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Abstract—For most discrete memoryless channels, there does
not exist a linear code for the channel which uses all of the
channel’s input symbols. Therefore, linearity of the code for such
channels is a very restrictive condition and there should bea
loosening of the algebraic structure of the code to a degree that
the code can admit any channel input alphabet. For any channel
input alphabet size, there always exists anAbelian group structure
defined on the alphabet. We investigate the capacity of Abelian
group codes over discrete memoryless channels and provide lower
and upper bounds on the capacity.

I. I NTRODUCTION

Approaching information theoretic performance limits of
communication systems using structured codes has been an
area of great interest in recent years [2], [5], [6], [8], [11],
[14]. The earlier attempts to design fast encoding and decoding
algorithms resulted in injection of algebraic structures to the
coding scheme so that the channel input alphabets are replaced
with algebraic fields and encoders are replaced with matrices.
It is well-known that binary linear codes achieve the capacity
of binary symmetric channels [7]. More generally, it has also
been shown thatq-ary linear codes can achieve the capacity
of symmetric channels [6] and linear codes can be used
to compress a source losslessly down to its entropy [10].
Optimality of linear codes for certain communication problems
motivates the study of structured codes in general.

In 1979, Korner-Marton showed that for multiterminal com-
munication problems, the asymptotic average performance of
linear code ensembles can be superior to that of the standard
code ensembles traditionally used in information theory. In
the recent past, such gains have been shown for a wide class
of problems [11]–[13]. Hence information-theoretic character-
izations of performance of such structured code ensembles for
various communication problems have become important.

The algebraic structure of the code, however, imposes
certain restrictions on the encoder. Linear codes are highly
structured and for certain communication problems such codes
cannot be optimal. Moreover, they can only be constructed
on alphabets of certain size (prime power). Group codes are
a class of algebraic-structured codes that are more general
because we can construct such codes over any alphabet, and
they have been shown to outperform unstructured codes in
certain communication settings [11]. Group codes were first
studied by Slepian [15] for the Gaussian channel. In [1], the
capacity of group codes for certain classes of channels has

been computed. Further results on the capacity of group codes
were established in [2], [3]. The capacity of group codes over
a class of channels exhibiting symmetries with respect to the
action of a finite Abelian group has been investigated in [5].

In this work, we focus on the point-to-point channel coding
problem over general discrete memoryless channels. The chan-
nel input alphabet is equipped with the structure of an Abelian
group. We characterize the performance of asymptotically
good Abelian group codes over general discrete memoryless
channels. In particular, we derive lower and upper bounds
on the capacity of Abelian group codes for communication
over such channels. We use a combination of algebraic and
information-theoretic tools for this task.

The paper is organized as follows. In section II, we in-
troduce our notation and develop the required background.
Section III presents the lower and upper bound on the ca-
pacity of Abelian group codes. In section IV we present two
special cases, namely, linear codes over arbitrary channels and
arbitrary Abelian group codes over symmetric channels where
the two bounds match.

II. D EFINITIONS AND NOTATION

1) Group Codes:Given a groupG, a group codeC overG
with block lengthn is any subgroup ofGn [4], [8]. A shifted
group code overG, C+v is a group codeC shifted by a fixed
vectorv ∈ Gn.

2) Source and Channel Models:We consider discrete mem-
oryless and stationary channels used without feedback. We
associate two finite setsX and Y with the channel. These
channels can be characterized by a conditional probability
law W (y|x). The setX admits the structure of a finite
abelian groupG of the same size. The channel is specified
by (G,Y,W ). Assuming a perfect source coding block ap-
plied prior to the channel coding, the source of information
generates messages over the set{1, 2, . . . ,M} uniformly.

3) Achievablility and Capacity:A transmission system with
parameters(n,M, τ) for reliable communication over a given
channel(G,Y,W ) consists of an encoding mapping and a
decoding mappinge : {1, 2, . . . ,M} → Gn, f : Gn →
{1, 2, . . . ,M} such that for allm = 1, 2, . . . ,M ,

1

M

M
∑

m=1

Wn (f(Y n) 6= m|Xn = e(m)) ≤ τ
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Given a channel(G,Y,W ), the rateR is said to be achievable
if for all ǫ > 0 and for all sufficiently largen, there
exists a transmission system for reliable communication with
parameters(n,M, τ) such that1

n
logM ≥ R− ǫ, τ ≤ ǫ.

