(Yi|Y
i−1

,Xi)

≤
n

∑
i=1

h(Yi|Y
i−1)−h(Yi|Y

i−1
,Xi)

=
n

∑
i=1

I(Xi;Yi |Y
i−1)

=I(Xn →Yn)

where (d) follows from step (c) and (e) follows from the
Markov chainVn → (Yi−1,Xi) → Yi . Note that the equality
holds if Vn = 0.

The last inequalityI(Xn → Yn) ≤ I(Xn;Yn) is proved in
[3].

It is known that, for ideal feedback channels, the directed
information I(Xn → Yn) is an appropriate measure on the
achievable rate and, therefore, can correctly characterize the
ideal feedback channel capacity [15]. However, Lemma 2
shows that, for noisy feedback channels, the conditional
directed informationI(Xn → Yn|Vn) performs as a better
upper bound on the achievable rate thanI(Xn → Yn). This
motivates us to takeI(Xn → Yn|Vn) as an upper bound on
Cnoisy

n (P) instead ofI(Xn →Yn) and investigate the following
optimization problem.

maximize
Bn,Ks,n

1
n

I(Xn →Yn|Vn)

subject to tr(K x,n)≤ nP, K s,n ≥ 0

Bn is strictly lower triangular

(2)

Next, we show that the above optimization problem can
be transformed into a convex form.

Theorem 1:An upper bound on the largest n-block
achievable rate of linear feedback coding scheme for Gaus-
sian channels with additive noise feedback, as shown in Fig.
1, can be obtained as the optimal value of the following

convex optimization problem.

maximize
Hn,Bn

1
2n

logdet

[

K−1
v,n BT

n
Bn Hn

]

−
1
2n

logdet(K−1
v,nKw,n)

subject to tr(Hn−Kw,nBT
n −BnKw,n−Kw,n)≤ nP





Hn In+BT
n BT

n
In+Bn K−1

w,n 0n

Bn 0n K−1
v,n



≥ 0

Bn is strictly lower triangular

Proof: We are beginning with the optimization
problem (2). Let Hn = (In + Bn)Kw,n(In + Bn)

T + K s,n +
BnK v,nBT

n , we have

I(Xn →Yn|Vn)

(a)
=

n

∑
i=1

h(Yi |Y
i−1

,Vn)−h(Yi|Y
i−1

,Xi)

=
n

∑
i=1

h(Yi |Y
i−1

,Vn)−h(Xi +Wi |Y
i−1

,Xi
,Wi−1)

=
n

∑
i=1

h(Yi |Y
i−1

,Vn)−h(Wi|W
i−1)

=h(Yn|Vn)−h(Wn)

=h((In+Bn)W
n+BnV

n+Sn|Vn)−h(Wn)

=h((In+Bn)W
n+Sn)−h(Wn)

(b)
=

1
2

log
det((In+Bn)Kw,n(In+Bn)

T +K s,n)

detKw,n

=
1
2

log
det(Hn−BnK v,nBT

n )

detKw,n

where (a) follows from step (e) in the proof of Lemma 2 and
(b) follows from Lemma 1.

Also, we have

tr(K x,n)≤ nP⇔ tr(K s,n+Bn(K v,n+Kw,n)BT
n )≤ nP

⇔ tr(Hn−Kw,nBT
n −BnKw,n−Kw,n)≤ nP

Next, we have the following equivalences by applying the
Schur complement.

(1).det

[

K−1
v,n BT

n
Bn Hn

]

= det(Hn−BnK v,nBT
n )detK−1

v,n .

(2).

K s,n ≥ 0⇔ Hn− (In+Bn)Kw,n(In+Bn)
T −BnK v,nBT

n ≥ 0

⇔





Hn In+BT
n BT

n
In+Bn K−1

w,n 0n

Bn 0n K−1
v,n



≥ 0

By taking simple replacements on the optimization prob-
lem (2), the proof is complete.

Note that Hn is the covariance of the received signal
yn. This upper bound provides interesting insight because
it shows that the effect of the noise in the feedback link can
be formulated as the allocation of the channel input power
P. As shown in the proof of Theorem 1, we can rewrite (2)



Fig. 2. A modified additive Gaussian noise channel with noisyfeedback

as

maximize
Bn,Ks,n

1
2n

log
det((In+Bn)Kw,n(In+Bn)

T +K s,n)

detKw,n

subject to tr(K s,n+Bn(K v,n+Kw,n)BT
n )≤ nP, K s,n ≥ 0

Bn is strictly lower triangular
(3)

K v,n herein only affects the power constraint. IfK v,n = 0n,
the optimization problem (3) recovers the n-block capacity
of channels with ideal feedback [4]. This implies that, for
channels with noisy feedback, it is necessary to assign certain
amount of power to cancel the effect of the feedback noise
such that the message can be recovered by the decoder with
an arbitrarily small error probability. If the noise in the
feedback link increases (i.e.K v,n grows large in some sense),
the feedback benefit in increasing reliable transmission rate
vanishes. Namely, the noisy feedback system behaves like a
nonfeedback system since, due to the power constraint,Bn

approaches0n as K v,n grows. Note that this upper bound is
tight whenK v,n is either small or large.