If there is no constraint on the encoder, the maximum achiev-
able rate is called the (Shannon) capacity of the channel
and is denoted byC|G| which is known to be equal to
maxpX

I(X ;Y ). |G| denotes the cardinality (size) of the set
G. We use this notation since only the size and not the
structure of the channel input alphabet determines the quantity
C|G|. In this paper, the encoder is constrained to beaffine
and therefore the code is a shifted group code. We denote
the maximum achievable rate of such codes byCG. If the
distribution ofX is confined to be uniform overG, we define
CU

|G| = I(X ;Y ). The capacity of shifted group codes overH
which is itself a subgroup of a larger groupG is denoted by
CH,G.

4) Typicality: Consider two random variablesX and Y
with joint probability density functionpX,Y (x, y) overX ×Y.
Let n be an integer andǫ a positive real number. The sequence
pair (xn, yn) belonging toXn × Yn is said to be jointlyǫ-
typical with respect topX,Y (x, y) if

∀a ∈ X , ∀b ∈ Y :

∣

∣

∣

∣

1

n
N (a, b|xn, yn)− pX,Y (a, b)

∣

∣

∣

∣

≤
ǫ

|X ||Y|

and none of the pairs(a, b) with pX,Y (a, b) = 0 occurs
in (xn, yn). Here,N(a, b|xn, yn) counts the number of oc-
currences of the pair(a, b) in the sequence pair(xn, yn).
We denote the set of all jointlyǫ-typical sequences pairs in
Xn × Yn by An

ǫ (X,Y ).
Given a sequencexn ∈ Xn, the set of conditionallyǫ-typical
sequencesAn

ǫ (Y |x
n) is defined as

An
ǫ (Y |x

n) = {yn ∈ Yn |(xn, yn) ∈ An
ǫ (X,Y )} (1)

In our notation, O(ǫ) is any function of ǫ such that
limǫ→0 O(ǫ) = 0.

III. B OUNDS ON THECAPACITY OF ABELIAN GROUP

CODES

It is a standard fact (see [9] and [4] for example) that any
Abelian groupG can be decomposed intoZpr groups in the
form G ∼=

⊕I

i=1 Zpi
ri for some integersri and primespi for

i = 1, 2, · · · , I with the possibility of repetitions. DefineRi =
Zpi

ri to getG ∼=
⊕I

i=1 Ri. This means that any elementg in
the groupG can be represented by anI-tuple (g1, g2, · · · , gI)
wheregi ∈ Ri = {0, 1, · · · , p

ri
i − 1} and this representation

preserves the group structure ofG. Any subgroupH of G can
be represented byH ∼=

⊕I

i=1 p
θi
i Ri.

A. Lower bound

Theorem III.1. A lower bound on the Capacity of group
codes over the groupG ∼=

⊕I

i=1 Ri for a discrete memoryless
channel(G,Y,W ) is given by:

CG ≥ max
w1,··· ,wI

w1+···+wI=1

min
H≤G

∑

S coset ofH

|H |

|G|

CU
|S|

wH

wherewH =
∑I

i=1
ri−θi
ri

wi for H ∼=
⊕I

i=1 p
θi
i Ri andCU

|S| is
the mutual information between the channel input and output
when the input distribution is uniform over the subsetS of G.

The subgroupS of H that achieves the maximum value for
CU

|S|, is called the optimal subchannel corresponding to the
subgroupH and is denoted byH∗.
Proof: We construct an ensemble of homomorphic encoders
over G with block lengthn and put a uniform distribution
over the ensemble. Then we calculate the expected average
probability of error over the ensemble and observe that for
rates less thanCG, the average probability of error can be
made arbitrarily small by increasing the block length.

1) Construction of the ensemble of codes:Let wi, i =
1, 2, · · · , I be a set of nonnegative rational weights assigned
to each moduleRi such that

∑I

i=1 wi = 1 and let k be a
nonnegative integer so thatwik is integer for alli. For each
set of weights, we define an ensemble of codes by taking
into account all homomorphismsϕ :

⊕I

i=1 R
wik
i → Gn. It

is known that the image of a homomorphism is a subgroup
of the target group [9]; Therefore any such homomorphism
defines a group codeC overG. We add a random ditherv to
the code to construct a random shifted group code.

Let m = 1, 2, · · · ,M be the set of messages. Letk be
large enough so that a unique message representativeu(m)
from the set

⊕I

i=1 R
wik
i can be assigned to each messagem.

The encoding rule is given bye(m) = ϕ(u(m)) + v whereϕ
is an arbitrary homomorphism from

⊕I

i=1 R
wik
i to Gn andv

is a random vector inGn.

At the decoder, after receiving the channel outputy, decode
it to the messagem if m is the unique message such that
u(m) andy are jointly ǫ-typical. Otherwise declare error.

The standard generator of the ringRi = Zp
ri
i

is the
multiplicative identity of Ri. Define eiK to be the gener-
ator for theKth Ri in

⊕I
i=1 R

wik
i for i = 1, · · · , I and

K = 1, · · ·wik. Then any elementa ∈
⊕I

i=1 R
wik
i can be rep-

resented uniquely asa =
∑

i,K aiKeiK whereaiK ∈ Ri. This
decomposition will help us characterizing homomorphisms
from

⊕I
i=1 R

wik
i to Gn.

Lemma III.2. Any homomorphismϕ :
⊕I

i=1 R
wik
i → Gn

can be represented asϕ = (ϕ1, ϕ2, · · · , ϕn) where eachϕN ,
N = 1, · · · , n is given by:

φN (a) =
∑

i,K

aiKgNiK

for somegNiK ’s, i = 1, · · · , I, K = 1, · · · , wik in G.

Proof: Follows from standard algebraic arguments.
The lemma above facilitates the construction of the ensem-

ble of codes as follows: Take random elementsgNiK from the
groupG for n = 1, · · · , N , i = 1, · · · , I andk = 1, · · · , wiK
and construct the homomorphismϕ as mentioned in the
lemma. Also take a random vectorv from Gn and use the
encoding rulee(m) = ϕ(u(m)) + v.



The rate of the codes in this ensemble is given by:

R =
k

n

I
∑

i=1

wi log |Ri| =
k

n

I
∑

i=1

wiri log pi

2) Error Analysis: The expected value of the average
probability of word error is given by:

E {Pavg(err)} =
M
∑

m=1

1

M

∑

x∈Gn

P (e(m) = x)
M
∑

m̃=1
m̃ 6=m

∑

y∈An
ǫ (Y |x)

∑

x̃∈An
ǫ (X|y)

P (e(m̃) = x̃, Y n = y|e(m) = x) +O(ǫ)

We need two lemmas to proceed.

Lemma III.3. For arbitrary messagesm andm̃ and arbitrary
vectorsx, x̃ ∈ Gn, definea = u(m)− u(m̃) and h = x− x̃.
Define θ(m, m̃) = (θ1, θ2, · · · , θI) where θi is the smallest
number in{0, 1, · · · , ri − 1} such that there exists an index
K ∈ {1, 2, · · · , wik} with the propertyaiK ∈ pθii Ri\p

θi+1Ri.
Then,

P (e(m̃) = x̃|e(m) = x) =
{

∏I

i=1
1

p
n(ri−θi)

i

if x̃ ∈ x+
[

⊕I

i=1 p
θi
i Ri

]n

;

0 otherwise.

Moreover, for a fixedm, let Tθ(m) be the set of allm̃ with
θ(m, m̃) = (θ1, θ2, · · · , θI), then

|Tθ(m)| ≤

I
∏

i=1

[

(pri−θi
i )wik

]

Proof: Provided in the appendix.

Lemma III.4. Let y ∈ Yn be an arbitrary channel output
sequence. For anyx ∈ An

ǫ (X |y), we have

∣

∣

∣

∣

∣

(

x+

[

I
⊕

i=1

pθii Ri

]n)

∩ An
ǫ (y)

∣

∣

∣

∣

∣

≤

I
∏

i=1

2n[H(Xi|Y )−H([Xi ]θi )+O(ǫ)]

whereXi is the ith component of the channel input random
variable X . i.e. X ←→ (X1, X2, · · · , XI) whereXi ∈ Ri

and the random variable[Xi]θi takes values from the set of
cosets ofpθii Ri in Ri.