V. A L OWER BOUND ON Rnoisy
n,max(P)

First of all, we consider a new channel with noisy feed-
back, as shown in Fig.2. An identical Gaussian noisev is
added on the channel output. Then,

ỹn =xn+wn+ vn

=sn+(Bn+ In)(wn+ vn)

Since the decoder is not able to access the new additive
noise, the largest achievable rate of the new channel must
be a lower bound on that of the original channel (shown in
Fig.1). This motivates us to solve the following optimization
problem for obtaining this lower bound.

maximize
Bn,Ks,n

1
n

I(M;Ỹn)

subject to tr(K x,n)≤ nP, K s,n ≥ 0

Bn is strictly lower triangular

(4)

Similarly, we show that the above optimization problem
can be transformed into a convex form.

Theorem 2:A lower bound on the largest n-block achiev-
able rate of linear feedback coding scheme for Gaussian
channels with additive noise feedback, as shown in Fig.1,
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Fig. 3. Comparison of upper bounds onCnoisy
n of the 1st-MV channel

can be obtained as the optimal value of the following convex
optimization problem.

maximize
Hn,Bn

1
2n

logdetHn−
1
2n

logdetKwv,n

subject to tr(Hn−Kwv,nBT
n −BnKwv,n−Kwv,n)≤ nP

[

Hn In+BT
n

In+Bn K−1
wv,n

]

≥ 0

Bn is strictly lower triangular

whereKwv,n = K v,n+Kw,n.
The proof is similar to that in [14] by considering the

above setup.
Remark 2:This lower bound is tight whenK v,n = 0 and

becomes increasing loose asK v,n increases. This lower
bound becomes useless when it is below the corresponding
nonfeedback capacity. Since we restrict the feedback coding
scheme to be linear,Rnoisy

n,max is in fact a lower bound of the
capacity. Therefore, the lower bound ofRnoisy

n,max is obviously
valid for the capacity.

VI. SIMULATIONS AND DISCUSSION

In this section, we performed simulations for a specific
channel with noisy feedback link. We assumed that the
forward channel is created by a first order moving average
(1st-MV) Gaussian process. Namely,

Wi =Ui +αUi−1

whereUi is a white Gaussian process with zero mean and
unit variance. We also assumed that the feedback link is
created by an additive white Gaussian noise withK v,n = σ In

(σ ≥ 0). Because of the practical computation limit, we take
coding block lengthn= 30 and power limitP= 10.

We first compared our upper bound (i.e. Theorem 1) with
the one presented in [12] (Lemma 3). See Fig.3. Asσ in-
creases, both of the upper bounds approach the nonfeedback
capacity, which implies the “shut off” of the feedback link.
However, our bound is much more tight, especially, in the
small feedback noise region. Note that, when the feedback
noise vanishes, the bound in [12] on any noisy feedback
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Fig. 4. The bounds onCnoisy
n of the 1st-MV channel withα = 0.1
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Fig. 5. The bounds onCnoisy
n of the 1st-MV channel withα = 0.5

channel grows to infinity and, thus, should be truncated by
the ideal feedback capacity. In contrast, our bound converges
to the ideal feedback capacity in this case. Therefore, we may
claim that our upper bound is better in general.

Next, we computed the bounds derived in our paper for
averaging statisticα = 0.3,0.5,0.9 in the 1st-MV channel, as
shown in Fig. 4-6. Generally, the plots show that the largest
achievable rateRnoisy

n,max, which is in the region between the
upper and lower bounds, sharply decreases asσ grows. When
σ grows large enough (i.e.σ = 0.8 in Fig.4), the feedback
rate-increasing enhancement almost shuts off and, thus, the
feedback system behaves like a nonfeedback system. Based
on this observation, we conclude that the achievable rate of
the additive Gaussian noise channel with noisy feedback is
sensitive to the feedback noise under the linear feedback
scheme.

Additionally, the plots show that the decrease of the
achievable rate withσ is lesser asα grows. This indicates
that the achievable rate is less sensitive to the feedback
noise if the channel has more correlated channel noise. This
intuitively makes sense since utilize a feedback link for
channels with more correlated channel noise would increase
more transmission rate and, therefore, the corruption effect
of the feedback noise is relatively reduced in this case.
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Fig. 6. The bounds onCnoisy
n of the 1st-MV channel withα = 0.9

VII. C ONCLUSION

We have derived the upper and lower bounds on the largest
achievable rate for a linear feedback coding setup. It is shown
that these two bounds can be obtained as the optimal values
of two convex optimization problems. Furthermore, these
bounds provide us the following insight: 1. The achievable
rate is very sensitive to the feedback noise. 2. The achievable
rate of channels with more correlated channel noise is less
sensitive to the feedback noise.
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