Proof: Provided in the appendix.
The following lemma presents an upper bound on the

average probability of error.

Lemma III.5. The average probability of error over the
ensemble is bounded above by:

E {Pavg(err)} ≤
∑

θ

exp2

{

−n

I
∑

i=1

[(ri − θi) log pi

−
wik

n
(ri − θi) log pi −H(Xi|Y ) +H([Xi]θi |Y )

]}

Proof: Provided in the appendix.
Each random variableXi can be represented by a tuple

([Xi]θi , [X̂i]θi) where[Xi]θi indicates the coset selection and
[X̂i]θi the value selection in the subgrouppθii Ri of Ri. Note
that [Xi]θi and [X̂i]θi are independent. We get,

E {Pavg(err)} ≤
∑

θ

exp2

{

−n

I
∑

i=1

[(ri − θi) log pi

−
wik

n
(ri − θi) log pi −H([X̂i]θi |[Xi]θi , Y )

]}

Therefore, the probability of error can be made arbitrarily
small if for all θ,

I
∑

i=1

wik

n
(ri − θi) log pi

≤

I
∑

i=1

(ri − θi) log pi −H([X̂i]θi |[Xi]θi , Y )

Let X be a uniform random variable overG and letH be the
subgroup ofG isomorphic to

⊕I
i=1 p

θi
i Ri. The variableX can

be thought of as a uniform variable over a random coset of
H in G. Random selection of the coset is due to the random
dither and we prove in Lemma III.7 that the uniformity of
the distribution over the coset is due to the group structureof
the code. The variableX can be represented by two random
variables[X̂]H and[X ]H where[X̂ ]H is uniform overH and
[X ]H has a uniform distribution over cosets ofH in G and
represents the coset selection. The variable[X̂]H itself can be
represented by a tuple([X̂1]θ1 , · · · , [X̂I ]θI ) where the for each
i the random variable[X̂i]θi is a uniform variable overpθii Ri

and[X̂i]θi ’s are independent from each other and from[X ]H .
The random variable[X ]H can also be represented by a tuple
([X1]θ1 , · · · , [XI ]θI ) where for eachi the random variable
[Xi]θi is a uniform variable over cosets ofpθii Ri in Ri and
[Xi]θi ’s are independent from each other and from[X̂]H .

I([X̂ ]H ;Y |[X ]H)

= I
(

[X̂1]θ1 , · · · , [X̂θI ];Y |[X1]θ1 , · · · , [XθI ]
)

=

I
∑

i=1

I([X̂i]θi , Y |[Xi]θi)

=

I
∑

i=1

(ri − θi) log pi −H([X̂i]θi |[Xi]θi , Y )



Therefore, the achievability condition is equivalent to

I
∑

i=1

wik

n
(ri − θi) log pi ≤ I([X̂ ]H ;Y |[X ]H)

WhereH =
⊕I

i=1 p
θi
i Ri.

The rate of the code is given byR = k
n

∑I

i=1 wiri log pi.
Therefore, this condition is equivalent to

R ·

∑I

i=1 wi(ri − θi) log pi
∑I

i=1 wiri log pi
≤ I([X̂ ]H ;Y |[X ]H)

DefinewH =
∑I

i=1 wi(ri−θi) log pi
∑

I
i=1 wiri log pi

to get

R ≤
1

wH

I([X̂ ]H ;Y |[X ]H)

Note that

I([X̂ ]H ;Y |[X ]H)

=
∑

S coset ofH

p([X ]H = S)I([X̂ ]H ;Y |[X ]H = S)

=
∑

S

|H |

|G|
CU

S

Since this condition must be satisfied for every subgroupH
of G and the weightswi are arbitrary, we conclude that the
rate

R∗ = max
w1,··· ,wI

w1+···+wI=1

min
H≤G

∑

S

|H |

|G|

CU
S

wH

is achievable using group codes overG. The weightswi can

be represented aswi =
∑

I
i=1 kwi(ri−θi) log pi

logM
=
∑I

i=1
ri−θi
ri

w′
i

where w′
i = kwi log |Ri|

logM
. Since

∑I

i=1 w
′
i = 1, the given

achievable rate region is equivalent to:

R∗ = max
w1,··· ,wI

w1+···+wI=1

min
H≤G

∑

S coset ofH

|H |

|G|

CU
S

wH

wherewH =
∑I

i=1
ri−θi
ri

wi. Here we have replacedw′
i’s with

wi’s for simplicity of notation.

B. Upper bound

Definition III.1. A subgroupH of G is called maximal for the
channel(G,Y,W ) if for all subgroupsS ofH , CU

|H∗| ≥ CU
|S∗|.

Theorem III.6. An upper bound on the capacity of group
codes over the groupG ∼=

⊕I

i=1 Ri for a memoryless channel
(G,Y,W ) is given by:

CG ≤ max
w1,··· ,wI

w1+···+wI=1

min
H maximal

max
S coset ofH

CU
|S|

wH

wherewH =
∑I

i=1
ri−θi
ri

wi for H ∼=
⊕I

i=1 p
θi
i Ri andCU

|S| is
the mutual information between the channel input and output
when the input distribution is uniform over the subsetS of G.

Proof:

1) Converse channel coding theorem:Shannon’s inverse
channel coding theorem asserts that for ratesR > I(X ;Y )
lossless communication is not possible. Fori = 1, 2, · · · , n,
let Xi be the random variable representing theN th component
of the codewords andYi be the corresponding channel output.
The rate is bounded above byR < 1

n

∑n

i=1 I(Xi, Yi).
This theorem admits the generalization to the case where the
single letter distribution ofX is constrained by the structure of
the code. For the case of shifted group codes, the single letter
distribution ofX can only be uniform on cosets of different
subgroups of the underlying group.

2) Uniform single letter distribution over cosets:In the case
of linear codes, the single letter distribution over the channel
input symbols is confined to be uniform. This holds for group
codes also; However, for group codes, it can be uniform over
any subgroup of the channel input alphabet.

Lemma III.7. For any group codeC ≤ Gn whereG is an
arbitrary group, uniform multiletter distribution over messages
induces a uniform single letter distribution over subgroups
of G. i.e. the components of the channel input sequence are
uniformly distributed over some subgroup ofG that varies for
different components.

Proof: Without loss of generality we prove that the
nth component of the codewords form a subgroupH of
G and the uniform distribution over codewords induces a
uniform distribution overH . Let {c1, c2, · · · , cM} be the set
of codewords and letP[n,n](C) = {c1n, c2n, · · · , cMn} be the
set of thenth components of the codewords. It has been shown
in [8] that P[n,n](C) is a subgroup ofG. SetH = P[n,n](C)
to conclude the first part of the claim.
Next, we need to show that the single letter distribution over
H is uniform. Let H = {h1 = 0, h2, · · · , h|H|}; then the
lemma claims that the number of occurrences of eachhi in
the sequencec1n, c2n, · · · , cMn is the same. LetC[1,n−1] be
the set of all codewords that are zero at thenth component.
It is known thatC[1,n−1] forms a normal subgroup ofC and
C/C[0,n−1]

∼= P[n,n](C) = H [8]. Therefore, |C|
|C[1,n−1]|

= |H |.
The number of occurrences ofh1 = 0 in the sequence
c1n, c2n, · · · , cMn is equal to|C[1,n−1]|. For eachh∗ ∈ H ,
there exists a codewordc∗ ∈ C ending withh∗, and since
C is a group code, it is closed under addition and therefore
c∗+C[1,n−1] is a subset ofC. Since the codewords are distinct,
the setc∗+C[1,n−1] contains|C[1,n−1]| codewords ending with
h∗. We conclude that for eachh∗ ∈ H the existence of at
least|C[1,n−1]| codewords ending withh∗ is guaranteed. The
equality |C|

|C[1,n−1]|
= |H | imposes the number of occurrences

of eachh∗ to be equal to|C[1,n−1]|. i.e. The single letter
distribution overH is uniform in thenth position.

Lemma III.8. For any shifted group codeC+ v overG, uni-
form multiletter distribution over messages induces a uniform
single letter distribution over cosets of subgroups ofG.

Proof: Immediate from the previous lemma.



3) Converse coding appplied to subchannels:Let G ∼=
⊕I

i=1 Ri be an Abelian group and letH ∼=
⊕I

i=1 p
θi
i Ri be an

arbitrary subgroup ofG and letS be the optimal subchannel
corresponding to the subgroupH . Using standard algebraic
arguments we can show that for any shifted group codeC+ v
whereC ∼=

⊕I

i=1 R
ki

i and v is an optimal coset selection
vector, we have

CS = (C ∩Hn) + v = v +

I
⊕

i=1

pθii Rki

i

RCS
=

1

n
log |C ∩Hn| =

1

n

I
∑

i=1

(ri − θi)ki log pi

Definewi =
riki log pi

logM
then we getRCS

=
∑I

i=1
ri−θi
ri

wiR.

Lemma III.9. For a maximal subchannelH of the channel
(G,Y,W ), CH,G ≤ CU

H∗

Proof: Shannon’s coverse implies

R <
1

n

n
∑

i=1

I(Xi, Yi)

where Xi’s have uniform distributions over cosets of sub-
groups ofH . SinceH is maximal, all of these distributions
result in a mutual information less thanCU

|H∗|. Therefore, the
average is also less thanCU

H∗ . Conclude thatR < CU
H∗ .

The lemma implies

RCS
=

I
∑

i=1

ri − θi
ri

wiR < CU
|H∗|

Therefore, for all maximal subchannelsH , R <
CU

|H∗|
∑

I
i=1

ri−θi
ri

wi

.

This proves the theorem.

IV. SPECIAL CASES

A. Linear Codes

The capacity of linear codes has been studied in [2]. We
show that for the case of linear codes overFq, the upper and
lower bounds are tight and are equal to the capacity given
in [2]. Let C be a group code over the fieldFq for some
prime numberq. Since the only subgroups ofFq are the trivial
subgroup and the groupFq itself, the lower bound reduces to
CU

|Fq|
; And sinceFq is maximal in itself, the upper bound

also reduces toCU
|Fq|

. Therefore the capacity of linear codes
overFq is given byCFq

= CU
|Fq|

= I(X ;Y ) whereX has a
uniform distribution over the input alphabet.

B. Symmetric Channels

For a symmetric channel, uniform input distribution over
cosets of an arbitrary subgroupH of G results in the same
mutual information with the channel output; This means all of
the cosets ofH are optimal and we can pickH∗ = H . The
lower bound reduces to

CG ≥ max
w1,··· ,wI

w1+···+wI=1

min
H≤G

CU
|H|

wH

Since all of the subgroups are maximal for a symmetric
channel, the lower bound also reduces to the same expression.
i.e. The capacity of group codes over symmetric channels is
given by:

CG = max
w1,··· ,wI

w1+···+wI=1

min
H≤G

CU
|H|

wH

where wH =
∑I

i=1
ri−θi
ri

wi for H ∼=
⊕I

i=1 p
θi
i Ri. The

capacity of Abelian group codes over symmetric channels
given in [5] coincides with the new result.

V. CONCLUSION

In this paper, we investigated the performance limits of
Abelian group codes over discrete memoryless channels. Up-
per and lower bounds on the capacity of such codes has
been computed and we presented two special cases where
the bounds match. Our results unify the known results on the
capacity of structured codes for the point to point channel cod-
ing problem and states the information theoretic performance
limits of structured codes based on the algebraic structureof
the underlying group.
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VI. A PPENDIX

A. proof of lemma III.3

Let a = u(m) − u(m̃) and h = x − x̃. First assume
a ∈ Zk

pr and h ∈ Zn
pr and let G ∈ Z

k×n
pr be a random

matrix andv ∈ Zk
pr be a random vector. In order to calculate

the probabilityP (u(m)G + v = x, u(m̃)G + v = x̃) =
P (aG = h, u(m)G+ v = x) we need to count the number
of solutions of

∑k
l=1 algl = h whereal’s are the elements of

a andgl’s are the rows of the generator matrixG. There are
r cases that we should take into account.

• Case 0: There exists an indexm such that am ∈
Zpr\pZpr .
In this case, the number of choices forG andv is equal to
pnr(k−1) whereas the total number of choices is equal to
pnr(k+1). Since the matrix G and the vectorv are chosen
equilikely, we have:

P (aG = h, uG+ v = x) =
pnr(k−1)

pnr(k+1)
=

1

p2nr

Let T0(m) be the set of all indices̃m that fall in this
category. Then we have|T0(m)| = (pr)k − (pr−1)k.

• Caseθ (θ = 1, 2, . . . , r − 1): The conditions is cases0
up to θ− 1 are not satisfied and there exists an indexm
such thatam ∈ pθZpr\pθ+1

Zpr .
In this case, ifh /∈ (pθZpr )n there are no choices fore
G and v. Otherwise, the number of choices forG and
v is equal topnθpnr(k−1) where as the total number of
choices is equal topnr(k+1). Since the matrix G and the
vectorvn are chosen equilikely, we have:

P (aG =h, uk(i)G+ vn = xn) =
{

pnθpnr(k−1)

pnr(k+1) = 1
pn(2r−θ) if x̃ ∈ x+ (pθZpr )n;

0 otherwise.

Let Tθ(m) be the set of all indices̃m that fall in this
category. Then we have|Tθ(m)| = (pr−θ)k−(pr−θ−1)k.

Our original problem can be addressed by using the above
result for each ringRi for which we take the matrixGK,N =
(gNiK) and replacek by wik. Since the elements ofvN and
gNiK are chosen uniformly, their components are independent
across different ringsRi. Therefore, the joint probability is the
product of probabilities for each ring and the total number of
such indices is the product of the number of possible indices
for each ringRi. Therefore,

P (e(m) = x, e(m̃) = x̃) =
{

∏I

i=1
1

p
n(2ri−θi)

i

if x̃ ∈ x+
[

⊕I

i=1 p
θi
i Ri

]n

;

0 otherwise.

Alternatively,

P (e(m̃) = x̃|e(m) = x) =
{

∏I

i=1
1

p
n(ri−θi)

i

if x̃ ∈ x+
[

⊕I

i=1 p
θi
i Ri

]n

;

0 otherwise.

Moreover, for a fixedm, let Tθ(m) be the set of allm̃ with
θ(m, m̃) = (θ1, θ2, · · · , θI), then

|Tθ(m)| =

I
∏

i=1

[

(pri−θi
i )wik(1− p−wik

i )
]

Therefore,

|Tθ(m)| ≤
I
∏

i=1

[

(pri−θi
i )wik

]

This result can also be confirmed by the straightforward
method.

B. proof of III.4

Let x, y, z ∈ Gn wherex = (x1, · · · , xI), y = (y1, · · · , yI)
andz = (z1, · · · , zI) wherexi, yi, zi ∈ Rn

i . For i = 1, · · · , I,
define

S =

(

x+

[

I
⊕

i=1

pθii Ri

]n)

∩ An
ǫ (X |y)

Si =
(

xi +
[

pθii Ri

]n)

∩ An
ǫ (Xi|y)

whereX is uniform overG andXi is uniform overRi. First
we show thatS ⊆ S1×· · ·SI . Let z ∈ S; Sincez ∈ An

ǫ (X |y),
∣

∣

∣

∣

1

n
N(a, b|z, y)− pXY (a, b)

∣

∣

∣

∣

≤
ǫ

|G| · |Y|

for arbitrarya = (a1, · · · , aI) ∈ G andb = (b1, · · · , bI) ∈ G.
We have:

∣

∣

∣

∣

1

n
N(a1, b|z1, y)− pX1Y (a1, b)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

n

∑

a2,··· ,aI

N(a, b|z, y)−
∑

a2,··· ,aI

pXY (a, b)

∣

∣

∣

∣

∣

≤
∑

a2,··· ,aI

∣

∣

∣

∣

1

n
N(a, b|z, y)− pXY (a, b)

∣

∣

∣

∣

≤ |R2| × · · · × |RI | ×
ǫ

|G| · |Y|

=
ǫ

|R1| · |Y|

We conclude thatz1 ∈ An
ǫ (Xi|Y ). Sincez ∈

[

⊕I

i=1 p
θi
i Ri

]n

,

we havez1 ∈
[

pθ11 R1

]n

. Therefore,z1 ∈ S1. This is true for
all i = 1, · · · , I. Conclude thatS ⊆ S1× · · ·×SI . Therefore,

|S| ≤ |S1| × · · · × |SI |

By Lemma 5 of [11], we have:

|Si| ≤ 2n[H(Xi|Y )−H([Xi]θi )+O(ǫ)]

Conclude that
∣

∣

∣

∣

∣

(

x+

[

I
⊕

i=1

pθii Ri

]n)

∩ An
ǫ (y)

∣

∣

∣

∣

∣

≤

I
∏

i=1

2n[H(Xi|Y )−H([Xi]θi )+O(ǫ))]



C. proof of lemma III.5

The expected value of the average probability of word error
is given by:

E {Pavg(err)} =

M
∑

m=1

1

M

∑

x∈Gn

P (e(m) = x)

M
∑

m̃=1
m̃ 6=m

∑

y∈An
ǫ (Y |x)

∑

x̃∈An
ǫ (X|y)

P (e(m̃) = x̃, Y n = y|e(m) = x) +O(ǫ)

=
M
∑

m=1

1

M

∑

x∈Gn

P (e(m) = x)
M
∑

m̃=1
m̃ 6=m

∑

y∈An
ǫ (Y |x)

∑

x̃∈An
ǫ (X|y)

P (e(m̃) = x̃|e(m) = x)Wn(y|x) +O(ǫ)

Using Lemma III.3 and Lemma III.4 we get:

E {Pavg(err)} ≤
M
∑

m=1

1

M

∑

x∈Gn

P (e(m) = x)
∑

θ

∑

m̃∈Tθ(m)

∑

y∈An
ǫ (Y |x)

∑

x̃∈
(

x+
[

⊕

I
i=1 p

θi
i

Ri

]n)

∩An
ǫ (y)

I
∏

i=1

1

p
n(ri−θi)
i

Wn(y|x) +O(ǫ)

≤
M
∑

m=1

1

M

∑

x∈Gn

P (e(m) = x)
∑

θ

∑

m̃∈Tθ(m)

∑

y∈An
ǫ (Y |x)

I
∏

i=1

2n[H(Xi|Y )−H([Xi ]θi )+O(ǫ)]
I
∏

i=1

1

p
n(ri−θi)
i

Wn(y|x) +O(ǫ)

=

M
∑

m=1

1

M

∑

x∈Gn

P (e(m) = x)
∑

θ

∑

m̃∈Tθ(m)

I
∏

i=1

2n[H(Xi|Y )−H([Xi ]θi )+O(ǫ)]
I
∏

i=1

1

p
n(ri−θi)
i

∑

y∈An
ǫ (Y |x)

Wn(y|x) +O(ǫ)

≤

M
∑

m=1

1

M

∑

x∈Gn

P (e(m) = x)
∑

θ

∑

m̃∈Tθ(m)

I
∏

i=1

2n[H(Xi|Y )−H([Xi ]θi )+O(ǫ)] 1

p
n(ri−θi)
i

+O(ǫ)

=
∑

θ

M
∑

m=1

1

M

∑

x∈Gn

P (e(m) = x)

I
∏

i=1

[

(pri−θi
i )wik

]

I
∏

i=1

[

2n[H(Xi|Y )−H([Xi]θi )+O(ǫ)] 1

p
n(ri−θi)
i

]

+O(ǫ)

≤
∑

θ

I
∏

i=1

[

(pri−θi
i )wik2n[H(Xi|Y )−H([Xi]θi )+O(ǫ)] 1

p
n(ri−θi)
i

]

+O(ǫ)

Sinceǫ is arbitrary letǫ→ 0 and thereforeO(ǫ)→ 0 to get:

E {Pavg(err)} ≤
∑

θ

exp2

{

−n

I
∑

i=1

[(ri − θi) log pi

−
wik

n
(ri − θi) log pi −H(Xi|Y ) +H([Xi]θi |Y )

]}
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